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Abstract ─ The study of the acoustic field generated by an ultrasonic transducer is fundamental to its construction and characterization, 
because it defines how it will behave before being built. It also defines whether it is feasible or not, for the application to which it was 
designed. It can also lead to modifications to the project so it behaves as expected. In this work, a software was implemented in MATLAB®, 
for computational simulation of acoustic fields generated by ultrasonic transducers of different configurations. Two models were used, 
Zemanek and Stepanishen. Transducers with focus and apodization and transmission medium with attenuation may also be simulated. 
For the simulation of Zemanek’s model, the mathematical method of discretization was used. The Stepanishen’s model used an analytical 
solution for the impulse response. The developed programs were aggregated into a computer package, named FSIM, and a graphic 
interface was created. The user can choose among some of the transducer configurations and simulation parameters already implemented. 
FSIM has a modular architecture and allows further simulation modules to be added. The simulations were validated comparing results to 
those previously published in classical papers from Zemanek, and from Lockwood and Willete, in addition to prior results from research 
studies conducted at the Biomedical Engineering Department of the School of Electrical and Computing Engineering at the Universidade 
Estadual de Campinas (UNICAMP). 

Keywords ─ Acoustic Field Simulation, Discrete Representation, Impulse Response, MATLAB, Ultrasound Transducers.
Resumen ─ El estudio del campo acústico generado por un transductor ultrasónico es fundamental para su construcción y 

caracterización, ya que define cómo se comportará antes de ser construido. También define si realmente es factible para la aplicación a la 
que fue diseñado, y también puede sugerir modificaciones al proyecto, para que se comporte como se espera. En este trabajo un software 
fue implementado en MATLAB®, para la simulación computacional de los campos acústicos generados por los transductores ultrasónicos 
de diferentes configuraciones. Dos modelos fueran usados, Zemanek y Stepanishen. Transductores con el enfoque y apodización y 
medios con atenuación también pueden ser simulados. Para la simulación del modelo de Zemanek, se utilizó el método matemático de 
discretización y para el modelo de Stepanishen, se empleó una solución analítica para la respuesta impulsiva. Los programas desarrollados 
fueron agregados en un paquete computacional, llamado FSIM, y una interfaz gráfica fue creada. El usuario puede elegir entre algunas 
configuraciones del transductor y parámetros de simulación ya implementados; FSIM tiene una arquitectura modular y permite que otros 
módulos de simulación sean añadidos. Las simulaciones fueron validadas comparando resultados obtenidos previamente por otros trabajos 
de investigación del Departamento de Ingeniería Biomédica de la Facultad de Ingeniería Eléctrica y Computación de la UNICAMP y por 
los artículos clásicos de Zemanek y Lockwood y Willette.

Palabras clave ─MATLAB, Representación Discreta, Respuesta Impulsiva, Simulación del Campo Acústico, Transductores de 
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i. introDuction

Ultrasonic waves are mechanical waves with 
vibration frequency above the audible range 

(20 Hz - 20 KHz) and propagate in any medium (water, 
blood, air, biological tissue, etc.). Each material has 
characteristics acoustic properties as propagation speed, 
attenuation and acoustic impedance.

In an ultrasound equipment, the transducer is 
responsible for transforming the electrical pulses generated 
by the equipment in acoustic waves which will propagate 
through the medium (biological tissue). The transducer is 
also responsible for receiving the echoes from the pulses 
emitted and turn them into electrical signals that will be 
processed to reconstruct the medium image.

The characterization and modeling of the transducers 
acoustic field is fundamental for interpretation of the 
signals, since it represents the interaction between the 
waves they produce and the medium in which these waves 
are propagated.

The understanding of the acoustic field generated by 
an ultrasonic transducer according to their characteristics, 
can guide its construction and characterization, indicating 
whether it is really feasible or not, for the application to 
which it was designed. It can also suggest modifications to 
the project so it behaves as expected [1].

The field modeling consists in determining the 
acoustic pressure at a set of points in space applied to the 
transducer surface, either by analytical equations, where 
numerical integration and convolution are employed, or by 
numerical approach [2]. This modeling can be performed 
using mathematical models and computer simulation.

Acoustic field modeling has been widely studied 
since the sixties. But, it was in the nineteenth century, 
when Lord Rayleigh developed equations that describe 
the acoustic wave propagation phenomena. Zemanek 
developed a numerical method for calculating the acoustic 
field of a circular transducer [3]. Stepanishen developed 
one of the most used models today, the impulse response 
method [4, 5]. Piwakowski and Delannoy (1989) described 
the discrete representation method for calculating the 
acoustic field for any transducer geometry [6]. Lockwood 
and Willete developed a method for calculating an 
analytical solution for the acoustic field of rectangular 
transducers [7]. San Emeterio and Ullate (1992) gave 
exact expressions for the velocity potential impulse 
response of rectangular transducers [8]. Since 1996, 
Jensen has published several papers related to the software 
Field II, considered the gold standard program for acoustic 
field simulation. This program is considered very flexible 

since it allows the simulation of any excitation signal and 
transducer geometry [9].

In this work we describe a software, named FSIM, 
with graphical interface, implemented in MATLAB® for 
the simulation of acoustic fields generated by ultrasound 
transducers of different configurations, using two models, 
Zemanek [3] and Stepanishen [4, 5]. Transducers with 
focusing and apodization and transmission medium with 
attenuation may also be simulated. Simulation results are 
displayed in several graphical templates. The purpose 
of this software is to support transducer development 
projects, allowing the prediction of the acoustic field 
behavior before transducer construction.

II. MATERIALS AND METHoDS

A. Zemanek’s model simulation

For this model, the Discrete Representation Method 
(DRM) was employed. This approach tends to the 
analytical solution. It consists in the domain discretization, 
i.e., the division of the integration area in a finite number 
of points, turning the continuous domain into a discrete 
one.

The accuracy of the results is only limited by the 
number of elements adopted for modeling the field and 
the transducer face [6]. The higher the discretization 
(sampling) is, the greater the accuracy of the simulated 
field.

The evaluation of the acoustic field using this method 
is performed discretizing the space in three dimensions 
(applying rectangular coordinates) into a finite number 
of points, using sufficient samples to limit quantization 
errors and to satisfy the Nyquist theorem. For that, a 
spatial resolution of at least half wavelength (λ/2) of the 
excitation signal is adopted [10]. Then, the transducer 
face is discretized in many active area elements, and the 
resulting sound pressure at a point in space will be the sum 
of the individual contribution of each of these elements.

An advantage of Zemanek’s model is that it considers 
uniform motion all over the transducer face, turning the 
piston velocity in a continuous function and, thus, it is 
restricted to fields generated by transducers in continuous 
excitation. Considering this case, the piston velocity is:

                                                                        (1)
 

where u0 is the peak amplitude of the transducer 
velocity, t is the time, ω is the angular velocity and j is the 
complex operator. The normalized acoustic pressure pn (r) 
at a point in space is [3]:

0( ) j t
nv t u e ω=
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generated by the edge region in the ultrasonic field, 
resulting in acoustic diffraction [11].

The apodization results in the reduction of side 
lobes and the generation of a uniform ultrasonic field. 
Apodization ɑ(r1,t) can be inserted in (2). Considering 
only single element transducer and uniform motion all 
over the transducer face, only constant apodization is 
considered too, i.e., ɑ(r1,t) = ɑ(r1) , and (2) can be written 
as [12]:

 

where ɑ(r1) defines the gain of each transducer active 
element in  r1.

Apodization is defined by MATLAB® masks 
(windows), originally used in signal processing. Some of 
the windows implemented in the program are: Hanning, 
Bartlett, Blackman, Triang, Kaiser and Hamming [13].

Attenuation – acoustic wave attenuation occurs due 
to the diminution in the pressure variation amplitude 
that decreases exponentially as a function of distance. 
Several mechanisms may produce attenuation, including 
absorption and dispersion.

Attenuation effects can be modeled by dividing the 
attenuation in one dependent and other independent term 
of frequency [12]:

 

(5)

where βlinear and β are the frequency-independent, in 
dB/cm,  and frequency-dependent attenuation coefficient, 
in dB/(cm∙MHz), respectively, α is the dependence 
between attenuation and frequency, and Ac (r, ƒ) is the 
attenuation in dB.

Applying (5) in (2): 

 

Focusing – aims to align the pressure field originated 
from all over the piston face to reach a particular point 
in space at the same time. This process can be obtained 
using curved surface transducers, overlapping lenses over 
the piston or applying time delay in the excitation of array 
transducers elements.

p n ( r )= ——— ∫ ——— dS
u0 ρc0k       e–j.k |r–r1|

  2 π     s    |r – r1|
                                                               (2)

where, ρ is the acoustic medium density, c0 the sound 
speed, k the wave number, r the position vector of a 
point in space, r1  the position vector of the piston active 
element and S is the piston active area.

Rewriting (2) in its discrete form:

 

   (3)      

where         corresponds to the acoustic field 
normalized pressure between 0 and 1 in the nr-th   
sample of the x-th field spatial dimension,               is 
the distance between the nr-th field spatial sample to 
the transducer active element r'x,y, which represents 
the position of the y-th transducer active element                                                       
(T

s
 elements) in the x-th spatial dimension. It is given by                                          

r'x,y = rx + y. Δrx, where rx  is the initial sample and Δrx is 
the sample rate of the x-th spatial dimension, and m is the 
number of spatial dimensions. Fig. 1 shows a transducer 
discrete representation.

 

Fig. 1.  Discrete representation of an arbitrary geometry transducer.

Apodization – it is the non-uniform polarization 
of piezoelectric transducer elements, i.e., when the 
polarization intensity and direction change over the 
piezoelectric element. It aims to establish a spatial 
distribution of the active elements of the transducer face, 
in order to minimize the contribution of the vibration, 
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For computational simulation, focus can be represented 
by an advance on the position of the z-axis active element 
∆zn=c0.∆tn.ẑ [10], given by [12]:

 

(7)

where (xf , yf , zf ) = rf is the focal point, (xn , yn , zn ) is 
the center of the n element, (xc , yc , zc ) is the reference 
center point and tn is the propagation time.

For the particular case of farfield simulation [10]:

 

(8)

Then:

(9)

 

Finally, the equation that describes Zemanek’s model 
considering apodization, attenuation and focus functions 
is:

(10)

 

B. Stepanishen’s model simulation

Stepanishen [4, 5] proposed an analytical solution 
for the acoustic field defining the impulse response 
function h( r, t ) for each transducer geometry, circular and 
rectangular. After finding the impulse response function, 
the piston velocity function is determined and its temporal 

derivative is calculated. The medium density multiplied by 
the convolution of these two functions corresponds to the 
acoustic field pressure at a point of interest.

The acoustic field pressure is:

   

(11)

where t is the time, h(r ,t) is the transducer impulse 
response, r = (x,y,z)  the position vector of a point in space 
and vn(t) is the transducer active element velocity.

For the particular case of a circular flat transducer, 
Stepanishen approach [4, 5] was used to determine an 
analytical solution for the impulse response. Due to the 
piston radial symmetry, it is easier to be found. It can be 
computed defining expressions for arc angles formed 
in the piston surface Ω(r0 ) for two projected geometric 
regions (internal and external) shown in Fig. 2.

 

Fig. 2.  System used to calculate the impulse response of a point P on a 
circular transducer of radius ɑ [2].

∆tn = —     (xc–xf )
2 + (yc–yf )

2 + (zc –zf )
2

        
             –   (xn–xf )

2 + (yn–yf )
2 + (zn –zf )

2

1
c0

Time interval For y < ɑ
h( r, t )=

For y > ɑ
For t < t0 0 0

For t0 < t < t1 c0 0
For t1 < t < t2 c0               (c0t)

2 – z2 + y2–ɑ2

— cos –1 �——————— �
π                    2y [(c0t)

2–z2]½
c0               (c0t)

2 – z2 + y2–ɑ2

— cos –1�——————— �
π                   2y [(c0t)

2–z2]½

For t > t2 0 0
                         1                                          1
t0 = z/c0         t1 = —  [ z2 +(y – ɑ)2 ] ½         t2

 = — [ z2 +(y + ɑ)2 ] ½                         c0                                                                      c0

Table 1.  Expressions to calculate the impulse response of circular transducers [4, 5].
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(12)

where r1 e r2 represent the piston closest edge and 
farthest edge distances to the spatial point of interest. 
Table 1 shows expressions to compute the impulse 
response of circular transducers in both regions of interest.

The determination of the impulse response function 
of the rectangular transducer is more complicated than 
the circular one. San Emeterio and Ullate [8] obtained 
an exact analytical solution for the impulse response 
that is used to calculate the sound field pressure of a 
rectangular transducer.

Considering a rectangular transducer of 2ɑ wide 
and 2b long, sorrounded by a rigid baffle and located at 
z = 0 plane (Fig. 3), only points in the x ≥ 0 and y ≥ 0 
quadrant is considered. The rectangles sides are named Si 
(i = 1 – 4) and distances between the field point projection 
P’ to the straight lines, which contain the rectangle sides                    
|di | (i=1–4) are:

(13)

There isn’t only one equation to describe the angle   
Ω(r, t) and analytical expressions have to be obtained 
by dividing  x ≥ 0 and y ≥ 0  quadrant in four regions: 
region I: x ≥ ɑ and y ≥ b; region II: x ≤ ɑ and y ≥ b; 
region III:      x ≥ ɑ and y ≤ b; region IV: x ≤ ɑ and y ≤ 
b, as shown in Fig. 4.

 

Fig. 3.  Geometry and coordinate system for the impulse response of a 
rectangular piston [8].

The impulse response of a rigid piston is determined 
by:

(14)

 

where Ω(r,t) is the arc angle formed by the 
circumference aperture centered in P’ intercepted by 
the rectangular piston edges. These arc angles values are 
calculated by San Emeterio e Ullate [8] for each of the 
mentioned regions and are shown in Table 2.

Time 
interval

I II

Geometric region

III IV
τmin < t < τA ... π – 2α2 2ᾱ3– 2α1 –2π – 2ᾱ1– 2ᾱ2 + 2ᾱ3 + 2ᾱ4

τA < t < τm π / 2 – α1 – α2 π / 2 – α1 – α2 π / 2 – α1 – α2 + 2ᾱ3 –3π/2– α1– α2 + 2ᾱ3 + 2ᾱ4

τm < t < τM
a – α1 + α3 π – α1 + α3 + 2ᾱ4 –α1 – α3 –π– α1+ α3 +  2ᾱ4

τm < t < τM
b – α2 + α4 ... –π – α2 + 2ᾱ3 + α4 –π– α2+ 2ᾱ3 +  α4

τM < t < τD –π / 2 + α3 + α4 –π / 2 + α3 + α4 –π / 2 + α3 + α4 –π / 2 + α3 +  α4
a     for  τB  ≤  τC.

b     for  τB  ≥  τC.

τm = min (τB , τC) and τM = max (τB, τC).

Table 2.  Analytical Expressions for the angle Ω(     ,t) of a rectangular piston [8].
→
r
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Fig. 4.  Rectangular piston geometry, the active arc L and the four 
regions of interest [11].

The values of αi e ᾱi  in Table 2 are:

(15)

 

 

where sgn(x) is equal to 1 if x is positive and  -1 if x 
is negative and  σ (   ,t) = (c0

2t2–z2 )½. . The transit times of 
the signal between the vertices A, B, C and D to the point   
P (    )are: 

 (16)

 

 

 

The time instant τSi when the active arcs become 
tangent to the rectangle sides Si and the time τ0 for the 
plane wave reach the point P (    ) are:

   (17) 

The impulse response h(   ,t)  is delimited by the time 
interval (τmin,, τD), and outside this limits  h(   ,t) = 0  . The 

minimal time  τmin is equal to τA , τS2 , τS1  or  τ0  for field 
points in the regions I, II, III and IV, respectively.

After defining the angle  Ω(     ,t), this is substituted in 
(14) to find the transducer impulse response. The acoustic 
field pressure, likewise the circular piston, is obtained by 
the convolution between the impulse response function 
and the velocity derivative at a point in space.

C. Software Development

In this software, named FSIM, a graphical interface 
was developed to facilitate the interaction between user 
and program, where the transducer main characteristics 
and the acoustic field parameters can be inserted. They are:

a) transducer geometry and dimensions;

b) focusing in x, y and z axes, in mm;

c) resolution, assuming integer values between 1 and 6 
(corresponding to values between λ/2 and λ/12);

d) transducer apodization,

e) sound speed in acoustic medium in m/s;

f) vibration frequency of the transducer face in Hz;

g) acoustic medium attenuation using values of βlinear, 
β and α;

h) graphic dimensions in mm;

i) five graphic templates for simulation: 3D pressure xy 
plane, xz plane, 3D slice, 2D pressure z-axis and pressure 
peak contour. All graphics show normalized pressure 
values between 0 and 1.

D. Hardware and Software

The program and simulations were performed using 
an Intel® Core™ Quad Q8200, 2.33 GHz, 4 Gb of RAM 
Memory and 32 bits Windows 7. Both simulation methods 
and graphical interface of the FSIM were implemented in 
MATLAB®, MathWorks Inc. R2009a (version 7.8.0.347).

iii.  results

This section presents the FSIM graphical interface 
and simulations obtained using the software. In the 
home screen (Fig. 5), input values and the graphic 
template for the simulation are defined. The program 
has some preset input values, which can be changed. 
Default values include the sound speed of the medium, 
attenuation values and the acoustic field dimensions.

→
r

→
r

→
r

→
r

→
r

→
r



63Gasparini R., Da Silveira V., Development of a MATLAB Environment Software for Simulation of Ultrasonic Field

 

Fig. 5.  FSIM graphical user interface.

Applying Zemanek’s model, some of the simulated 
transducers were:

1. circular piston of 15 mm diameter and  500 kHz 
frequency (a/λ=2.5) (Fig. 6);

 Fig. 7.  Simulation of a 12.7 mm diameter and 2 MHz frequency 
transducer. A) Acoustic field xz plane, B) acoustic field xz, yz and xy 
planes, C) on-axis normalized pressure and D) pressure contour xz 
plane.

3. square piston of 8 mm side, 2 MHz frequency 
(Fig. 8);

Fig. 6.  Simulation of a 15 mm diameter and 500 kHz frequency 
transducer (a/λ=2.5). A) Acoustic field xz plane, B) acoustic field xz, yz 
and xy planes, C) on-axis normalized pressure and D) pressure contour 
xz plane.

2. circular piston of 12.7 mm diameter and  2 MHz 
frequency (Fig. 7);

Fig. 8.  Simulation of an 8 mm side and 2 MHz frequency transducer. 
A) Acoustic field xz plane, B) acoustic field xz, yz and xy planes, C) 
normalized pressure x-z axes, D) on-axis normalized pressure and E) 
pressure contour xz plane.
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4. circular transducer of 12.7 mm diameter  2 MHz 
frequency, apodized applying a Hamming mask (Fig. 9);

Fig. 9.  Simulation of a 12.7 mm diameter and 2 MHz frequency 
transducer, apodized applying a Hamming mask. A) Acoustic field xz 
plane, B) acoustic field xz, yz and xy planes, C) on-axis normalized 
pressure and D) pressure contour xz plane.

5. square piston of 8 mm side, 1 MHz and     
(-10mm, 0, 40mm) focus point (Fig. 10);

 

Fig. 10.  Simulation of an 8 mm side, 1 MHz frequency transducer and 
(-10mm, 0, 40mm) focus point. A) Acoustic field xz plane, B) acoustic 
field xz, yz and xy planes, C) normalized pressure x-z axes, D) on-axis 
normalized pressure and E) pressure contour xz plane.

6. Square piston of 8 mm side, 2 MHz frequency 
and 2.5 dB/cm of linear attenuation (Fig. 11).

Fig. 11.  Simulation of an 8 mm side, 2 MHz frequency transducer and 
2.5 dB/cm of linear attenuation. A) Acoustic field xz plane, B) acoustic 
field xz, yz and xy planes, C) on-axis normalized pressure and D) 
pressure contour xz plane.

Applying Stepanishen’s model, the simulated 
transducers were:

7. circular transducer of 15 mm diameter and 500 
kHz frequency (Fig. 12);

 Fig. 12.  Simulation of a 15 mm diameter and 500 kHz frequency 
transducer (a/λ=2.5). A) Normalized pressure x-z axes, B) Acoustic 
field xz plane, C) on-axis normalized pressure and D) pressure contour 
xz plane.
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8. circular transducer of 12.7 mm diameter and 2 
MHz frequency (Fig. 13);

Fig. 15  Acoustic field simulation of a 12.7 mm side and 2 MHz 
frequency transducer. A) Acoustic field xz, yz and xy planes and B) 
acoustic field xz plane [10].Fig. 13.  Simulation of a 12.7 mm diameter and 2 MHz frequency 

transducer. A) Normalized pressure x-z axes, B) Acoustic field xz plane, 
C) on-axis normalized pressure and D) pressure contour xz plane.

9. Square piston of 8 mm side, 2 MHz frequency 
(Fig. 14).

 Fig. 14.  Simulation of an 8 mm side and 2 MHz frequency transducer. 
A) Acoustic field xz plane, B) acoustic field xz, yz and xy planes, C) 
on-axis normalized pressure and D) pressure contour xz plane.

Fig. 15 and Fig. 16 show the simulations obtained by 
Albuquerque [10], Zemanek [3], Lockwood and Willette 
[7] and were used to validate the simulations performed by 
FSIM.

 

Fig. 16.  Acoustic field simulation of a transducer with a/λ=2.5. A) 
Normalized pressure x-z axes and B) acoustic field xz plane [3, 7].

iV.  Discussion

Analyzing Zemanek’s model algorithm Ni=Tx.Ty.Tz.
Tsx.Tsy, and Stepanishen’s one Ni=Tx.Ty.Tz.∆t for the 
rectangular piston and Ni=Tθ .Tz .∆t for the circular piston. 
Tx.Ty.Tz are space points in the x, y and z axes, respectively, 
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Tsx.Tsy are transducer active area elements, Tθ .Tz is the total 
number of space points in cylindrical coordinates, ∆t is 
the number of time samples defined empirically and Ni is 
the amount of iterations. As Stepanishen’s model requires 
fewer iterations than Zemanek’s one, the computational 
cost is lower. Nevertheless, due to the greater complexity 
of the analytical solution of the rectangular transducer 
impulse response, it executes more iterations than the 
circular one and, hence, requires greater processing time.

FSIM simulations were compared and analyzed 
qualitatively and they are in agreement with those obtained 
by Nicacio [1] and Albuquerque [10] works, Zemanek [3] 
and Lockwood and Willette [7] classical papers. Indeed, 
it is possible to observe the well-known properties of 
acoustic fields such as the interaction between plane and 
edge waves in the nearfield region and the transition from 
the nearfield to the farfield region. The uniform nearfield 
due to apodization functions, the change of the acoustic 
field steering when a focus point is determined and the 
diminution of the acoustic field intensity when attenuation 
is applied can also be observed.

other programs for acoustic field simulation already 
exist such as Field II, which is the gold standard software, 
but it has a different purpose. Instead of allowing more 
complex acoustic field simulation applying only one 
model like Field II [9], FSIM allows simpler simulations 
applying different models and other models can be added 
to the program.

Analyzing both models, Stepanishen is more complete 
than Zemanek’s one and requires less iterations. However, 
Zemanek is more accurate, because it does not have 
the “noise” found in Stepanishen results, since time 
discretization is not necessary. Even when the resolution 
is increased, the noise is not eliminated, and it only 
approximates one point to another. Another characteristic 
observed in the Stepanishen’s simulations is the presence 
of “stairs” in the farfield region. This may occur due to 

numerical approximations and small variations between 
points, amplified due to the magnitude of these numbers, 
stored by the computer in a floating-point form [1]. Wu, 
Kazys and Stepinski [14, 15] discuss the presence of noise 
in the numerical implementation of the angular spectrum 
approach, which can arise by three types of artifact: 
frequency aliasing, half-sample length phase shift and 
spatial aliasing.

The DRM was very effective to simulate acoustic 
field and its precision is limited only by the resolution, 
which depends on the transducer frequency. The larger 
the transducer and the field dimension, more points are 
defined where the acoustic field is computed, likewise 
the higher the resolution or the transducer frequency is, 
the higher the discretization and, thus, is the processing 
time to perform the simulations. The method used by 
the program becomes unfeasible for very high frequency 
transducer simulation and if real time simulation is 
necessary. This is the major limitation of the FSIM. Table 
3 shows the processing time of some simulations.

V.  conclusion

FSIM program has proved to be a useful and efficient 
tool for studying and understanding the acoustic field 
behavior generated by ultrasonic transducers. Its friendly 
interface makes it an easy program to handle, which is 
its major advantage, if compared to other simulation 
programs. The software can help transducers designers, 
predicting the acoustic field generated by transducers 
before their construction; furthermore, the program 
code is accessible and can be complemented with other 
transducers models and functions. This program is already 
available to be used by undergraduate and graduate 
students and researchers of the Biomedical Engineering 
Department of the School of Electrical and Computing 
Engineering of UNICAMP.

Model Transducer (mm) x,y,z (mm) Frequency Res. Time Res. Time

Zemanek
Circular 12,7 20,20,120 2 MHz λ/2 5'40'' λ/4 3h 30'
Square 8 20,20,80 2 MHz λ/2 2' λ/4 55'
Circular 12,7 20,20,120 2 MHz λ/2 2'30'' λ/4 5'

Stepanishen Square 8 20,20,80 2 MHz λ/2 19' λ/4 6'20''

Table 3.  Summary of approximate processing time of the simulations.
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