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RESUMEN

En este trabajo, se propone un algoritmo auto-
ajustable implicito basado en el criterio de varianza
minima generalizada para la estabilizaciéon de una clase
de sistemas bilineales. La estabilidad del algoritmo
propuesto es demostrada usando una funcion de
Lyapunov y la estrategia de control por superficie
deslizante. El algoritmo auto-ajustable propuesto es

aplicado a una planta piloto térmica para evaluar su
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ABSTRACT

In this paper, a self-tuning algorithm based on the
generalized minimum variance criterion is proposed
for the stabilization of a class of bilinear systems. Using
a Lyapunov function and the sliding mode control
approach, the stability of the proposed algorithm is
proven. The proposed self-tuning algorithm is applied

to a simulated example to evaluate its performance.
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INTRODUCTION

Bilinear systems comprise perhaps the simplest class
of nonlinear systems which has a lot of applications
in various fields, e.g. [1] and reference therein. Several
control approaches have been proposed to treat the sta-
bilization problem of bilinear systems (see 2, 3] and the
references therein). However, only a few papers (e.g.
[4, 5]) have focused on the stabilization problem of
bilinear systems with time delay. So far, stability of
implicit self-tuning control, based on generalized mi-
nimum variance criterion for minimum and a class
of non-minimum phase linear systems has been de-
monstrated by the use of a Lyapunov function in
[6], and for those systems, it suffices to use linear
functions of the data to predict the system output
response. However, in general, it may be desirable,
or even necessary, to consider the use of nonlinear
functions to get good predictions and hence good

control performance.

By following the idea of Goodwin [7, 8], Sun [5] gave
proof of the explicit self-tuning controller of bilinear
systems. However, the proof relies on assuring pa-
rameter convergence in the close-loop system, when

the projection algorithm is used.

In this paper, stability of the implicit self-tuning
controllers for a special class of discrete-time bili-
near systems, represented by the input-output rela-
tion with unknown parameters, is proven. The trea-
ted bilinear class is the class where only bilinearity
exists between the measured and the control signals;
additionally control signals must appear in the sys-
tem structure in linear form. The proposed algorithm
consists in the combination of the generalized mini-
mum variance control and recursive identification of
the control parameters. The control objective is to
minimize the variance of a sliding mode surface pro-
posed for this class of bilinear systems. The discrete-
time bilinear model could be given directly in the dis-
crete-time form or derived by discretization from the
continuous-time (minimum or non-minimum phase)
system. Stability of the algorithm is proven by using

a Lyapunov function. The proposed self-tuning algo-

rithm is applied to a simulated example to verify and
to show the performance of the algorithm. Part of
this work was presented in the CLCA 2008 [9].

The paper is organized as follows: firstly, the genera-
lized minimum variance criterion for bilinear systems
is given. Secondly, the recursive self-tuning contro-
ller parameter estimation, based on the generalized
minimum variance criterion for the class of bilinear
systems, is studied and the main results are given by
the theorem which assures overall system stability.
Then, the proposed algorithm is applied to a simu-
lated example and digital simulations are shown. The

paper concludes with some additional remarks.

GENERALIZED MINIMUM VARIANCE CONTROL
FOR BILINEAR SYSTEMS
Bilinear systems are a special class of non-linear sys-
tems that are linear in input and linear in state but not
jointly linear in state and input. Specifically, a time in-
variant single-input and single-output (SISO) bilinear

system has a discrete-time form as follows:

AR e = BR e+ NG e ()
where there are no common factors in (A(3 ’7),
N(z ")), orin (Azx "), Bz ")) and the time delay 4 is
known. 7 denotes the time shift operator 37y, =y, ,.
In the Laplace transformation, = ¢ *Ts where T, is
the sampling period (for simplicity, and without loss

of generality, T, = 1 is assumed).

In this section, to derive the nominal control law, the
polynomials A(z 7), B(z ') and N(3 ) are assumed to

be known, and represented as:

AR =1+az " +a,22 .. +ag”
B(ZJ) = }70 + /;7{’7 + sz 2 4 bmz ” bo £0

N ) =n+nz!+.. + nz 5 n, 0

Remark 1: The special class of discrete-time bilinear
systems to be considered in this paper is the class whe-

re the discrete-time system can be described as in (1).



This means that polynomials Az /) # 0, B(z ) # 0,
N(z ) # 0, d > 0, and the bilinearity is considered
only between the output (measured state) and the in-

put variable.

The following notations are introduced:

-1 — -t — -1 —
M =ty (U0 = Uy v, X U0 = 0y,

to - — St —
2Ry = RN mgey) = mpye
The control objective is to minimize the variance of

the controlled sliding mode variable s, ;, which is de-

fined in the deterministic case as:

Sera = CR7)0kva - Teva) ¥ O e + HR g (2)

where H(z 7) = E(z ")N(z ), and polynomial E(z ')
will be defined later. The polynomials:
Cr)=1+ez " +e22+ . ¢,27 and

O ") = q,(1 - 277) are to be designed, so that the
specification given below should be satisfied. The
error signal ¢, is defined as ¢, = y, - r,, where 7, is the
reference signal. The proposed idea is similar to that

of the discrete time sliding mode control in [10, 11].
Multiplying (1) by E(3 /), the following is obtained:

Ez AR e =

P ER)BERJue + 2 ERINERT) yeng, ®)
Using the Diophantine equation:
CR7)=ARTER") + 2 FRY), )
where,

Ez '7) =e¢, + e,z" +..+ e,,,,z"lﬂ,

F(%ii) = fﬂ + fi {’7 Tt f;z-i%'”H:
equation (3) is rewritten as:

Cx -2 Fz e =

RTERTBRJu + 2 ERTNE s ®)
and rewriting (5) in the time £+d, then

CR Ppra =

ERNR pene + F&' i + ER7)BR Jug ©6)
Combining (6) and (2), the sliding mode variable re-
sults in:

seva =GR + FR7 e - CR 7 Dresa ©
where the polynomial G(z 1) is defined as:

Gk = ERBR") +0&"). ®)

Then the generalized minimum variance control in-

put required to vanish s 4 in (2) is given by:

_ F& e - CR Drera ' 9)
’ Gz)

In closed-loop, the characteristic polynomial from the

output signal y, to the reference signal 7, is given by:

Tx7)=BR)CR) + ARIOR)
For the closed-loop design, polynomial C(z ') must be

(10)

chosen Schur (all roots of C(z 7) must be inside the
unit disk) and the gain ¢, in QO(3 ) is designed as any
go>0 that makes the nominal control system stable,

the root-locus technique may be used to choose g, [6].

SELF-TUNING CONTROL OF BILINEAR SYSTEMS
BASED ON GENERALIZED MINIMUM VARIANCE
CRITERION

In this section, the system in (1) is considered as a
system with the same structure having parametric un-

certainties.

The overall stability of the self-tuning control based
on generalized minimum variance criterion for SISO
linear systems has been proved in [6], when the sys-
tem constant parameters are not accurately known,
by recursive estimation of the controller parameter
F(z")and Gz '), i.e. F(z”) and G(3”') are estimates
of F(z”') and G(z "), under the following assump-

tions [6].

Assumptions 1 [6]: 1. The order of the system (1) is
known. 2. The delay step 4 is known. 3. Polynomial
C(z"") is Schur. 4. The considered system (1) with pa-
rametric uncertainties is in the class of systems which
can be stabilized by the polynomials Q(37) and C(z ')
designed for the nominal system model. 5. The refe-
rence signal 7, is bounded, i.e. | 7| <, for all &, where

m,is a positive constant.

Assumption 4 comes from the algorithm s robust sta-
bility analysis explained in [6], and the robust stability
is achieved by designing O(3 ) and C(3 ') as explai-

ned before.
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In this paper, for the bilinear case, the overall stability
of self-tuning control for bilinear systems based on
generalized minimum variance criterion is given by

the following recursive estimation equations:

S TriOpa
Op=0p+ — [+ CR e +
T4+ 0e V0,
Hz i 0pd0ii] 1n
T
r,=r,,— (12)

1+ 0,000,
where
g/‘e = D oo Dt tr M woos Uppaitr o Vet It Mpps oo
Ve-c(d-1) ”/e-g(,z.f)] (13)
is the vector containing measured output and control

signal data,
" = oo St 8o s Euvdctr -+ by By s g(d 7)] (14

is the vector containing the controller parameters,
and

= wa o fﬂ,p 8o s Eprdey o Doy by s bgry) (15)

is the estimate of 6. Note that the parameters of H(z ™)

do not need to be estimated.

The controller uses identified parameters as follows:

F(zi)ﬂ/k - C({il)rkﬂl (16)
G

Theorem 1: (Recursive estimates of controller parame-

"y =-

ters based on generalized minimum variance criterion
for bilinear systems.) Given a positive definite matrix
I'y and the initial parameters vector 6, if the estimate
t‘/A’/6 of the controller (15) satisfies the recursive equa-
tions (11) and (12), under the set of Assumptions 1,
then the self-tuning controller combining (16), (11)
and (12) for the bilinear system (1) with parametric

uncertainties is stable.

Proof: 5., ,1s written as:

. . .
Sera = GR e + FR Y - CR Drevg + Obpra - (17)
where 0, = 0-0,. (18)
Using the control law (16), equation (17) is rewritten as:

Seva = Oy, (19)

Consider the candidate Lyapunov function:

1 1 - = (20)
V,=—8+—-0'T/ 46,
kTR TS e e T
The time difference of (20) is:

AV, =1V, -V, @
ave="L g Lo s grag  Dgrpag @2)
& 2 J A T R R T O R S
Av——lﬁ—i(é 0T (@, e)+7 +

£ e, e e k70T
7 O -
B )0 0L T O (23)
7
AVk:'7 *(@ a/u)TF (O - Or1) -
z i Ry
2 ‘Yg + 6 (1—‘,& »@7) 6,% +
;FF G- 0 F 9&1 (24)

From (19), 5. is:
si=0l o, ,+0!, 0,. 25)

Substituting (25) into (24), the following relation is

derived:

1 7 -~ . S
AV = ‘7&57 ES (O -0, )' T (04 - 0py) +

7 -
7k(rk ST -0,,00,) 0, +
‘9? Ik‘,lr (O -0y + 10y ”/;rfd 5&) . (26)
The term:

7 ~. . N
792(1“’&{‘1“/@7-7'”/@.4”/24)6&

in (24) can be made equal to zero as follows:
ril-rg-o,,0L, =0,

L= +0,,0,)"
D=l =T 000 (Tey + 000L,)",

And this yields (12) by the matrix inversion lemma.
The term:

- . .. N

O Ty (04~ Opy + T 10,0k 40,)



in (26) also can be made equal to zero as described

below:

OOy + Tiyly 0,40, =0, 27)

ék t 1 10a 024‘9&/5 = ék—ia (28)

I+ T g0 08 4)0 = (1+ Ty 0, 00 4)0 s -

L0 0 (29)

and using (18), then:

6, =4, FH”MT”/L (00, 1) 30)
U+ 0,17 10,0)

From (8):

e =00,0-CR7re - Hye gy 31

thus (11) is derived.
Using the recursive equations (11) and (12) in (20),

for £ = 1, the following relation is obtained:

7 7 . ... ..
Vf‘V():‘jjoz '7(‘97‘00)]%-7(‘97'90) (32)

Initially 0, - 6, # 0, then 17, - 17, < 0 which means that
V,<V,. For £ = 2,

1 1T~ - L
7, + ?fg + ’y (0,-0,)" I (0,-0,)=1,<V, (33)
Then, for £=N, where N is large, the following rela-
tion is derived:

1N O -
N +*Z[~}f1+ (O - 0.1)" {{7 (O - 5/&7)] =<l

2 k=2 (34)
Equation (34) implies that sy and (O - Oxr;) vanish as
N approaches infinity, thus Al is negative semi-defi-
nite for all £ and the generalized minimum variance is
minimized, which proves the overall system stability.
Signal Boundedness: the actual signals y,, #, and ¢,
are shown to be bounded as follows, multiplying (2)
by Bz '):
B )sesa = BR') CR Dpsa- BRCE  Jrera +
B )O& Jne - BEDHE s (35)

Bz )se = BR)CE e - BR)CR e + 2 B

ORue - BERHER e, (36)
and using (1):

Bz ")s = -2 B )ER)NGE eny -

BiT)C(z ") - 20N Dypne+

Bz )CE et AOE D 37)

Then, from (8):
_Br7) o+ Biz")Cz") - +N(z")G(z")
&) T®") &)

where T(z”) is defined as in (10):

Ik Je-d"k-d >

(38)

The signal s, was proven to go to zero as £—®. The
signal 7, is assumed to be bounded for all £ and the
signal y, ; #, ; was proven to be bounded from the
boundeness of vector 4. From the set of Assump-
tions 1, number 4 means that the closed-loop charac-
teristic polynomial, considering the described plant
with parametric uncertainties, in (1), T(3 '), is Schur.

Thus, y, in closed-loop is proven to be bounded.
Similatly for #,, multiplying (2) by A(z '), it is obtai-
ned that:

AR Jsped = ART)CR Yra + ARTIOE e -
ARTCR rerd - ARHER e

and by using (1):

AR Jsera = ART)CR ara - ARTVCR s *
ARNOR e - ARTHR Jye

AR )serg = - ARTDERINE Dene +
CRIING e - ART)CR s + ARTIOR e +
BR)C(z " ug.,

(39)

(40)

41
Then, from (4):
_ARY) AR7CRT)
ny = T ) Spra T T ) Tetd -
N -1 F -1
%ﬂfe-ﬂfe-d (42)

Thus, #, is proven to be bounded. Using (2), when
k—o and 5, ;—0, the error is derived:
_ERINRY) orY)
e, = » Uy g - » Up 4.
™) CRY)
Because C(3 ') was designed as a Schur polynomial,

(43)

as £—© the signal ¢, is bounded for all £. Especially
when the signals #, ;,and y, #, ;become constant, the

the error converges to zero to zero, i.e. ¢;—0.

SIMULATED EXAMPLE

In this section, a simulated example is presented to

support the obtained theoretical results. A discrete-ti-
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Figure 1. (a) Output response of (45), controlled by the nominal controller (9) designed for (44). (b) Output
response of (45), controlled by the proposed self-tuning algorithm (11) and (12). (c) Control law dynamics when the
self-tuning algorithm is used. (d) Sliding mode variable dynamics

me non-minimum phase plant with parametric uncer-

tainties is considered. The plant model is known as:
(1= + 0532 =37 (14 1.23 - 2707y, (44)
For the control design, the following polynomials are
chosen: C(z7) = 1+1.18%"" + 0.00453? and O(3”) =
0.1(1-37).

Using (44), (4) and (8) the following polynomials for
the nominal control law (9) are obtained: F(z™/) = 1.78
-04955z " and G(z7) = 1.1 + 1.1,

Polynomials F(z”jand G(3”') give the initial estimates F({" )
and G(z”') for the proposed self-tuning algorithm.

For the simulation, the perturbed plant is considered as:
(1-37 40227, = 371+ 193y - 37109y, (45)

Fig. 1 (a) shows the output response y, of the system
(45), when the nominal controller is used. In Fig. 1
(b) the proposed self-tuning algorithm is used, initial
condition for I" is set to the identity matrix. Fig. 1 (c)
and Fig. 1 (d) show the control law #, and the sliding
mode variable s.. The reference signal r, is chosen as

a sequence of unit-steps with a length of 100 samples.

The simulations show that the proposed self-tuning
control algorithm is able to make the output signal
follow the reference signal even though there are pa-

rametric uncertainties in the system.
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input single-output systems. The overall stability of [5] X.Sun,Y.Jin and C.Z. Fang, “One-Step-Ahead Adapti-
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