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Resumen

En este articulo se presenta una revision detallada de las diferentes metodologias para el modelado de
procesos, sefialando sus deficiencias y limitaciones al aplicarlas al modelado de bioprocesos. Como
resultado del analisis se encuentra que, al aplicar esas metodologias a los bioprocesos, todas fallan
porgue no consideran explicitamente la interaccion existente entre el medio ambiente y el material celular,
al menos de forma descriptiva. Se resalta que hasta ahora la forma de unir estos dos mundos ha sido a
través de funciones puramente predictivas. Finalmente, se describen las tendencias en el modelado de
bioprocesos, concluyéndose que el enfoque esta orientado al planteamiento de modelos matematicos
de base fenomenoldgica, con rasgos descriptivos o explicativos, para representar la relacion existente
entre la célula y su medio ambiente.
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Abstract

This article presents a detailed review of different approaches for process modeling, indicating their
deficiencies and limitations when applied to bioprocesses modeling. As a result of the analysis it is
concluded that these methodologies fail in bioprocesses modeling because they do not explicitly take into
account the interaction between environment and cellular material, at least descriptively. It is noted that
so far the way to bring these two worlds has been through purely predictive functions. Finally, the trends
in bioprocess model are described; concluding that the approach is oriented to phenomenological based
mathematical models with descriptive or explanatory features, to represent the relationship between the
cell and its environment.

Keywords: bioprocess, phenomenology, empirical, explicative, descriptive, modeling.

Resumo

Neste artigo apresenta-se uma revisdo detalhada das diferentes metodologias para a modelagem de
processos, assinalando suas deficiéncias e limitagdes ao aplicar a modelagem de bioprocessos. Como
resultado da analise se encontra que ao aplicar essas metodologias de bioprocessos, todos falham
porque nao consideram explicitamente a interacédo existente entre o meio ambiente e o material celular,
ao menos de forma descritiva. Ressalta-se que até agora a forma de unir estes dois mundos tem sido

Cita: Ortega Quintana FA, Alvarez H, Botero Castro HA. Enfrentando el modelado de bioprocesos: una revisién de las metodologias de
modelado. rev.ion.2017;30(1):73-90.

73



rev.ion. 2017;30(1):73-90. Bucaramanga (Colombia).

através de fungbes puramente preditivas. Finalmente, descrevem-se as tendéncias na modelagem de
bioprocessos, concluindo-se que o enfoque esta orientado a proposta de modelos matematicos de base
fenomenoldgica, com caracteristicas descritivas ou explicativas, para representar a relagdo entre a

célula e seu meio ambiente.

Palabras-chave: bioprocessos, fenomenologia, empirica, explicativo, descritiva, modelagem.

Introduccion

Los bioprocesos son una parte esencial de muchas
industrias de alimentos, quimicas y farmacéuticas.
En los bioprocesos se usan células (microbianas,
animales y vegetales) y componentes de células,
tales como las enzimas, para manufacturar
nuevos productos o destruir desechos peligrosos,
entre otras labores. Por eso, puede decirse
que un bioproceso consiste de un cultivo de
células o el uso de componentes de células en
un biorreactor, el cual es un proceso capaz de
crear un ambiente de crecimiento o uso 6ptimo
del material celular [1]. Desde la antigledad, los
bioprocesos han sido desarrollados para una
enorme variedad de productos comerciales, desde
materiales relativamente baratos tales como el
alcohol industrial, las levaduras y los solventes
organicos, hasta sustancias muy costosas como
los antibidticos, las proteinas terapéuticas, las
enzimas y las vacunas [2-3].

Debido a la enorme importancia de los bioprocesos
en el mundo contemporaneo, se plantea la
necesidad de mejorarlos, para lo cual se requieren
modelos mas elaborados que describan con un
gran nivel de exactitud lo que esta pasando en la
célula como consecuencia de su interaccién con
el medio ambiente. Este esfuerzo se evidencia
en el planteamiento de modelos estructurados
que involucran a la célula como un ente con
estructura interna; modelos segregados que
consideran la diversidad de la poblacién celular;
modelos cibernéticos que consideran la presencia
de multiples sustratos en el medio y modelos
que utilizan inteligencia artificial para el ajuste
de parametros cinéticos, entre otros [4-18].
Adicionalmente, se tienen modelos dinamicos del
metabolismo de varios microorganismos, algunos
casi completos y otros que estan en construccion.
Un ejemplo es el caso de la Escherichia coli
[19], cuyo metabolismo es conocido casi en su
totalidad [20]. En este sentido, la gendmica, la
transcriptomica y la protedmica han hecho un
gran aporte a la ingenieria metabdlica para el
conocimiento de los mecanismos participantes del
anabolismo y catabolismo celular que permiten la
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alteracion especifica de las rutas metabdlicas [21].
A pesar de los grandes avances que el modelado
de bioprocesos ha tenido, no existen reportes
que expongan de manera analitica por qué
las metodologias de modelado aplicadas a los
bioprocesos fallan. Por lo tanto, este trabajo
presenta una revisiéon detallada de las diferentes
metodologias de modelado de procesos,
recalcando sus deficiencias y limitaciones al
aplicarlas a los bioprocesos. Para esto, se presenta
un recuento sobre modelado en ingenieria y los
tipos de modelos y una revision y comparacion de
metodologias de modelado de procesos. Luego,
se discute sobre el modelado de los bioprocesos.
Posteriormente, se describen las tendencias del
modelado de los bioprocesos y, por ultimo, se
presentan las conclusiones.

El Modelado en Ingenieria

En la industria de procesos hay un incremento
en la demanda de modelos puesto que su uso es
muy importante en el disefio, control, optimizacion,
estimacion de estados, deteccion de fallas e
inclusive en la formacion e instruccion del personal
de la planta. Una gran ventaja de los modelos es
que son una herramienta muy valiosa cuando se
quiere observar el comportamiento de un sistema,
pero no se quiere o no se puede experimentar
con él. La disponibilidad de modelos buenos
hace que las distintas actividades realizadas en
la practica industrial sean mejor evaluadas [9,22-
24]. A continuacion, se describe la clasificacion
de los modelos de acuerdo al conocimiento
previo del proceso y de acuerdo con la cantidad
de informacion adicional que brindan sobre el
fenémeno. Dicha informacién adicional va mas alla
de los resultados obtenidos al resolver el modelo
en una simulacion.

Tipos de modelos
Los modelos se pueden clasificar de acuerdo al
conocimiento previo sobre el proceso en tres tipos:

Fenomenolégicos. También llamados de caja
blanca, que estan basados en fundamentos
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tedricos que permiten explicar perfectamente el
comportamiento de los procesos. Todo en dichos
modelos proviene de leyes o principios basicos de
la quimica, la fisica y la biologia. Sus principios
de formulacién son la ley de conservacion y la
ley de causalidad (ley de gradiente). Algunas
formulaciones para cantidades no conservativas,
mediante términos adicionales, se convierten en
ecuaciones conservativas, tales como ecuaciones
de entropia y de cantidad de movimiento [25].

Empiricos. También llamados de caja negra, se
construyen solo a partir de datos experimentales
para ajustar parametros en una estructura
matematica dada. Para su construccion, se
apoyan en las herramientas de la estadistica y
el tratamiento de senales. Su baja complejidad
computacional los hace atractivos para usos en
linea en las tareas de optimizacion y control de
procesos [26]. Sin embargo, estos modelos son
altamente dependientes de los datos: si algo
cambia en la operacién del proceso modelado,
debe obtenerse un nuevo conjunto de datos y un
nuevo modelo.

Combinacién de fenomenolégicos y empiricos.
También llamados de caja gris, que pueden
ser semifisicos (estructura fenomenoldgica) o
semiempiricos (estructura empirica). Los Modelos
Semifisicos de Base Fenomenolégica (MSBF) se
llaman asi porque la universalidad del principio de
conservacion le da a la estructura del modelo un
fundamento fenomenolégico fuerte y el caracter
semifisico se da porque adiciona a la estructura
dada por el fendmeno formulaciones empiricas
para varios de sus parametros [27-29].

Adicional a la anterior clasificacion, los modelos
también se pueden agrupar de acuerdo con la
cantidad de informacion adicional que brindan
sobre el fendbmeno asi [30-31]:

Explicativos. El contenido de informacion en el
modelo es el mayor posible, puesto que explican
todos y cada uno de los fendmenos presentes en
el sistema. Normalmente, se basan en leyes y
principios. En la investigacion cientifica responden
a la pregunta ¢Por qué y de qué forma ocurren
determinados fendmenos en un proceso? La
explicacion usa todos los rasgos del proceso para
construir el modelo. Nada se supone o se toma por
analogia.
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Descriptivos. Son aquellos que, sin explicar
los fendmenos, si realizan una definicion de las
caracteristicas, componentes y condiciones en
que se presentan y las distintas maneras en que
puede manifestarse el fendmeno. La descripcion
completa los rasgos mas relevantes del proceso
con rasgos supuestos, para construir una hipotesis
de operacion creible, desde la que se obtiene el
modelo.

Puramente predictivos. Estos se limitan a
realizar una representacion que permite calcular
los efectos de las relaciones entre las variables de
interés del sistema, sin brindar ninguna descripcion
de los fendmenos involucrados. En el disefio de
ingenieria responden a la pregunta ;Cémo sera
el comportamiento del sistema modelado en
circunstancias diferentes?

Para construir un modelo de cualquiera de los
tipos descritos anteriormente se han planteado
diferentes metodologias, las cuales han
evolucionado a través del tiempo. A continuacion,
se muestra una comparacién de las metodologias
de modelado mas referenciadas en la literatura de
los procesos quimicos. Todas estas metodologias
intentan construir la estructura del modelo (relacion
entre sus términos), desde la fenomenologia del
proceso que se modela.

Metodologias de modelado de base
fenomenolégica
Existen varias propuestas de metodologias

de modelado de procesos usando una base
fenomenoldgica, las cuales difieren basicamente en
el numero de pasos a ejecutar, en la secuencia de
ejecucion de los pasos y en la forma de ejecucion
de cada paso. La Tabla 1 muestra una comparacion
de los principales autores que proponen las
metodologias de modelado de procesos de mayor
citacion en la literatura cientifica. Esta comparacion
se basa en los siguientes pasos metodolégicos que
generalmente se siguen para el modelado [29]:

1. Elaborar una descripcion verbal y un Diagrama
de Flujo de Proceso (DFP) que se complementen.
2. Fijar un nivel de detalle para el modelo y postular
una hipdtesis de modelado. 3. Definir tantos
Sistemas de Proceso (SdeP) sobre el proceso
que se modelara como lo exija el nivel de detalle,
y representar la relacion de todos los SdeP en un
Diagrama de Flujo en Bloque (DFB). 4. Aplicar
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el principio de conservacion sobre cada uno de
los SdeP y en ellos sobre todas las propiedades
de interés, siempre en forma diferencial. 5.
Seleccionar entre las Ecuaciones Dinamicas de
Balance (EDB) aquellas con informacion valiosa
para cumplir con el objetivo del modelo. 6. Definir
para las EDB esenciales los parametros, las
variables y las constantes conocidas en cada
SdeP. 7. Hallar ecuaciones constitutivas que
permitan calcular el mayor numero de parametros
en cada SdeP. 8. Verificar los grados de libertad
del modelo. 9. Obtener el modelo computacional
0 solucion del modelo matematico. 10. Validar el
modelo para diferentes condiciones y evaluar su
desempefio.

En la tarea de modelado a través de estas
metodologias, el ingeniero se encuentra con
una serie de obstaculos que podrian llevarlo al
abandono o ralentizacién de dicha tarea.

Tabla 1. Comparacioén de autores que proponen
metodologias de modelado de procesos

Paso metodolégico (la x indica que el

Referencia paso se utiliza)

4 10

X - - - -

x

[32] - - X
(33]
(34]
(35]
(36]
[37]
(38]
[39] X - -
[40]
[22]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[29]
[28]
[27]
[48]

XX X X
X X X X 1

X X X X X X X

X X X X X X X X
'
1
1
1
xX X

X X X X X X
X X X X X

XX X X X X X X X X 1
X X X X X X X X X X

X X X X X

X X X X X
1

X X X X X
1

X X X X X

X X X X

X X x X

Las principales limitaciones de estas metodologias

se describen a continuacion:

- Se necesita tener suficiente experticia sobre
el proceso, la cual no esta al alcance de los
que recién incursionan en esta tarea. Por
ejemplo, en algunas referencias se habla de
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“‘identificacion de los factores o mecanismos
controlantes”[34,36,39,43], lo cual necesita ser
ampliado o mejorado, debido a que identificar
esos factores o mecanismos controlantes
implica una experiencia y conocimiento amplio
de la realidad que se pretende modelar. Al
respecto, Epstein J [49] menciona 16 razones
diferentes a la prediccion que justifican la
obtencion de modelos. Varias de tales razones
indican el uso del modelado como aporte a la
comprension y aprendizaje de un fenédmeno.

- En algunos casos no hay un orden logico
de pasos. Por ejemplo, algunos autores
sugieren el “uso de las leyes fundamentales
para desarrollar modelos fisicos (balances,
ecuaciones constitutivas, chequear grados
de libertad y formas adimensionales)” [34,36-
37,42-43,45-46], con lo cual se deja al
ingeniero en un punto muy amplio que llevaria
a confundir el orden de las actividades.

- En algunas referencias no se deja claro de
manera explicita la forma de desarrollar
un modelo. Por ejemplo, referencias como
Bastin G y Dochain D [33] plantean un modelo
general de base fenomenolégica para los
bioprocesos y Bequette BW [22] ejemplifica
muchos modelos de procesos afianzados en la
industria, pero ninguna de las dos referencias
explica de manera explicita el método utilizado
para desarrollar un modelo. Dicha forma o
método debe dejar claramente definidos todos
los conceptos, componentes y herramientas
involucrados en el desarrollo del modelo.

- Algunos textos dedican su aporte a la
explicacion de las leyes de conservacion
(materia, energia) pero luego se dedican a
obtener modelos empiricos y a presentar su
resolucion matematica, perdiendo de vista la
metodologia para el planteamiento general
de modelos semifisicos en los procesos
referenciados [32,38,40-41,44].

Si bien existen limitaciones, también se han

venido realizando mejoras en el planteamiento

metodolégico. Por ejemplo, Ribas M et al. [28]

plantean “Fijar el nivel de detalle”, lo cual hace

referencia a la descripciéon de todos los supuestos
en que se basaelmodelo con el objetivo de reducirlo
para que describa Unicamente los fendmenos
relevantes. Gomez C et al. [47] plantean un paso
de “Definicién de Sistemas de procesos”, que
consiste en la abstraccion del proceso a la manera
de uno o mas sistemas, con lo cual se pueden
aplicar al proceso todas las herramientas de
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representacion y analisis de sistemas matematicos

existentes.

En este sentido, la metodologia para obtener

modelos semifisicos de base fenomenoldgica

mejor detallada hasta el momento ha sido
propuesta por Alvarez H et al. [29] y adicionada

en varias ocasiones con el fin de perfeccionarla y

hacerla mas sencilla para el usuario [27,48]. Esta

metodologia plantea, ademas de “Fijar el Nivel
de detalle” y “Definir Sistemas de Procesos”, que
el elemento clave para lograr la sencillez en la
propuesta metodolégica es el uso de una o mas
abstracciones macroscopicas como base para la
obtencién del modelo. Se entiende por abstraccion

a la extraccion de caracteristicas relevantes de

un fendmeno, de modo que se pueda describir

mediante una analogia aplicable, bien porque
se conoce el fendmeno estudiado o porque sin
saberlo detalladamente, se puede aplicar una

analogia para describirlo. Las limitaciones 1y 2,

descritas anteriormente, se pueden superar con

esta metodologia como se propone a continuacion:

Para la limitacion 1, “identificacion de los factores

0 mecanismos controlantes”, se pueden seguir

los siguientes pasos, que buscan llegar al mismo

resultado, pero a través de tareas mas sencillas y

evidentes para un modelador no tan experto en el

tema:

- Escoger el nivel de detalle que se quiere del
modelo y postular una hipétesis de modelado.

- Definir el numero de sistemas de procesos
(SdeP) de acuerdo al nivel de detalle.

- Aplicar el principio de conservacion sobre

todos los SdeP.
Para la limitacion 2, “uso de las leyes
fundamentales para desarrollar modelos fisicos
(balances, ecuaciones constitutivas, chequear
grados de libertad y formas adimensionales)”,
se pueden seguir los siguientes pasos, luego
de obtener los balances dinamicos de materia
y energia:

- Seleccionar entre las ecuaciones dinamicas
de balance (EDB) aquellas con informacion
valiosa para cumplir con el objetivo del modelo.

- Definir para las EDB esenciales, los
parametros, las variables y las constantes
conocidas en cada SdeP.

- Hallar ecuaciones constitutivas que permitan
calcular el mayor niumero de parametros en
cada SdeP.

Estos pasos complementarios, como se dijo,

ya estan en el procedimiento de Alvarez H et al.

[48]. Sin embargo, esta metodologia no contiene
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la inclusién de la fenomenologia para intentar
al menos describir la comunicacion de la célula
con el medio. A continuacion, se discute sobre el
modelado de los bioprocesos y se explica por qué
las metodologias arriba comparadas fallan al ser
aplicadas al modelado de estos.

El Modelado de los bioprocesos

De acuerdo con lo planteado en la seccion
anterior, los modelos fenomenoldgicos vy
explicativos serian los requeridos para tener la
capacidad de entender en su maxima expresion
la naturaleza de los procesos. A pesar de ello,
solo algunos bioprocesos enzimaticos tienen
modelos de estas caracteristicas, mientras que
en los que intervienen microorganismos apenas
se ha logrado plantear modelos combinados
(fenomenoldgico y empiricos) de tipo descriptivos.
Esto ultimo se debe a que las metodologias de
modelado resultan incompletas al aplicarlas a
bioprocesos y por lo tanto no permiten describir la
complejidad de los microorganismos y su relacién
con el entorno. Desafortunadamente, hay carencia
de conocimiento de varios de los fendmenos
involucrados en un bioproceso, lo cual hace que
la mayoria de los modelos de bioprocesos sean
empiricos y por lo tanto restringidos al espacio de
los datos experimentales disponibles.

Particularidades de los bioprocesos

Cuando se abordan los bioprocesos, desde el
punto de vista cientifico, se encuentra que son
mas complejos que los procesos quimicos. Desde
luego, ambos poseen tratamientos ingenieriles
comunes, pero existen diferencias muy marcadas
entre ellos como:

La alta complejidad de la mezcla reaccionante:
para los procesos donde se utilizan
microorganismos, el medio de cultivo debe
tener los requisitos minimos nutricionales para
que exista crecimiento celular y produccién
de metabolitos primarios y secundarios.
Para cumplir con estos requisitos, el medio
normalmente se compone de multiples
sustratos (fuentes de carbono y nitrégeno),
sales organicas e inorganicas, reguladores de
pH, antiespumantes, oxigeno disuelto, y como
producto del metabolismo aparecen alcoholes,
acidos, lipidos, proteinas, etc. Esta composicion
es la responsable de la complejidad del medio,
lo cual modifica la hidrodinamica del sistema,
afectando el metabolismo celular. Por ejemplo,
en los biorreactores tipo columnas de burbujeo,
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se presenta un mejoramiento de la transferencia
de masa por el efecto turbulento de las burbujas
de aire en el medio, pero simultaneamente
se estan produciendo sustancias (polimeros,
proteinas, acidos grasos, etc.) que disminuyen
la transferencia de masa. En las plantas de
tratamiento de aguas residuales, un problema
frecuente es la variabilidad que presenta el
coeficiente de transferencia de masa para el
oxigeno, al pasar del aire burbujeado al agua,
lo cual altera la velocidad de crecimiento de
las células que degradan el material organico.
Dicha variabilidad es causada, entre otras
cosas, por el aumento de la tension superficial
entre el agua y las burbujas de aire por efecto
de los acidos grasos y proteinas provenientes
de los desechos [42,50].

El incremento en la masa de microorganismos
paralelo a la realizacién de la transformacion
bioquimica: en muchos bioprocesos, se
presentan simultaneamente el crecimiento
microbiano y la produccién de metabolitos de
interés industrial. Esto afecta el rendimiento de
produccion debido a que parte de los reactivos
(nutrientes) es transformada en material
biolégico, crecimiento que no es deseado en
muchos bioprocesos. Paralelo a los eventos
de crecimiento microbiano y produccién de
metabolitos se libera calor de reaccion, el cual
debe ser retirado por un fluido de servicio. Si el
bioproceso se lleva a cabo en tanques agitados
o en columnas de burbujeo, la agitacion ayuda
a aumentar los coeficientes de transferencia
de calor y, por lo tanto, mejora el retiro del
calor de la reaccion. No obstante, la agitacion
debe respetar ciertos principios biolégicos e
hidrodinamicos, debido a que velocidades altas
de agitacion producen estrés hidrodinamico
en algunos microorganismos. Este estrés es
responsable de los dafos letales o sub-letales
en las células, produciendo la muerte del
microorganismo o alteraciones metabdlicas en
el cultivo [51].

La capacidad de los microorganismos
de sintetizar sus propios catalizadores
(enzimas): este hecho es una ventaja frente
a los procesos quimicos, ya que al tener
fuentes in situ del catalizador se reducen los
costos de produccion. Adicionalmente, estos
catalizadores poseen alta especificidad sobre
algunos sustratos, lo cual disminuye el riesgo
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de tener reacciones parasitas que reducen
la productividad y que inducen a la aparicion
de productos no deseados. Por ejemplo,
esto ocurre en la produccion de a-amilasas
por Aspergillus oryzae en un proceso de
fermentacion sumergida [52].

Los comportamientos suaves y exigentes en
regulacion precisa de temperatura y pH para
el optimo funcionamiento de las enzimas y
del crecimiento de los microorganismos: los
componentes que forman los seres vivos y las
enzimas son muy sensibles a los cambios de
temperatura y de pH. Por ejemplo, las proteinas
poseen un rango optimo de estabilidad respecto
a estas variables, y su sensibilidad es tal que
cuando ocurren pequefios cambios en el
proceso, se modifica la configuracién espacial
de la proteina y pierden su actividad, afectando
asi al metabolismo celular responsable del
crecimiento y a la actividad de las enzimas por
cambios en el sitio activo [53].

La dificultad del mantenimiento de la
transformacion bioquimica requerida
(estabilidad de produccion): como resultado
de la produccion de metabolitos y de las

perturbaciones que pueden afectar a
un bioproceso, ocurren inhibiciones del
crecimiento de los microorganismos,

reacciones secundarias entre productos y
sustratos e inclusive cambios inesperados en el
metabolismo celular que afectan el rendimiento
del bioproceso. Por ejemplo, el crecimiento de
levaduras es inhibido por el etanol producido
por el microorganismo [54].

Las concentraciones relativamente bajas de
sustrato y productos: los microorganismos
son muy sensibles a las altas concentraciones
de algunos compuestos que pueden causar
aumento de la presién osmotica, teniéndose
como consecuencia la turgencia yl/o lisis
de la célula. Conocer este hecho, implica
que en la mayoria de bioprocesos se
utilicen concentraciones bajas de sustratos
mientras se vigila que no se alcancen ciertas
concentraciones limites de producto, todo con
el fin de evitar inhibiciones por bloqueos en
las reacciones metabdlicas. Adicionalmente,
con estas concentraciones bajas de sustrato
los coeficientes de transferencia de masa son
muy pequenos al igual que las velocidades de
reaccion, lo cual influye negativamente en el
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rendimiento de los bioprocesos. Por ejemplo,
Arroyo-Lépez F et al. [55] reportaron que
la velocidad de crecimiento de la levadura
Saccharomyces cerevisiae disminuye cuando
el medio tiene concentracion de azucar entre
200y 300g/L.

Para superar la dificultad mencionada en el punto
1 se utilizan diferentes disefios de aireacién
(mecanicos, difusion e hibridos) y se adicionan
agentes quimicos para evitar grandes variaciones
en la tension superficial. Todas estas mejoras
hacen mas complejos los modelos matematicos.
Para superar la dificultad mencionada en el
punto 2, la ingenieria genética ha realizado
modificaciones en microorganismos de gran interés
industrial. Estas modificaciones pueden ralentizar
el crecimiento de microorganismos mientras se
enfoca el metabolismo a la produccién o pueden
dotar al microorganismo de caracteristicas
genotipicas de resistencia ante las adversidades
del medio. Estas modificaciones repercuten en los
modelos obtenidos por la ingenieria metabdlica,
que por tanto deben ser corregidos. Con relacion
a las dificultades mencionadas en los puntos
3, 4 y 5, se busca tener modelos que sean muy
confiables debido a la alta exigencia del control
de los bioprocesos. En este sentido, una de las
estrategias con alta probabilidad de éxito es el
Control Predictivo basado en Modelo (MPC), el
cual exige un buen modelo guia. Por ultimo, y
no menos importante, para sobreponerse a la
dificultad mencionada en el punto 6, se utilizan
combinaciones de reactores dispuestos en paralelo
y en serie para aumentar la productividad a pesar
de las bajas concentraciones utilizadas, lo cual
hace que los modelos matematicos sean aun mas
complejos. En conclusién, mejorar las dificultades
arriba mencionadas a través de las diversas
estrategias existentes implica mas complejidad en
los modelos de bioprocesos.

Uno de los objetivos que se plantean los
investigadores de modelado en los bioprocesos es
que los modelos sean de naturaleza descriptiva, y
ojala explicativa. Pero las anteriores diferencias de
los bioprocesos tipicos con los procesos quimicos
hacen que la tarea de modelado sea dificil, a
pesar de que se han hecho avances al respecto. A
continuacion, se discutira sobre las dificultades que
se presentan en el modelado de los bioprocesos.
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Dificultades en la obtencién de modelos para
bioprocesos.

Si analizamos el campo de los procesos quimicos,
el modelamiento de éstos esta resuelto en términos
metodoldgicos [27,39,45-46,]. Sin embargo, no
existe una metodologia de modelado aplicada a
procesos biolégicos que considere explicitamente
la interaccion existente entre el medio ambiente
y el material celular. Dicha interaccion natural no
ha sido completamente descrita y mucho menos
explotada para el disefio, optimizacién y control
de los mismos. Varios modelos conceptuales y
matematicos se han formulado con el objeto de
explicary replicar el comportamiento que muestran
los procesos biolégicos [5,8,17,33,35,42-43,].
Estos modelos se han clasificado segun las
consideraciones asumidasrespectodelaestructura
de las células o de la distribucién de la poblacién
celular, consideraciones ya mencionadas como
caracteristicas de los modelos de los bioprocesos.
A pesar de estos avances, los bioprocesos siguen
siendo dificiles de modelary esto se debe en primer
lugar a la complejidad del comportamiento de los
microorganismos. A diferencia de reactores con
productos quimicos sin vida, los microorganismos
tienen caracteristicas asociadas con el tipo
de célula: procariota (sin membrana nuclear),
eucariota (con membrana que define al ndcleo),
o0 células con membranas de alta complejidad
estructural. Ademas, los microorganismos tienen la
posibilidad de formar partes filamentosas, esporas
0 capsulas, con gran cantidad de reacciones
bioquimicas que intervienen en la actividad celular
en si misma.

El segundo aspecto que dificulta el modelado de
bioprocesos es la falta de una relacion matematica
explicita que al menos describa la interaccion de
las variables ambientales y las variables internas o
propias del material celular, ya que hasta ahora la
forma de unir estos dos mundos ha sido a través
del empirismo [17,42]. Parailustrar la problematica
presentada en la modelacion de bioprocesos
basta con analizar la siguiente situacion: en
Schugerl y Bellgardt [17] se describe el modelado
del proceso de obtencién de Penicilina por Bajpai
R y Reu3 M [56] y por otra parte se explica el
modelo de biosintesis de la Penicilina obtenido
por Jegrgensen H et al. [57]. Una situacion
semejante sucede con el proceso de obtencion
de etanol a partir de fermentacion de glucosa con
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Saccharomices cerevisiae, en el cual se conoce
su ruta metabdlica [58-59] y se tienen modelos
para el medioambiente [47]. Sin embargo, del
analisis de estas investigaciones surge la pregunta
¢Por qué no existe una relacion matematica
explicita, al menos descriptiva, entre las variables
medioambientales y las variables de la célula en la
produccion de penicilina y etanol, si ya se conoce
toda la explicacion de sus rutas metabdlicas y
ademas se sabe modelar el medioambiente? Es
ahi donde existe una linea de trabajo abierta,
que busca expresar matematicamente desde las
analogias fisico-quimicas una descripcion de los
mecanismos por los cuales la célula establece
comunicacion con el medio en el que vive. Tal
formulacion matematica de esos fendmenos dara
mayor interpretabilidad a los modelos semifisicos
de base fenomenoldgica aplicados a bioprocesos,
puesto que ya no se tendran que representar las
cinéticas propias del microorganismo con términos
empiricos como Monod.

Modelos matematicos de bioprocesos

La historia de los modelos en bioprocesos
comienza en 1905, con la ecuacion propuesta
por Frederick Blackman para la velocidad
especifica de crecimiento [60]. En 1913, Leonor
Michaelis y Maud Menten desarrollaron la teoria
del complejo enzima-sustrato (cuyo concepto
habia sido introducido en 1894 por Emil Fisher) y
propusieron una ecuacion de velocidad que explica
el comportamiento cinético de las enzimas [61]. En
1942, basandose en los trabajos de Michaelis y
Menten, Jacques Monod desarrolla una ecuacion
cinética para el crecimiento que relaciona la
concentracién de sustrato con la velocidad de
crecimiento del microorganismo [62]. Para este
mismo afio, Georges Teissier también publica su
modelo exponencial de velocidad de crecimiento
[63]. Posteriormente, se han desarrollado una
gran cantidad de modelos para la velocidad de
crecimiento, aplicables a una gran variedad de
procesos biotecnoldgicos los cuales en su mayoria
tienen como base a los tres modelos precursores
ya mencionados [3,33,64].

Los modelos en bioprocesos planteados en la
actualidad tienen dos caracteristicas destacables.
Primero, un modelo puede ser estructurado o no
estructurado dependiendo de si se describen las
caracteristicas internas de la célula o sus partes
(reacciones metabdlicas, procesos celulares,
etc.) o si considera la célula como una entidad
sin estructura interna. Segundo, un modelo puede
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ser segregado o no segregado en funcion de si se
considera o no la heterogeneidad de la poblacién
celular, por ejemplo, la posicién en el ciclo celular
que las diferencia entre células jovenes, células
en reproduccion y células en fase de senescencia.
La eleccion entre las opciones que brindan estas
caracteristicas depende del objetivo del modelo
[7,17].

El modelado de los procesos bioldgicos tiene
numerosas vertientes, cada una buscando la
manera mas provechosa de explicar o describir
los procesos de acuerdo al interés de estudio
que se tenga. Dentro de las caracteristicas que
se destacan en las diferentes investigaciones
llevadas a cabo por estas vertientes se tienen: i)
modelado del metabolismo celular por la ingenieria
metabdlica, ii) obtencién de modelos de caja gris
de todo el bioproceso, iii) modelado de caja gris
con reduccion para escalado de bioprocesos,
y iv) modelado para estimar los valores de los
parametros cinéticos [4-6,8-16,18,55,65-70].

A continuacion, se describe el desarrollo que han
tenido los modelos de bioprocesos teniendo en
cuenta la clasificacion de acuerdo al conocimiento
previo sobre el proceso.

El empirismo en el modelado de bioprocesos.
Dochain D [71] enuncia claramente la principal
caracteristica existente en el modelado de
bioprocesos: “El modelado de procesos
bioquimicos es un ejercicio delicado. Contrario a
la fisica, donde hay leyes que han sido conocidas
por el hombre durante siglos (la ley de Ohm,
la ley de los gases ideales, la segunda ley de
Newton, los principios de la termodinamica, etc.)
la mayoria de los modelos en biologia dependen
de leyes empiricas. Como no es posible basarlos
s6lo en el conocimiento disponible (y validado),
es muy importante ser capaz de caracterizar
la confiabilidad de las leyes utilizadas en la
construccion del modelo”.

En la literatura cientifica abunda la utilizacion de
modelos empiricos para resolver los problemas
presentados en los bioprocesos, problemas
que estan relacionados con la obtencion de una
expresion que relacione a la célula con su medio
ambiente. La Tabla 2 muestra la bibliografia de
referencia de los principales modelos empiricos
planteados en bioprocesos para la velocidad
especifica de crecimiento del microorganismo.
La gran mayoria de estos modelos empiricos
se basan en plantear una ecuaciéon que
permita predecir los valores de la velocidad de
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crecimiento especifica de los microorganismos y
su dependencia con respecto a algunas variables
de proceso, tales como concentracion de sustrato,
concentracion de biomasa, concentracion de

producto, concentracion de oxigeno disuelto, pH,
temperatura e intensidad de luz.

Adicional a los modelos enunciados por la Tabla
2, también se encuentran modelos que predicen

Tabla 2. Referencia bibliografica de modelos empiricos de velocidad de crecimiento especifica.

Dependencia de la velocidad de crecimiento
especifica con respecto a :

Referencia bibliografica

Concentracion de sustrato

Concentracion de biomasa
Concentracion de sustrato y concentracion de biomasa
Concentracion de producto
Concentracioén de sustrato y concentracion de producto

Concentracion de sustrato y concentraciéon de oxigeno
disuelto

Concentracion de sustrato, concentracion de oxigeno
disuelto y concentracion de producto

Concentracion de sustrato y concentracion de
metabolito inhibitorio

pH
Temperatura y pH
Concentracioén de sustrato y pH
Temperatura
Temperatura y concentracion de biomasa
Intensidad de luz y concentracién de biomasa

[24,54,72-83]. El modelo de Haldane es referenciado
en Andrews JF [84].

[85-86]

[87-90]

[91-97]
[78,92,98-102]

[103-104]
[23]

(89]

[105]
[106]
[105,107]
[108-109]
[110]
[111]

la cinética de formacion de producto [112-113].
Todos estos modelos tratan de aproximar, aunque
de manera empirica y puramente predictiva, la
relacion matematica entre el medio ambiente y el
material celular.

Sibien las ecuaciones constitutivas en bioprocesos
para calcular la velocidad especifica de crecimiento
(w) son empiricas, éstas han hecho que la
utilizacion de los modelos matematicos obtenidos
haya mejorado las actividades de escalado,
optimizacién, disefio de estimadores y control de
procesos. Sin embargo, esto no ha sido suficiente
puesto que dichas formulaciones matematicas
empiricas para la velocidad especifica de
crecimiento no son ni siquiera descriptivas de lo
que esta sucediendo. Inclusive, existen modelos
totalmente empiricos que por su uso generalizado
han sido confundidos y referenciados como
modelos fenomenoldgicos, lo cual fue advertido
por Grady C et al. [114]. Tal es el caso de la ya
mencionada ecuacién de Monod para la velocidad
de crecimiento, tratada por Button D [115], la cual
sigue siendo empirica, a pesar de varios esfuerzos
por darle base fenomenoldégica [76].
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La fenomenologia en el modelado de
bioprocesos. Alo largo de la historia del modelado
de los bioprocesos, los investigadores realizaron
intentos para demostrar las bases fenomenolodgicas
de algunas ecuaciones empiricas muy utilizadas. A
continuacion, se describen algunas investigaciones
al respecto.

Konak A [76] intenté demostrar que las ecuaciones
de Monod y de Teissier tenian una base
fenomenoldgica, pero a pesarde obtener un modelo
general para predecir la velocidad de crecimiento
especifica, el modelo resulté ser de naturaleza
empirica debido a que en su demostracion
matematica fue asumida la ley de potencia para la
funcion de la fuerza impulsora (u_ - u). Merchuk J
y Asenjo J [116] intentaron interpretar el significado
de las variaciones extremadamente grandes de
los valores de la constante de Monod sobre la
base de la transferencia de masa. El modelo
obtenido esta en funcién de variables conocidas,
pero el modelo se transforma en empirico debido
a las suposiciones para el calculo del coeficiente
convectivo de transferencia de masa (%), el cual
se halla de forma empirica. Se pierde el rasgo
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explicativo cuando se calcula /2 basado en la
suposicion de que éste puede ser considerado
proporcional a la raiz cuadrada de la difusividad
del sustrato y esta difusividad fue tomada del
trabajo de Schwartzemberg H y Chao R [117],
transformandose en un intento interpretativo de la
constante K de Monod.

Button D [115] plante6 que la relacién entre
la velocidad de consumo de sustrato a una
concentracion particular y la afinidad especifica
puede ser modelada a partir de la tasa de colision
entre dos particulas. En ese trabajo se mostré que
la afinidad especifica es una buena medida de la
habilidad de la célula para escoger el sustrato y
que las constantes de saturacion pequenas son
usualmente asociadas con afinidades grandes.
Pese a que representa un buen intento por
explicar la afinidad de la célula por el sustrato, la
demostracion matematica realizada para tal fin
esta basada en la ecuacién de Monod.

Liu Y [118] plante6 un modelo general para
el crecimiento microbiano apoyado en la
termodinamica, basado en el supuesto analégico
del sitio activo de las enzimas aplicado a la
pared celular [115]. Se plantea que las células
tienen sélo un numero limitado de sitios de
toma de sustrato. Este modelo general muestra
indirectamente y bajo ciertas suposiciones, que la
constante de Monod (K ) tiene caracteristicas de
la termodinamica del no equilibrio, ademas afirma
que K por si sola no describe la muy referenciada
constante de afinidad del par sustrato-célula,
ya que la magnitud de n (constante del modelo
general de Liu) también determina la velocidad
de reaccién del sustrato y subsecuentemente la
afinidad del sustrato por la célula. EI modelo de
Liu parece ofrecer una base teérica del modelo
empirico de Moser y explica que es un indice
gobernado por los cambios en la energia libre de
Gibbs generados por el proceso de crecimiento
microbiano. Ese crecimiento esta estrechamente
relacionado al par especie bacteriana-sustrato
presente en un cultivo bacteriano, por lo tanto,
cualquier factor que influya sobre la interaccion
entre bacteria y sustrato también alterara el valor
de K . Finalmente, Liu Y [118] concluye que el
modelo de Monod es estrictamente empirico.

Por otro lado, los procesos donde intervienen
enzimas son una parte de los bioprocesos que
poseen gran contenido fenomenoldgico dentro de
sus modelos. Los métodos de modelado modernos
ahora pueden dar comprension Unica detallada de
las reacciones catalizadas por enzimas, incluyendo
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el analisis de los mecanismos y la identificacion
de los determinantes de la especificidad y de la
eficiencia catalitica. Como ejemplo se tienen los
trabajos de Lok M et al. [53], Gofferjé G et al. [119],
Vega Ry Zuniga M [120], Mulholland A [121].

A pesar de los intentos por explicar los fendmenos
que intervienen en los bioprocesos, previamente
mencionados, aun hay situaciones por resolver
que impiden la obtencién de un modelo riguroso.
Desde luego, estas dificultades han hecho que
el modelado se aborde desde el punto de vista
de mezclar el empirismo con la fenomenologia
a través de los modelos semifisicos de base
fenomenoldgica, tratados a continuacion.

Los Modelos Semifisicos de Base
Fenomenolégica (MSBF) en el modelado
de bioprocesos. La utilizacion de Modelos
Semifisicos de Base Fenomenoldgica (MSBF) con
caracteristicas de parametros concentrados, los
cuales relacionan las variables mas significativas
del medio ambiente del proceso (estados),
ha sido una constante en las ultimas décadas
de investigacion en los bioprocesos. Algunas
investigaciones que plantean este tipo de modelo
son: Ortega F et al. [122], Melgarejo R et al. [123],
Geng X et al. [124], Kythreotou N et al. [125], Akpa J
[126], Roeva O et al. [127], Atehortta P et al. [128],
Lokshina L et al. [129], Bajpai R y Reuf3 M [56]. Es
importante anotar que estos modelos han hecho
posible la mejora en las tareas de optimizacion y
control de los bioprocesos respectivos. Bastin G
y Dochain D [33] plantearon un modelo dinamico
general en el espacio de estado para la descripcion
de procesos biotecnoldgicos en biorreactores
de tanque agitado, modelo que escrito en forma
matricial es:

dg

i Ko(,t)=Dg -Q(5) + F
t

(1)

Donde: D es la tasa de dilucion; F es el vector de
los flujos masicos de entrada en el biorreactor de
los componentes; ¢ es el vector de concentracion
de los componentes en el biorreactor; ¢(&¢) es
el vector de velocidades de reaccion; K es la
matriz de coeficientes de rendimiento, compuesta
por elementos K, (i reacciones y j compuestos)
estrictamente constantes positivas de coeficientes
de rendimientos, sin dimensiones, y con signo
menos (-) cuando ¢ es un reactante y signo mas
(+) cuando ¢ es un producto de la reaccion; Q(<)
es el vector de los flujos masicos de salida de
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los componentes ¢ en forma gaseosa desde el
biorreactor.

La Ecuacién 1 expresa en una sola forma
matematica compacta los dos fendmenos fisicos
principales (las cinéticas y las dinamicas de
transporte) que ocurren y estdn en interaccion
intima en un biorreactor. Eltérmino Ko(¢& ¢) describe
las cinéticas de las reacciones bioquimicas vy
microbiolégicas involucradas en el proceso, y los
términos D& Q&) y F describen las dinamicas
de transporte de los componentes a través del
biorreactor. Sin embargo, este modelo genérico
deja en libertad al usuario para que la matriz de
los coeficientes de rendimiento K se modele como
mejor resulte. Obviamente, y ante la ausencia
de una forma descriptiva de las relaciones entre
el medio ambiente y material bioldgico, dichos
submodelos para los términos de K seran empiricos
y por lo tanto el modelo general sera un modelo
semifisico de base fenomenoldgica. Por ejemplo,
el modelo mas utilizado para el coeficiente de
rendimiento, mas conocido como la velocidad de
crecimiento especifico del microorganismo, es el
modelo de Monod:

©'S

Ky +5 <2’

Hs) =

Donde: ues la velocidad de crecimiento maximo;
K, es la constante de saturacion; S es la
concentracion de sustrato.

En caso de existir inhibicion por sustrato es
utilizada la “ley de Haldane”, también empirica:

HoS
S2
Ky +S+—
M K[
Donde: K, es el parametro de inhibicion, y

e 3)

Ky

i

Ho=p |1+ (4)

Si la inhibicién de sustrato es despreciable, la ley
de Haldane se reduce a la ley de Monod [33].

Como se observa, la deficiencia que persiste
en los MSBF es que la relaciéon célula-medio
ambiente es empirica, lo que ni siquiera permite
una descripcion que vincule a la fisiologia de
la célula con las transferencias de materia y
energia que ocurren. Sin embargo, los MSBF
han sido una herramienta fuerte en el modelado
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de bioprocesos, situacion que puede mejorar
si se plantean buenas hipdtesis de modelado,
lo cual se basa en una o mas abstracciones de
los fenbmenos que ocurren realmente, como si
fueran fendmenos preestablecidos y conocidos,
facilmente vinculados a los reales, pero mas
simples que los reales. Tal aproximacion desde
las abstracciones deberia conducir con éxito a
una descripcion matematica de la relacion célula-
medio que evite la aproximacion empirica a los
coeficientes asociados con los procesos celulares.

Tendencias del modelado en bioprocesos

A través de la historia, los ingenieros de procesos
se han enfrentado a diversos paradigmas. El
primero de ellos es la mirada que se tiene de los
procesos como sistemas analogos que comparten
unidades de transformacion similares o conjunto
de operaciones unitarias. En dichas operaciones,
suceden fendmenos cuyo comportamiento general
es independiente de la naturaleza especifica de las
sustancias en proceso. El segundo paradigma es
la busqueda de la explicacion a escala molecular
para los fendmenos macroscoépicos observados en
las operaciones unitarias. El tercer paradigma es la
explicacion de la relacion entre el comportamiento
molecular, las interacciones moleculares, los
fendmenos a nivel de la microescala que se dan
en el fluido, y el comportamiento macroscépico
de las operaciones unitarias. En la actualidad,
los ingenieros de bioprocesos han planteado un
cuarto paradigma: en cada unidad de biorreaccion
o de bioseparacion, para efectos de su analisis,
modelacién y disefio, se puede ver como una
poblaciéon de micro-unidades de transformacion
(células, microorganismos) confinadas en un
macro-equipo mecanico. La premisa del cuarto
paradigma conduce al estudio de la interrelacion
entre el medio ambiente y la célula [130]. En tal
sentido, las areas de investigacion actuales en el
modelado de bioprocesos buscan:

La integracion de los modelos metabdlicos
con los modelos del entorno o medio ambiente
en que viven los microorganismos. Esta
haria el puente necesario entre la ingenieria
metabdlica y la ingenieria de procesos, con lo
cual se avanzaria hacia una ingenieria global
de los bioprocesos.

La comprension béasica de la fisiologia celular
y de su regulacion, que constituye la base
de la ingenieria metabdlica a través de la
obtencion de mapas y modelos metabdlicos
completos. Por ejemplo, Machado D et al.
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[131] disefiaron y optimizaron una ruta para la
produccion de curcumina en Escherichia coli.
Dicha ruta fue modelada in silico e insertada
en la reconstruccion cinética disponible
del metabolismo central de carbono de la
Escherichia coli propuesto por Chassagnole C
et al. [132]. Usuda Y et al. [133], usando un
modelo de metabolismo central del carbono
disponible, modelaron los procesos metabdlico
y regulatorio envueltos en la produccion de
glutamato en Escherichia coli.

La descripcion y explicacion de bioprocesos
a través de los modelos semifisicos de base
fenomenoldgica con facilidad de implementar
en el escalado y el control automatico:
Goémez C et al. [47] construyeron un modelo
semifisico de base fenomenoldgica para un
proceso de fermentacion y Atehortia P et al.
[128] completaron un modelo cinético para
el crecimiento del Bacillus thuringiensis. Con
ambos modelos se pueden implementar
facilmente estrategias de control y escalado
del bioproceso. Aunque estos dos modelos
describen bien los bioprocesos involucrados,
no dejan explicitamente indicada la relacion
célula-medio.

La obtencion de modelos a través de la
aplicacion de elementos andlogos entre lo
conocido y los bioprocesos: el trabajo de
Roche R et al. [134], formula un modelo
global del musculo cardiaco basado en la
idealizacion de la célula cardiaca como un
sistema de dos tanques interconectados
completamente agitados. Dicho modelo
puede ser utilizado para analizar el efecto
de farmacos y tratamientos de patologias
cardiacas. Umulis D et al. [135] construyeron
un modelo fisiolégico para predecir las
concentraciones de etanol y de acetaldehido
en la sangre del cuerpo humano. El modelo
asume que el conjunto de érganos que forman
el sistema regulador de etanol en la sangre del
cuerpo humano funcionan como reactores de
tanque agitado y reactores de flujo piston.

La utilizacion de la micro-fluidica para la
obtencion de modelos: con esta vision se
avanza en la biologia molecular en las areas
de andlisis de ADN, analisis enzimaticos
y la protedbmica [136-137]. Por ejemplo,
Leclerc K et al. [138] modelaron, con
aplicacion de CFD (Computational Fluids
Dynamic), el comportamiento dinamico de
cultivos de fibroblastos de raton y células
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vivas hepatocarcinomas en un microchip.
Los resultados arrojaron que la CFD es una
herramienta poderosa para la optimizacion del
disefo de microchips para cultivos celulares.

- La combinacion entre los modelos obtenidos
de los principios de conservacion y las redes
neuronales o modelos borrosos para ajustar
los pardmetros cinéticos. Aunque esos
modelos representan bien los bioprocesos
involucrados, no poseen una base explicativa
de lo que sucede en la relacion célula-medio
[5-6,9-10,13,15-16].

- La obtencién de modelos de bioprocesos
usando la metodologia de Bond Graph [68-
70] y los modelos cibernéticos que se han
desarrollado para predecir el crecimiento
celular cuando se encuentran diferentes
sustratos [18].

En definitiva, en los bioprocesos interaccionan

dos mundos: la célula y su medio ambiente. En

la actualidad existen areas que estan trabajando
arduamente para obtener modelos matematicos
que representen lo mejor de cada lado. La
ingenieria metabdlica modela el metabolismo
celular recibiendo aportes importantes por las
ciencias “Omicas” (transcriptdmica, gendmica,
metabolémica, protedmica) y la ingenieria de
procesos (transferencia de calor, mecanica
de fluidos y reologia, transferencia de masa,

cinética de reacciones, operaciones unitarias y

termodinamica) modela al medio ambiente. A

pesar de los esfuerzos planteados por cada una

de estas areas, no existe una comunicacion via
formulaciones matematicas que no sean empiricas,
que permita relacionar estos dos mundos.

Conclusiones

Se presentd una revision detallada de las
particularidades de los bioprocesos y su dificultad
para modelarlos, lo cual se debe en primer lugar
a la complejidad de los microorganismos y la
complejidad de sumetabolismo, y en segundo lugar
a la falta de una relacién matematica explicita que
al menos describa la interaccion de las variables
ambientales y las variables del interior del material
celular.

Se realiz6 un analisis de la literatura cientifica mas
referenciada sobre metodologias de modelado
en procesos y se encontré que al aplicarlas a los
bioprocesos, todas fallan en la integracion entre la
ingenieria metabdlica y la ingenieria de procesos.
Esto porque ninguna considera explicitamente la
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interacciéon existente entre el medio ambiente y
el material celular, al menos de forma descriptiva.
Dicha relacién afecta directamente todas las
cinéticas, las que hasta ahora han sido formuladas
a través de relaciones empiricas. A pesar de
los avances en el modelado de bioprocesos, el
empirismo sigue estando en la mayoria de los
modelos que se realizan en la industria con fines
de control y optimizacién.

Por ultimo, se realizé una descripcion de los
objetivos que en la actualidad persiguen las areas
de investigacién del modelado de bioprocesos.
Dichos objetivos estan sujetos al cuarto paradigma
de la ingenieria de procesos, el cual busca la
aproximacion mas fidedigna de los modelos
matematicos al representar la relacion existente
entre la célula y su medio ambiente.
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