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P A L A B R A S  C L A V E S

Algoritmos de optimización de caos, funciones no 

lineales, minimización, métodos cíclicos de búsqueda 

por coordenadas.

RESUMEN

En este artículo se presenta un algoritmo híbrido 

caótico que usa una búsqueda cíclica mejorada a lo 

largo de cada eje y el algoritmo BFGS para optimizar 

funciones no lineales. El método propuesto es una 

poderosa técnica de optimización; esto es demostrado 

al optimizar cuatro funciones benchmark con 30 

dimensiones. La metodología propuesta es capaz de 

converger a una mejor solución, y más rápido que el 

algoritmo tradicional de optimización basado en caos, 

y otras técnicas competitivas.

K E Y  W O R D S 

Chaos optimization algorithms, nonlinear test functions, 

minimization, cyclical coordinates search methods.

ABSTRACT

In this paper, we present a hybrid chaotic algorithm using 

a chaotic enhanced cyclical search along each axis and 

the BFGS method for optimizing nonlinear functions.  

The proposed method is a powerful optimization 

technique; this is demonstrated when four nonlinear 

benchmark functions with 30 dimensions are minimized 

using the proposed technique. Using this methodology 
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the traditional chaos optimization algorithm and other 

competitive techniques.
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The use of  heuristic algorithms for optimizing non-
linear functions is an important and growing field of  
research [1]; this is due to the fact that in mathema-
tics, engineering and economics, the maximization or 
minimization of  highly nonlinear functions is a com-
mon, important and challenging problem. This diffi-
culty is explained by the complexity of  the objective 
function, the restrictions imposed on the problem, 
the presence of  the so-called multiple local minima 
and the limitations of  many optimization methodo-
logies [1]. It is a well-known fact that gradient-based 
optimization algorithms are trapped within local op-
timum points.

Coordinate-based search algorithms are some of  
the more traditional classical methods [2] [3] [4] for 
function minimization. They seek the local optimum 
sequentially along a single axis at a time while the va-
lues for other axes are fixed.

Recently, chaos theory has been used in the develo-
pment of  novel techniques for global optimization 
[5] [6] [7] [8], and particularly, in the specification of  
chaos optimization algorithms (COA) based on the 
use of  numerical sequences generated by means of  a 
chaotic map [5] [7] [9] [10] instead of  random num-
ber generators. However, recent trends are about the 
hybridization of  the COA with other well established 
techniques as gradient-based methods [11], genetic al-
gorithms [12], particle swarm optimization [13] [14] 
[15] [16] [17] [18], differential evolution [19], clonal al-
gorithms [20], artificial immune systems [21] [22], bee 
colony algorithms [23] and simulated annealing [24].

The nonlinear optimization problems is stated as min 
ƒ�������	
����
��������������
�
�����������
��
��
���
of  n × 1, and ƒ( ) is a nonlinear function such that 
ƒ:Rn�R. This problem is the same as those  formu-
lated in other optimization algorithms for which it 
is necessary: (a) to restrict the search space due to 
limitations of  the algorithm, as the Monte Carlo opti-
mization [25]; or (b) to transform the representation 
of  the solution into real values, as tabu search [26]  

[27] and genetic algorithms [28]. However, the pro-
blem definition used here is not restrictive in relation 
to the application cases, and our algorithm would be 
applied to solve problems with complex restrictions 
using penalizing functions, among others methods.  
For example, as proposed in [29], we can minimize 
problems with restrictions using a new function F(x)
defined as:

      F(x)=�
��
�
����
��
�
������
��
�����
��
��
�������Mc is the 
������������
������
�
� ��!�"�
��
����#���
���
������
defined as dc=max {H1×|R1|, H2×|R2|, ...}; where 
Hi is one if  the i-th restriction is violated, and zero 
otherwise; Ri is the magnitude of  the violation of  the 
i-th restriction. Obviously, in the restrictions Ri we do 
�
���
����
����
�����������
�
���$���%��!

The aim of  this paper is to present a novel chaos 
optimization algorithm based on cyclical coordinate 
search. The paper is organized as follows: the next 
section summarizes the traditional chaos optimi-
zation algorithm; following that, we present a new 
methodology based on chaos theory; next,  we analy-
ze the behavior of  the proposed algorithm when four 
well-known nonlinear test functions are optimized. 
Finally, we provide some conclusions.

T R A D I T I O N A L  C H A O S  O P T I M I Z I N G  A L G O R I T H M 

( C O A )

Chaos is understood as the complex, bounded and 
unstable behavior caused by a simple deterministic 
nonlinear system or chaotic map, such that, the gene-
rated sequences are quasi-random, irregular, ergodic, 
semi-stochastic and very sensible to the initial value 
[30]. The use of  chaotic sequences instead of  quasi-
random number generators seems to be a powerful 
strategy for improving many traditional heuristic al-
gorithms, and their main use is in escape of  local mi-
nima points [31]. The logistic map is a very common 
one-dimensional non-invertible model for generating 
chaotic sequences (for n&'�*��!!!+�����/<>�?�@�

ƒ(x)      x ���
Mc + dc      x ���

(1)
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�n+1 = >�n (���n)

Where �n �[0,1] and �n�{0., 0.25, 0.50, 0,75, 1.0}.

The most elementary optimization procedure [5] 
consists in generating candidate points xc inside of  
��
� �
�����
� �
��
�������+� ��
�
�������� �l , is the 
candidate point with the lowest value of  ƒ(x c ). The 
process is schematized in Figure 1, from line 02 to 
line 08. Candidate points xc (line 03) are generated in 
the domain [L, U] by means of  the vector of  chaotic 
sequences �1. In order to do this, the i-th component 
of  �1, is mapped linearly to the interval [L(i), U(i)].  In 
the algorithm presented in Figure 1, we assume that 
the components of  �1 are restricted to the interval [0, 
1] as occurs for the logistic map. At each iteration, a 
new vector of  chaotic sequences is generated using 
the chaotic map H( )(line 7); in our case, H( ) is the 
logistic map defined in (1) but another maps would 
also be used. The current local optimum xl is updated 
(line 6) in each iteration.  The algorithm made up by 
lines from 01 to 08 is the so-called first carrier wave 
and it is similar to the Monte Carlo optimization tech-
nique, which converges slowly and obtains the global 
optimum with low probability. 

The first carrier wave is used to obtain a good point 
for the refining phase or second carrier wave [5] des-
cribed by the lines 09 to 16. �2 is other vector of  
chaotic sequences, and r is a scalar parameter related 
to the radius of  search around of  xl. The value of  r 
is decreased by means of  a function P( ) (line 14) in 
each iteration. Each candidate point is generated insi-
de the hypercube [xl -r, xl +r], since each component 
of  �2 (with domain [0, 1]) is mapped to the interval 
[-r, r]. The local optima is updated every time that a 
better point is found (line 13), such that, the proce-
dure continues seeking in the neighborhood of  the 
new optimum point. The search procedure is similar 
in some fashion to the simulated annealing technique 
when ascending movements are not allowed. An ini-
tial value for r =0.1 (line 9) is proposed in [32], and 
P(r�&>r�������/<><'���������
�������
�
��
���
�������
r (line 14). In addition, it is necessary to define the 
minimal value for r, always as always r>0.

P R O P O S E D  M E T H O D O L O Y

In this section we describe the methodology presen-
ted in Figure 2. We begin with an initial point drawn 
from a compact domain (line 02); in line 02, u is a 
uniform random number in the interval.  The basis of  
our method is the search along each coordinate axis 
(line 05). Using the current best solution, we obtain 
a new candidate point changing the i-th component 
for a random value inside of  the interval centered in 
the current best value (for the i-th component) with 
radius r(i) (line 09); the search radius r is reduced (line 
'J�� �$� ������������ �� ���
�� ����
�� K�� ���
�� 
���� �
�-
plete cycle. We repeat this sampling process K2 times 
(line 06), and each time we obtain a better point, the 
best current solution is updated (from lines 11 to 13). 
The complete cycle is repeated K1 times (line 03).  
Once we complete a cycle over the n components of  
x, we refine the current best solution using the BFGS 
gradient-based optimization algorithm (line 18). The 
function g( ) in line 18 calls for the implementation of  
the BFGS method.  

We assume that the chaotic map H( ) is bounded in 
the interval [0, 1] (line 07); for this reason, we use the 
transformation [2�(i)-1] to convert the interval [0, 1] to 
PQ'��'V!�"�
�������
����������
��X
��������
�/Y�������-
pired by the simulated annealing technique; however, 
sampling along each axis seems to be more effective 
than the traditional simulated annealing technique.  

In our experiments, we found that the proposed al-
�
�������
�Z��X�
��
��r initialized in a value of  0.1.  
"�
������
�
��K������������
��
� ���
�X�����
���������
�
and this is calculated, such that, r =0.0001 in the last 
iteration of  the main cycle (line 03). In other words, 
the search ratio r is reduced from an initial value spe-
��X
�� ��� ���
�/'� �
� ��
� ���������
�� �
���
�� ��� ��
� �����
cycle, subtracting in each iteration (line 03) a small 
X�
������
�K!��

The current implementation of  the methodology was 
made in the R language for statistical computing.  We 
use the implementation of  the BFGS method availa-
ble in the primitive function optim.  We use the default 
values for the main parameters of  the optim function.

(2)
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01 initialize �1   # first carrier wave #
02 for (m1=1, ...; M1) {
03       let xc&�\^1(U-L)
04       if  (m1==1) let xl=xc 
/_� �������
��`ƒ=ƒ(xc)-ƒ(xl)
/~� �������� ��`ƒ<0) let xl =xc

07       let �1=H(�1)
08 }
09 initialize r and �2   # second carrier wave #
10 for (m2=1, ..., M2) {
11       let xc=xl +r (2�2 -1) 
'*� �������
��`ƒ=ƒ(xc) - ƒ(xl) 
'�� �������� ��`ƒ<0) {let xl =xc}
14       let r =P(r) 
15       let �2=H(�2) 
16 }   # end of  algorithm

Figure 1.  Chaos optimization algorithm

01 initialize �, K1, K2��K��r    
02 let xl=L+u×(U-L) 
03 for (k1=1, ..., K1) {
04       let ƒound = FALSE  
05       for (i = 1, …, n) {
06             for (k2=1, ..., K2) {
07       let �(i)=H(�(i)) 
08      let xc =xl

09      let xc(i)=xc(i)+r[2�(i)-1] 
'/� � �����
��`ƒ=ƒ(xc)-ƒ(xl) 
''� � ������ ��`ƒ<0) {
12          let xl =xc

13          let ƒound=TRUE 
14      }
15             }
16       }
17       let r =r QK
18       if  (ƒound==TRUE), xl=g(xl)  
19 } # end of  algorithm

Figure 2.  Proposed enhanced chaos optimization algorithm
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S I M U L A T I O N S

A major problem in the validation of  chaos optimi-
zation algorithms is the use of  classical test functions 
for a low number of  dimensions, so that, it is not pos-
sible to evaluate the real power of  these algorithms. 
For example, in ref. [32] only functions with 2 or 3 
dimensions are tested, while in ref. [33], the Camel 
and Shaffer two-dimensional functions are evaluated. 
In our study, we overcome this limitation using a ma-
jor number of  dimensions (30) and comparing with 
other heuristic optimization algorithms.

The algorithms described in previous section are 
applied to the following test functions in order to 
better understand its behavior and to clarify its effi-
ciency:

Sphere:  ƒ(x) = � xi
2

DeJongF4: ƒ(x) = � i · xi
2

Griewank:  ƒ(x) = 1+�  + � cos

Rastrigin: ƒ(x) = � [10+xi
2 - 10 cos 2�xi ]

The first two functions (Sphere and DeJongF4) have 
a unique global minimum. Griewank function has 
many irregularities but it has only one unique glo-
bal minimum. The Rastrigin function has many local 
optimal points and one unique global minimum. For 
this study, N was fixed in 30 (dimensions). Table 1 
resumes the global optimum, the function value at 
global optimum and the search range used for each 
test function. Figure 3 presents the plot for each 
test function. For each function and each algorithm 
considered, we use 50 random start points (50 runs); 

each run was limited to 15000 evaluations of  the test 
function.  

First, we use, as a benchmark, the traditional chaos 
optimization algorithm (COA), which is made up by 
two cycles as described in Figure 1.  We use 5000 ite-
rations for the first carrier wave, in order to generate 
a good starting point for the second part. Ten thou-
sand iterations were used for the second wave carrier. 
Figure 4 presents the best run for each function. It is 
noted that the first part is not able to reach a good 
initial point; and there is a vertical line indicating the 
starting point of  the second wave carrier. In Table 2, 
the results for each function and each algorithm are 
presented.

Second, we apply our methodology to the test 
functions. For this, we use 5 main cycles (K1 para-
meter in line 03), and 100 tries for each axis (K2 pa-
rameter in line 06). The initial value of  r is 0.1(L-U) 
and the final value is 0.0001(L-U). Values for L and U 
are presented as the search range column in Table 1. 
The obtained results are presented in Table 2. In all 
cases, our algorithm is an improvement on the COA 
approach, in terms of  the best solution found, the 
best mean value and the standard deviation of  the 
best solutions. Our algorithm is especially successful 
for the Rastrigin function, where the COA gave a very 
poor solution.

Figure 5 shows the best run for our algorithm. In 
comparison with Figure 4, our algorithm find lower 
values of  the objective function faster than COA.  
Moreover, for the Rastringin function, our algorithm 
is able to quickly escape from the local optimal points 
unlike the COA algorithm, which has the same value 
of  the objective function for many iterations.

We also compared our methodology against other ap-
proaches. In Table 2, we report the results presented 
in [34] for the classical evolutionary programming 
methodology (CEP) and the fast evolutionary pro-
gramming (FEP). In [34], CEP and FEP algorithms 
are used for optimizing the sphere, Rastrigin and 
Griewank functions. These algorithms use a popula-

xi
2

i=1

N

i=1

N

i=1

N

i=1

N

i=1

N xi
4000 �i

Name Global 
optimum

Function value 
at optimum Search range

Sphere (0,0, ..., 0) 0.0 [-50, 50]

DeJongF4 (0,0, ..., 0) 0.0 [-20, 20]

Griewank (0,0, ..., 0) 0.0 [-600, 600]

Rastrigin (0,0, ..., 0) 0.0 [-5.12, 5.12]

Table 1. Test functions used in this study
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Algorithm Best value Mean best value Std. Dev

Sphere function

COA 0.3777 1.1870 0.4956

This study 9.0481 × 10-38 1.3733 × 10-37 2.7020 × 10-38

CEP - 2.2 × 10-4 5.9 × 10-4

FEP - 5.7 × 10-4 1.3 × 10-4

GEBOUD - 1.453 × 10-32 9.997 × 10-32

DeJongF4 function

COA 0.0214 0.2270 0.2413

This study 9.4160 × 10-15 9.6814 × 10-14 7.6192 × 10-14

Griewank function

COA 0.9812 1.0392 0.0201

This study 0.0025 0.0128 0.0133

CEP - 8.6 × 10-2 1.2 × 10-1

FEP - 1.6 × 10-2 2.2 × 10-2

rgenoud [35] - 7.994 × 10-17 1.209 × 10-16

Rastrigin function

COA 68.0986 127.2812 33.6033

This study 0.0000 0.0199 0.1407

CEP - 89.0 23.1

FEP - 4.6 × 10-2 1.2 × 10-2

rgenoud [35] - 2.786 1.864

Table 2. Comparison of algorithms. All results have been averaged over 50 runs. “Best value” indicates the minimum value of the objective function 
over 50 runs. “Mean best value” indicates the mean of the minimum values. “Std. Dev” is the standard deviation of the minimum values.

Figure 3. Plots of test functions used in this study

Sphere DeJongF4

Griewank Rastrigin

Figure 4. Best run for basic chaos optimization algorithm
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Griewank Rastrigin

0 
   

   
50

00
   

  1
00

00
   

15
00

0 
  2

00
00

  2
50

00
   

30
00

0 
 

f(
x)

0e
+

00
   

1e
+

06
   

2e
+

06
   

3e
+

06
  4

e+
06

   
5e

+
06

  6
e+

06

f(
x)

0                       5000                    10000                  15000 0                       5000                    10000                  15000

evaluations evaluations

0 
   

   
   

 2
00

   
   

   
40

0 
   

   
  6

00
   

   
   

8
00

   
   

  1
00

0

f(
x)

0 
   

  1
00

   
   

 2
00

   
 3

00
   

  4
00

   
  5

00
   

 6
00

   
   

70
0

f(
x)

0                       5000                    10000                  15000

evaluations

0                       5000                    10000                  15000

evaluations



51

#
32

  
re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

tion of  100 individuals and 1.500, 2.000 and 5.000 
generations; that gives, a total of  15.000, 20.000 and 
50.000 calls to the objective function.  In compari-
son, we use only 15.000 calls to the objective function 
for all functions. The results reported in [34] are re-
produced in Table 2. For the considered functions, 
the proposed algorithm has a lower mean best value 
than the evolutionary programming technique.  Also, 
we compare our methodology against the rgenoud 
package [35] that combines evolutionary search al-
gorithms with gradient based Newton and quasi-
Newton methods for optimizing highly nonlinear 
problems. In Table 2, we report the results published 
in [35] for 30 generations and a population of  5000 
individuals (15.000 calls to the objective function); in 
this case, rgenoud is better than our methodology for 
the Griewank function.  Thus, we conclude that our 
approach is competitive with other well established 
optimization techniques.

C O N C L U S I O N S  A N D  F U T U R E  W O R K 

In this paper, we present a new optimization 
methodology inspired by coordinate search methods, 
chaos optimization algorithms and gradient-based 
techniques. For testing our approach, we use 4 well 
known nonlinear benchmark functions. The presen-
ted evidence allows us to conclude that the proposed 
methodology is fast and converges to good optimal 
points, at least for the proposed functions.  

Our main conceptual contributions are: (a) to use 
a sampling mechanism in the coordinate search 
methods based in chaos theory; (b) to change the 
search strategy in the chaos optimization algorithm, 
incorporating a coordinate search strategy;  and (c) 
to refine the final solution using the BFGS gradient-
based method.

However, further research is needed to gain more 
confidence and a better understanding of  the pro-
posed methodology. It is necessary: (a) To evalua-
te the proposed algorithm for a major number of  
test functions; (b) To analyze the behavior of  our 
methodology when it is applied to real world pro-
blems, like the training of  neural networks; (c) To 
prove the algorithm with other types of  chaotic maps 
and techniques for sampling.  
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