
30
técnica

#31 revista de ingeniería. Universidad de los Andes. Bogotá, Colombia. rev.ing. ISSN. 0121-4993. Enero - Junio de 2010, pp. 30-39.

GENESIS: Agile Generation of Information
Management Oriented Software
GENESIS: Generación ágil de software orientado a gestión
de información
Claudia Jiménez Guarína, Juan Erasmo Gómezb

a PhD. en Informática. Profesora asociada, Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes. Bogotá

D.C., Colombia. � cjimenez@uniandes.edu.co

b M.Sc. en Sistemas y Computación. Instructor, Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes.

Bogotá D.C., Colombia. � jua-gome@uniandes.edu.co

K E Y W O R D S

Agile development, information requirements.

ABSTRACT

��������	
���	
���
�����	��
����	
����������������������

from the beginning: it must acquire, display, query

and modify data, using a database. The main issue is

to decide which information to manage. In the case

originating this work, information was always evolving,

even up to the end of the project. This implies the

construction of a new system each time the information

	�� ����
����� ��	�� ���	���� ��������� �����	��� ��� ��	���

development infrastructure, and proposes an approach

for the immediate construction of required information

systems. Experts describe their information needs and

queries, and Genesis generates the corresponding

application, with the appropriate graphical interfaces

and database.

P A L A B R A S C L A V E S

Desarrollo ágil de software, requerimientos de información.

RESUMEN

��������	
���	����������	��������� 	��
����	���������

estar clara desde el principio: debe adquirir, desplegar,

�
�����������
�	
�������
��������
����������������
���

El asunto es decidir cuál información manejar. En el

caso que origina este trabajo, la información evoluciona

����������������� 	�����
����������
����������
����
��

Esto implica la construcción de un nuevo sistema

������������� ��� ����
��� ��� 	��
����	����!�������"���
�

presenta Genesis, una infraestructura ágil para la

construcción inmediata del sistema de información que

sea requerido. Los expertos describen su información y

consultas. Genesis produce el software correspondiente,

��������
� ���� 	���������� ��$
���� �� ��� ����� ��� ���
��

apropiados.

31

#
31

re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

I N T R O D U C T I O N

The software conception and development process
usually begins with a requirement gathering phase.
These requirements define the scope, functionality
and technical conditions for the software product, as
well as the “business” needs, that is, those conditions
justifying the software process construction and fur-
ther use [1].

In the software construction process for supporting
information based systems, one frequently finds func-
tional requirement descriptions in terms of “enter,
modify, delete or obtain some information according
to a given criteria”. These operations are usually de-
nominated CRUD operations (Create, Retrieve, Up-
date, Delete) [2]. In the non functional aspects, it is
usual to require database support, distribution and a
graphical user interface. The database supports mainly
data storing, efficient querying, transactional features,
and guarantees information consistency. The graphical
interface must allow significant, robust and ordered in-
teractions between the user and the information.

Thus, the challenge for the analysts and develop-
ers in this kind of information systems is to accu-
rately determine the relevant information in order
to guarantee the information integrity rules and the
needed query constructions. As a result of this pro-
cess, the appropriate database and user interfaces are
designed

In the beginning, the information system originating
this work was non-surprising classical CRUD soft-
ware. It had to catalog the data obtained from several
diagnosis methods, on a same patient data. The diag-
nosis methods were defined by clinical, medical and
engineering experts. Their corresponding approaches
had to be evaluated using the results of queries ob-
tained with the information system [3]. Experts were
radiologists, neurologists, mechanical engineers and
computer medical image treatment engineers.

From the software requirement point of view, the initial
problem was quite simple and not really challenging. In
the earlier days of the project, all the functional and

technical requirements were clear, as well as the system
scope. However, it was impossible to begin the soft-
ware construction process! Given the project’s nature,
it was impossible to determine, in an earlier phase of
the project, which information could be considered.

The information description and structure, and the
expert knowledge, continually evolved over time.
As the diagnosis methods research evolved, experts
were defining the relevant information. In this way,
the information definition, restrictions and rules were
highly changing during the whole project evolution.
In practical terms, once the information requirements
were introduced in the software process, most of the
time, they became obsolete rather quickly. Tradition-
al software developing methodologies [4], as well as
known agile methodologies like extreme programming
[5] were revealed to be unsuitable. In this case, the
functional or technical requirements are not evolving,
as it is usual in many software projects leading to com-
plex architectures dealing with requirement adminis-
tration [6] [7] [8]. The challenge is to deal with highly
evolving information specification. Changes to the
information definition can occur in data types, struc-
turing complex information, enumeration ranges, or,
even, all new information definition. These changes
have impact in the database definition, integrity con-
straints, input data interface, browsing and querying
interface. None of these aspects are covered by tradi-
tional methodologies or tools for managing software
evolution, adaptability or refactoring.

This paper presents Genesis, an agile construction
approach for developing information oriented man-
agement systems in the context of evolving informa-
tion requirements. The information requirements, as
well as queries, are described by the experts, using a
declarative and simple to use XML-based language.
Genesis constructs, on the fly, the corresponding
CRUD information system, including the graphical
user interface and the database support. This ap-
proach allows the software product construction to
be highly efficient, robust and reliable, and as fast as
the expert knowledge evolves.

32 In part 2 we present the Genesis solution approach.
Next, in part 3, we present the proposed informa-
tion description and query languages. Part 4 presents
Genesis architecture and design. Part 5 describes the
specific example of Genesis use in the context of the
comparison of diagnosis methods for carotidal steno-
sis. Finally, conclusions and future work are presented.

T H E G E N E S I S A P P R O A C H

The main challenge in Genesis is to quickly produce
an information system corresponding to the infor-
mation requirements established by the experts. The
information definition can evolve by introducing new
attributes, changing data types, reorganizing complex
structures or modifying data integrity restrictions as
possible values, ranges or enumeration values. This
produces a new information system specification, and
consequently a new software product.

In a first version of the project, a traditional infor-
mation system was developed, with a relational data-
base to support data management. This solution was
quickly obsolete because of project evolution and the
resulting information system was nearly unused. As
the research project started a second phase [9], it was
clear that new, dynamic and quickly reactive develop-
ment software process was required.

The chosen approach was to develop a software envi-
ronment capable of producing a functional software
system for CRUD information management, using a
declarative descriptor of the desired data and queries.
From the software developing process point of view,
the main goal is to produce the required information
system decoupling the specific information defini-
tions, in order to avoid source code modification
caused by evolution of information requirements. An
additional issue for Genesis is the independence of
the initial medical research project needs, such that it
can be applied to other contexts.

With this approach, the experts make a description of
their research information, using a proposed syntax.

Based on this description, the complete software sys-
tem must be constructed in an automatic procedure.
This procedure includes the graphical user interface
for information input, the interface for browsing and
editing the existing information and the corresponding
database generation. Both software components must
take into account the defined information integrity
constraints. Then, by using an expert query language,
the generated information system must produce the
desired comparison for the medical research purposes.

Two different technical solutions were developed us-
ing this approach: a first phase, using relational data-
base technology; and Genesis, the second phase, us-
ing XML technologies intensively. Genesis description
and results are the main contribution of this paper.

B E F O R E G E N E S I S

In the first phase, technical decisions were guided by
two main goals: a very simple description language
for the experts, and the use of traditional relational
database technology. This solution was fully imple-
mented, using java and an XML-like language for data
description.

The resulting product [10] was functional, but highly
coupled with the medical research problem and their
information structure. It also reflected information
representation features of relational database sys-
tems; in particular non hierarchical information units
were allowed and relationships between units were
defined in a separate descriptor. The description lan-
guage allowed complex units, data types and integrity
restrictions but intentionally avoided introducing in-
formation attributes needed to fit relational defini-
tions. Extra data identifiers, subrogates or primary
keys were introduced by the system at generation
time. Hibernate [11] and introspection were the key
tools for producing the desired system and database.

Once the information description was given by the
experts, they established the queries to be validated
using the resulting information system. Complex que-
ries were really hard to produce, mainly due to the
relational normalization of hierarchical information:

33

#
31

re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

experts were forced to introduce extra attributes, un-
known to them. These extra unknown attributes cor-
responded to integrity foreign keys, and the results
were unexpected cross products or uncompressible
query expressions. Resolving this complexity intro-
duced many features in the software completely de-
pendent on the medical case study.

G E N E S I S P R O P O S A L

Using the experience obtained in the first phase, the
decision was to preserve the solution approach, but
to use an all new technological approach. The present
phase, Genesis, eliminates relational database tech-
nology, data model impedance and translation; and
simplifies software design and implementation. An
all new expert language has been designed, allowing
hierarchical information definition and easier queries.

In Genesis, data model descriptors and queries are
written using an expert appropriated languages. In
the present Genesis version those languages are sim-
plifications of XML; those expert languages are auto-
matically traduced to XML, making the Genesis pro-
cessing module as powerful as XML is. Before system
information execution, the expert data model de-
scription document is translated to the correspond-
ing Genesis descriptor schema, which is expressed in
XML Schema [12]. Figure 1 presents an example of a
Genesis information definition and Figure 2 presents
the corresponding Genesis generated XML Schema.
Then, at runtime, using the generated schema, the
corresponding information system is generated, in-
cluding the appropriate database and user interfaces
for data entry and browsing.

At query time, the expert query language is trans-
formed to XQuery and then it is processed. In this
way, XML is not only used in the classic way, for
data representation. The additional and innovative
role of XML in Genesis is to be a multipurpose
tool, used both for the expert model and query de-
scription, as well as for the automatic generation of
the application database schema and the software’s
graphic interface.

T H E G E N E S I S E X P E R T I N F O R M A T I O N M O D E L

A N D Q U E R Y D E S C R I P T I O N

In this chapter we present the designed Genesis defi-
nition and query expert languages, and the resulting
graphical interfaces. The expressivity of the expert
definition language must include data types, hierarchi-
cal structures as complex as necessary, cardinality ex-
pressions (min, max) for any attribute, and controlled
values. The examples are shown for the context of
the original case study, the Carotid Stenosis Diagno-
sis. Genesis is completely decoupled of the case study
and the corresponding information descriptors.

As presented in the Genesis approach, at runtime Gen-
esis uses a Genesis XML Schema for the automatic
generation of the desired information system (Figure
2). XML Schema is not friendly and not appropriate for
final experts of the system. Then, we proposed to the
experts a data model definition syntax, which in fact
corresponds to a XML simplification, avoiding mainly
the syntactical overhead concerning the namespaces
(Figure 1). It also offers XML significant tags, mak-
ing easier for them to define and to verify the com-
pleteness of the desired integrity constraints.

In order to describe the application data model, the
expert produces an XML Genesis compliant docu-
ment. Using this information, Genesis produces a
complete Genesis XML Schema syntax, using XSLT.
The result is a computational description usable with
tools like DOM [13] and Xerces [14].

This processing approach allows decoupling the ex-
pert data model descriptor language and the actual
schema definition managed by Genesis. In this way,
another expert language can be chosen in order to
adapt it to more specific purposes, making the data
model definition phase more user-friendly for non-
technical users. In this case, the only extra work is the
construction of the corresponding XSLT, to produce
the generated Genesis XML Schema. The main ad-
vantage on this approach is that it allows decoupling
of the processing technology from the expert lan-
guages, requiring only language translation modules
for new expert languages when needed.

34

<?xml version="1.0" encoding="UTF-8"?>
<modelo xsi:noNamespaceSchemaLocation="experto.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <entidad min="1" max="1">
 <nombre>Pacientes</nombre>
 <entidad min="0">
 <nombre>Paciente</nombre>
 <campo>
 <nombre>nombre</nombre>
 <tipo>string</tipo>
 </campo>
 <campo>
 <nombre>cedula</nombre>
 <tipo>string</tipo>
 </campo>
 <campo>
 <nombre>genero</nombre>
 <tipo>string</tipo>
 <valor>masculino</valor>
 <valor>femenino</valor>
 </campo>
 <campo>
 <nombre>fecha_nacimiento</nombre>
 <tipo>fecha</tipo>
 </campo>
 <entidad min="0">
 <nombre>Serie</nombre>
 <campo>
 <nombre>fecha_realizacion</nombre>
 <tipo>fecha</tipo>
 </campo>
 <campo>
 <nombre>fecha_ingreso</nombre>
 <tipo>fecha</tipo>
 </campo>
 <campo>
 <nombre>ubicacion</nombre>
 <tipo>string</tipo>
 </campo>
 <campo>
 <nombre>tipo</nombre>
 <tipo>string</tipo>
 <valor>EcoDoppler</valor>
 <valor>ASD</valor>
 <valor>Angioresonancia</valor>
 <valor>Eco modo b</valor>
 </campo>
 <entidad min="1" max="1">
 <nombre>IACID</nombre>
 <campo>
 <nombre> fecha_realizacion</nombre>
 <tipo>fecha</tipo>
 </campo>
 <entidad min="0">
 <nombre>Placa</nombre>
 <campo>
 <nombre>longitud</nombre>
 <tipo>real</tipo>
 </campo>
 <campo>
 <nombre>posicion</nombre>
 <tipo>entero</tipo>
 </campo>
 <campo>
 <nombre>estenosis</nombre>
 <tipo>string</tipo>
 <valor>~ - 50: normal</valor>
 <valor>51 - 69: estenosis leve</valor>
 <valor>70 - 89: estenosis moderada</valor>
 <valor>90 - 99: estenosis pre-oclusiva</valor>
 <valor>100: oclusion</valor>
 </campo>
 </entidad>
 </entidad>
 </entidad>
 </entidad>

 </entidad>

</modelo>

%	�����&�������	���'�����	��
����	
����
�	�	
���'�����

Patient collection
(���)��	������
�	�	
�

Using the Genesis XML Schema, at runtime, the
graphical interface is automatically generated. Figure
3 shows a generated interface for the case study. It
shows complex and simple elements, as well as the
interaction elements for collection browsing. A par-

ticular graphical element is generated for each in-
formation type. Basic data, complex unique sub-
elements, and complex multi-valued entities have a
specific graphical representation in the user interface,
as shown in Figure 3.

35

#
31

re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

<?xml version="1.0" encoding="UTF-8"?>
��������	
��	�
������������������������������������	
���	�
���
����������!#$%��
���!&
��
�
����'
	���
������������!#$%��
���!&
�����	�
�(��)�*
+����,+
�!#�&��
���!4+��(��)�*
+����+
,+
�!#�&�;
 <xs:complexType name="Pacientes_TYP">
��������������,+�
��;
 <xs:element ref="ca:Paciente" minOccurs="0" maxOccurs="unbounded"/>
���������������,+�
��;
 </xs:complexType>
 <xs:element name="Pacientes" type="ca:Pacientes_TYP"/>
 <xs:complexType name="Serie_TYP">
��������������,+�
��;
 <xs:element name="fecha_realizacion" type="xs:date" id="hgf"/>
 <xs:element name="IACID" type="ca:IACID_TYP" minOccurs="0"/>
���������������,+�
��;
 </xs:complexType>
 <xs:element name="Serie" type="ca:Serie_TYP"/>
 <xs:complexType name="Paciente_TYP">
��������������,+�
��;
 <xs:element ref="ca:Serie" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="ca:Laboratorio" minOccurs="0"/>
 <xs:element ref="ca:Reporte_Hemodinamico" minOccurs="0"/>
���������������,+�
��;
������������
���!4+���

	�����&+�
���@����������!
���+������,+!��&��;
 </xs:complexType>
 <xs:element name="Paciente" type="ca:Paciente_TYP"/>
 <xs:complexType name="IACID_TYP">
��������������,+�
��;
 <xs:element name="fecha_realizacion" type="xs:date"/>
 <xs:element name="placas" type="ca:Placa_IACID_TYP" maxOccurs="unbounded"/>
���������������,+�
��;
 </xs:complexType>
 <xs:element name="IACID" type="ca:IACID_TYP"/>
 <xs:complexType name="Placa_IACID_TYP">
��������������,+�
��;
 <xs:element name="longitud" type="xs:double"/>
 <xs:element name="posicion" type="xs:int"/>
 <xs:element name="estenosis" type="xs:string"/>
���������������,+�
��;
 </xs:complexType>
 <xs:element name="Placa_IACID" type="ca:Placa_IACID_TYP"/>
</xs:schema>

Figure 2. Genesis XML Schema�*��������
�	�	
�

The Genesis Query language is XQuery with syntac-
tical simplifications; mainly, the syntactical XQuery
overhead dealing with namespaces is eliminated. This
allows expressions as complex as required, using only
the originally described elements. Figure 4 presents

a Genesis query example. Existing XML technology,
mainly parsers and native-XML databases, are used
in Genesis implementation. This allows delegating to
known and reusable technology much of the respon-
sibilities of information integrity validation.

Figure 3. Genesis generated interface for data entry

36 Figure 4 shows an example of a simple expert query. It
looks for the patient’s name and carotid plaques, for all
patients. For queries, Genesis offers an assisted graph-
ical interface to the experts. The information defini-
tion tree is displayed, in order to avoid missing syntax
or additional XML viewers. The information elements
can be selected and used in a query expert language,
edited in the Genesis provided query user interface.

The expert can edit, save, retrieve and reuse queries
in order to find new relationships in the stored in-
formation.

Genesis allows more complex queries, indicating
graphical preferences for result display. Experts can
use pie charts, bars, lines, scattered graphics or ta-
ble displays. In figure 5 we present a complex query,
producing a pie chart of the total plaques found in

patients, according to the grading diagnosis values
(“normal”, “leve”, “moderada”, “preoclu-

siva” and “oclusion”). These values correspond
to the defined grades found in the Placa possible val-
ues, in the expert definition language. Figure 6 shows
some examples of generated graphical interface for
Figure 5 expert query.

The expert query language is translated by Genesis
to standard XML query languages, using XQuery
and XPath, in a similar way as it is done with the
definition languages. All the corresponding overhead
syntax is not visible to the expert. The expert query
language can also be replaced, by providing the cor-
responding translation module to XQuery.

for $x in /Genesis/Paciente
return <result>{$x/nombre}<placas>{$x//Placa}</placas>
</result>

Figure 4. Simple expert query

show pie chart
<PieDataset>
 <Item>
 <Key>Estenosis normal</Key>
 <Value>{
 for $x in /Genesis
 return fn:count($x//Placa[./estenosis='~ - 50: normal'])
 }
 </Value>
 </Item>
 <Item>
 <Key>Estenosis leve</Key>
 <Value>{
 for $x in /Genesis
 return fn:count($x//Placa[./estenosis='51 - 69: estenosis leve'])
 }
 </Value>
 </Item>
 <Item>
 <Key>Estenosis moderada</Key>
 <Value>{
 for $x in /Genesis
 return fn:count($x//Placa[./estenosis='70 - 89: estenosis moderada'])
 }
 </Value>
 </Item>
 <Item>
 <Key>Estenosis pre oclusiva</Key>
 <Value>{
 for $x in /Genesis
 return fn:count($x//Placa[./estenosis='90 - 99: estenosis pre-oclusiva'])
 }
 </Value>
 </Item>
 <Item>
 <Key>Oclusicion</Key>

 <Value>{
 for $x in /Genesis
 return fn:count($x//Placa[./estenosis='100: oclusion'])
 }
 </Value>
 </Item>
</PieDataset>

Figure 5. Complex expert query example

Figure 6. Graphical result for a complex expert query

Oclusición

Estenosis pre oclusiva

Estenosis moderada

Estenosis normal

Estenosis leve

Estenosis normal Estenosis leve Esten0sis moderada Estenosis pre oclusiva Oclusición

37

#
31

re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

G E N E S I S : S O F T W A R E A R C H I T E C T U R E A N D

G E N E R A T E D I N F O R M A T I O N S Y S T E M

D E S C R I P T I O N

Genesis is a Java and XML based distributed system.
Figure 7 shows the general software architecture of
Genesis.

The Genesis software architecture is mainly structured
in components allowing the data model discovering,
the generic model management, the information rela-
tionship analyzing, and the query management. A na-
tive XML database, eXist [15] is the chosen product
for persistence. This technology decision guarantees
no impedance in the data manipulation model and the
persistent database model. None the less, the archi-
tecture is designed so that other persistence technolo-
gies (i.e. relational databases) could be use in place
XML based products. Figure 7 shows the general de-
sign of the main Genesis components.

The Model Analyzer (MA) component is responsible
for the model manipulation and analysis. It uses the
generated Genesis XML Schema and produces an
internal representation of the data model, consider-
ing the hierarchical definitions and the integrity con-
straints. Its main objective is to provide an abstrac-
tion of the data model and the necessary services
to process it. The GUI Generator uses the services

offered by the MA to generate a user interface that
corresponds to the user defined data model. It is re-
sponsible for the GUI data entry interface, the data
browsing user interface and the query user interface.
This includes input fields and dialog for different
kind of data types, and output elements. It also con-
siders the structure of the information and integrity
restrictions.

The XML Database Manager is the interface with eX-
ist. The main objective of this component is to isolate
the specific code related to eXist in order to reduce
the dependency on any specific product. The CRUD
Server is responsible for the CRUD data operations
and the query execution. Its main goal is to make the
architecture flexible enough to support different kind
of persistence technology (currently, a XML persis-
tence implementation is used).

R E S U L T S , C O N C L U S I O N S A N D F U T U R E W O R K

Genesis is a fully functional solution for the agile con-
struction of information systems based on CRUD
information requirements. Experts are responsible
for the information definition, which guarantees easy
integrity and completeness validation, both to experts
and technology. Genesis produces a tailored informa-

GUI Generator

CRUD server

QueryServer InsertServer

PeristanceManager

XML DB Manager

eXist XML DB

GenericModel

Model Analyzer

XML Schema

Key Definition
File

jaxb xerous Introspection
API

Figure 7. Genesis General Software Arquitecture

38 tion system, where all the interfaces and database
constraints are based on expert information descrip-
tion. Thus, Genesis constitutes an effective way for
software construction in the case of evolving infor-
mation requirements: no program code changes are
needed when information definition changes, and all
the information features are well considered. This ap-
proach has a very efficient trade-off between expert
training and flexibility, and efficient computational
results. The desired new information system is gener-
ated in few minutes, for very complex information
description.

The proposed expert languages have been shown to
be expressive enough for the experts in the case study
project [3]. The expert descriptors, expressed in an
XML-like language, have show to be complete and
appropriate, even if they are not so friendly. Little
training is necessary for the description language and
for simple queries. Complex queries may consider ad-
ditional support, so graphical tools to improve end-
user interaction and complex query construction are
considered as future work.

Semantic problems may arise in updating the infor-
mation definition if information is already present.
Genesis does not discover or resolve information
definition incompatibilities with previous versions.
In the project experience about evolving information
definitions we found that the encountered changes
are almost unpredictable. For this reason, a new in-
formation system is constructed for each new in-
formation description. If information is present in
the old version, an additional process for informa-
tion migration is needed. In the Genesis architecture
proposal we achieved a fully decoupling the medical
research case study from the implementation. Then,
future uses of Genesis do not require additional de-
veloping work.

For a next version of Genesis, some work is to be
done, allowing the automation of some tasks, as
starting XSLT translations between expert languages
and schema. In order to introduce specific business

requirements other than CRUD operations, further
work should include more complex information re-
lationships or the inclusion of other business opera-
tions. The expert proposed languages can be adapted
or replaced if new information description needs are
found.

R E F E R E N C E S

[1] B. Bruegge and A.H. Dutoit.

Object-oriented software engineering : using UML, patterns and

Java. New Jersey : Prentice Hall, 2004.

[2] H. Kilov.

“From semantic to object-oriented data modeling”.

Proceedings of the First International Conference on Systems

Integration. IEEE Computer Society Press, Los Alamitos,

1990, pp. 384–393.

[3] L. F. Uriza, J.A. Arias, E.M. Nieto, M. Hernández

Hoyos, J.C. Briceño.

“Desarrollo de un modelo computacional para estudio de

la enfermedad arteriosclerótica carotídea”. XXIX Congreso

Nacional de Radiología. Cartagena : Octubre de 2004.

[4] A.J.C. Blyth, J. Chudge, J.E.Dobson and

M.R.Strens.

“A Framework for Modelling Evolving Requirements”.

IEEE Xplore [ed.]. Computer Software and Applications

Conference, COMPSAC 93. 1993, pp. 356- 361.

Available: http://ieeexplore.ieee.org/stamp/stamp.js

p?tp=&arnumber=404219&isnumber=9093.10.1109/

CMPSAC.1993.404219

[5] K. Beck and C. Andres.

Extreme Programming Explained: Embrace Change. 2nd ed.

Addison-Wesley Professional, 2004.

[6] D. Kulak and E. Guiney.

Use Cases: Requirements in Context. 2nd ed. Addison-Wesley

Professional, 2003.

39

#
31

re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

[7] M.A. Corsello.

“System-of-Systems Architectural Considerations for

Complex Environments and Evolving Requirements”.

IEEE Systems Journal. Vol. 2, No. 3, September 2008, pp.

312. Available: http://ieeexplore.ieee.org/stamp/stamp.js

p?tp=&arnumber=4595695&isnumber=4626033.10.1109/

JSYST.2008.925972

[8] M.W. Godfrey and D.M. German.

“The Past, Present, and Future of Software Evolution”.

IEEE Xplore. [ed.]. Frontiers of Software Maintenance, FoSM

2008. September 2008. pp 10. Available: http://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=4659256&isnu

mber=4659234.10.1109/FOSM.2008.4659256

[9] I. Fernández, M.A. Navas, M.A. Zuluaga, L.F.

Uriza, M. Hernández Hoyos, J.C. Briceño.

“Carotid stenosis disease: use of mathematical and

computational analysis as a diagnostic aid”. 53nd Annual

Conference of American Society for Artificial Internal Organs

(ASAIO). June 7-9, 2007, Chicago, USA.

[10] C. L. Jiménez, J. Grijalba, C. H. Jiménez,

S. Moreno, J. E. Gómez.

“Software construction for evolving systems with

incomplete information definition”. XML 2006 Conference.

Boston, Dec 2006.

[11] C. Bauer and G. King.

Hibernate in action. Greenwich: Manning Publications Co.,

2005.

[12] World Wide Web Consortium.

XML Schema. 2007. Available: http://www.w3.org/XML/

Schema

[13] World Wide Web Consurtium W3C.

Document Object Model. Cited: August 13, 2008. Available:

http://www.w3.org/DOM/

[14] The Apache Software Fundation.

Xerces Java Parser. Cited: August 13, 2008. Available:

http://xerces.apache.org/xerces-j/

[15] W. Meier.

Open Source Native XML Database. Cited: August 13, 2008.

Available: http://exist.sourceforge.net/

Recibido 26 de Septiembre de 2008, modificado 16 de Septiembre de 2009, aprobado 30 de Marzo de 2010.

