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ABSTRACT

In this paper, we present a novel methodology to generate complex functions 
using two-dimensional fuzzy sets as weights for combining classical benchmark 
functions. These new functions have different characteristics from original ones, 
but the minimum, borders and geometry characteristics of the functions are still 
known. Three different combinations of two functions (Rosenbrock and Bukin’s F4) 
are used to exemplify the method and its potential to generate specific test functions 
to study and improve optimization methods. 
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GENERACIÓN DE FUNCIONES BENCHMARK COMPLEJAS 
NO LINEALES PARA OPTIMIZACIÓN USANDO CONJUNTOS 

DIFUSOS Y FUNCIONES DE PRUEBA CLÁSICAS

RESUMEN

En este artículo se presenta una metodología novedosa para generar funciones 
complejas usando conjuntos borrosos bidimensionales como pesos para combinar 
funciones clásicas de prueba. Estas nuevas funciones tienen características diferentes 
pero el mínimo, los bordes y la geometría de las nuevas funciones se conoce. Tres 
combinaciones diferentes de dos funciones (Rosenbrock y F4 de Bukin) se utilizan 
para ejemplificar el método y su potencial como generador de funciones de prueba 
para estudiar y mejorar métodos de optimización. 

Palabras clave: minimización, maximización, operadores difusos, optimización 
global, problemas de prueba.
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INTRODUCTION

Optimization (maximization or minimization) 
of continuous nonlinear functions is an important 
problem in sciences, mathematics, engineering 
and economics, due to many real-world problems 
would be solved in these terms [1]. However, 
nonlinear optimization is usually a hard problem; 
their difficulties are related to the complexity 
of goal function, constrains, topology of the 
search region and limitations of the optimization  
methodology.

Optimization field has several types of 
problems, e.g. combinatorial optimization, 
integer optimization, quadratic optimization, and 
other; and a universal optimizer does not exist.  
Talking about optimizers, Wolpert and Macready 
emphasize two points: First, when an optimizer 
is designed for a specific problem, it works better 
for the problem than other generic optimizer. 
Second, there are not harder problems, but there 
are different types of problems. It means that 
each type of problem has specific characteristics 
and it agrees to them an optimizer could have 
better performance that another one [2]. I.e. 
For developing and comparing new methods, 
and for solving real world problems efficiently, 
we will want benchmark functions with the 
highest number of characteristics available or the 
most closed characteristic to the real problem. 
Moreover, scientific community provides special 
test to compare methods [3].  

There are some well-known test functions 
[4-7]. They are characterized by their behavior, 
which is manifested by the features of the 
generated surface, but regularly these functions 
are limited to specific characteristics. For example, 
the Rosenbrock function has its global optimum 
inside of a narrow valley, while in the Bukin’s 
F4 function the minimum is located inside 
a canon. The aim of this paper is to present a 
new methodology for generating or specifying 
complex test functions to prove and tune heuristic 
optimization algorithms. To do that, we use fuzzy 

sets theory to combining well-known to generate 
new functions.

The paper is organized as follows. In 
Section 2, we review some aspects of classical 
test functions. Following, fuzzy set theory is 
introduced in Section 3. In Section 4, we state 
the description of the proposed methodology. 
Next, some examples are presented in Section 5. 
Finally, we conclude in Section 6. 

1. CLASSICAL TEST FUNCTIONS

The use of well-known test functions is a 
common procedure for testing global optimization 
algorithms, such that, these functions are 
standard literature benchmarks [4-7]. Thus, 
researchers are able to compare their results 
against other methodologies whose results 
are validated and accepted by the scientific 
community. Usually, a set of functions is used 
to evaluate the behavior of a specific algorithm 
in different conditions and to determine their 
robustness. 

A classical benchmark is the Rosenbrock’s 
function (Figure 1):

 ( ) ( ) ( )2 22, 100 1z f x y y x x= = − + −  (1)

 

x y

z

Rosenbrock

Figure 1. Rosenbrock’s test function

Source: the authors
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It has a global minimum in ( )1,1 0f = . A 
standard initial point is 0 1x =  and 0 1.2y = −
. DeJong bounded the function to the interval 
defined as 2.048 2.048x− ≤ ≤  to use it in 
heuristic optimization [8]. And Yao et al. [9] report 
and extend this function to  n  dimension using 
the borders in  [ ]30,30 n− , which increase the 
complexity because it is a bigger search region. 
Other classical benchmark is the Bukin’s F4 
function (Figure 2): 

 ( ) 2, 100 0.01 z f x y y x y= = + +  (2)

Proposed by Bukin [10] with a global 
minimum in ( )0,0 0f = . The standard initial 
point 0 1x =  and 0 1y = , and there are not 
borders available.

Test functions are classified in terms of 
surface’s features and the primitive functions used 
for its construction (or setting-up). Several features 
are described as following:
•	 The dimensionality of the functions definition: 

for a fixed number of dimensions or in a gene-
ral way.

•	 The modality or ruggedness: quantity of local 
optimal (maximum and minimum) points. 
They are classified in unimodal functions 
with a global minimum and multimodal with 
several minimums.

•	 The homogeneity: the characteristic of the 
relationship between variables (separable or 
no separable).  

The above features would have a great 
impact in the behavior of a specific optimization 
algorithm. For example, it is well known that 
gradient based methods have poor behavior 
optimizing functions with a huge number of local 
optimal points, because they are trapped in a local 
optimum and they are not able to escape out. 

2. FUZZY SETS AND FUZZY OPERATIONS

In classical sets theory, the membership of 
an element to a set is a binary function returning 
zero when the element not belongs to the set 
and one in otherwise. In fuzzy set theory, the 
discrete set {0, 1} for the range of membership 
function is changed by the interval [0, 1]. Zero 
and one still represents the absolute certainty 
of that element belongs or not belongs to the 
set.  The intermediate values between zero and 
one represent uncertainty, such that, partial 
membership is allowed [11].

The generalized bell function is a typical 
method for specifying the membership function 
of a fuzzy set [11]:

 
( ) 2

1; , ,
1

ax a b c
x c

b

µ =
−+

 (3)

Examples of the generalized bell function 
with different values for the parameters a, b and c 
are shown in Figure 3.

One-dimensional fuzzy sets, as in equation 
(3), can be extended to the X×Y plane, using a 
fuzzy set for each axis, and then applying any fuzzy 
operator. This process is the so-called composition 
of fuzzy sets e.g. several bi-dimensional fuzzy sets 
would be obtained using the one-dimensional 
fuzzy membership functions µ(x; 1, 3, 0)  and µ(y; 
1, 3, 0) for representing a fuzzy set for each axis, 

Figure 2. Bukin F4 test function. 

Source: the authors
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and composite it by means of any fuzzy operator;  
In Figure 4, we present the fuzzy set obtained 
using the product operator defined as:

 ( ), ( ;1, 3, 0) ( ;1, 3, 0)x y x yµ µ µ= ×  (4)

while the two-dimensional fuzzy set presented 
in Figure 5 is obtained using the minimum 
operator:

 ( ) ( ) ( ), min{ ;1, 3, 0 , ;1, 3, 0 }x y x yµ µ µ=  (5)

An extensive recompilation of fuzzy operators 
is presented in [11] and [12]. 

3. PROPOSED METHODOLOGY

We propose the generation of new test 
functions by means of a weighted sum of 
two functions defined by the modeler. Two-
dimensional fuzzy membership is restricted to 
the interval [0, 1], then the operator are used 
as the weights in the sum of functions. Thus, if 

1( , )F x y  and ( )2 ,F x y  are classical benchmark test 
functions, a new test function would be generated 
as:

Figure 3. Membership functions for several parameters.

Source: the authors
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Figure 4. Composition of fuzzy sets using the product 
operator in eq. (4).

Source: the authors

Figure 5. Composition of fuzzy sets using the minimum 
operator in eq. (5).

Source: the authors
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x y H F x y

µ
µ

= = × +

− ×  (6)

In the previous equation, ( )H   is the 
function ( , )F x y  scaled to the interval [0, 1]. 
The main idea of this methodology is to obtain 
new functions with similar characteristics to a 
certain problem, with the advantage, over real 
problem, of knowing function’s characteristics like 
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minimums, topology, etc. Also, this methodology 
provides a large number of functions with 
different characteristics. So, we can obtain a 
nearer simulation of the method’s performance 
for a specific sort of problems.

4. EXAMPLES

To demonstrate the proposed methodology, 
we create three new test function combining 
Rosenbrock‘s (see Equation (1)) and Bukin’s 
F4 (see Equation (2)) test functions using the 
operators described. In the sake of a clear vision 
of the functions’ details, we limited the plots in a 
range in [ ]23,3− .

In Figure 6, we present the surface obtained 
when ( , )x yµ  is defined as in equation (4); 
the obtained function shows that the function 
BukinF4’s canon is extended with the features of 
the Rosenbrock’s function, while the edges retain 
the regularity of the function Bukin F4,  but 
with the softness of the Rosenbrock’s function. It 
would be the first function. 

The generated second function is shown 
in Figure 7. For this, ( , )x yµ  is defined as in 
equation (5), as in the previous figure. It still has 

a combination of both functions that produce a 
different surface, but reminds the same minimum 
value: ( )min 1,1 (0,0) 0f f= = . 

Moreover, complex surfaces may be generated 
using only one function too. For example, we use 
a rotated version of the original Rosenbrock’s 
function as 2 ( , )F x y  in Eq. (6).  Figure 8 presents 
the obtained surface using only the Rosenbrock 
function and the product operator.  The gradient 

z
x y
∂

∂ ∂
 of the generated function is plot in 

Figure 9.  One of the criteria of complexity for 
optimization problems is the existence of planar 
regions on the gradient plot, which is evident in 
the figure. 

5. CONCLUSIONS

In this paper, we present a novel methodology 
to generate new complex test functions for testing, 
comparing and tuning global optimization 
algorithms. Our methodology is based in the 
combination of two two-dimensional classical test 
functions using a weighted sum. These weights are 
generated by means of a two-dimensional fuzzy 
set. Thus, using only two initial test functions, 

Figure 6. Composition using the product operator and 
the Rosenbrock and BukinF4 test functions.

Source: the authors

Figure 7. Composition using the product operator and 
the Rosenbrock and Bukin’s F4 test functions.

Source: the authors
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many complex surfaces can be generated changing 
the parameters and composition operators used 
for generating the two-dimensional fuzzy sets. 
Although several topologies could be generated, 
the characteristics of the function are still known, 
so the new function remains a good benchmark.    

Figure 8. Composition using the product operator and 
the Rosenbrock test function rotated

Source: the authors

Figure 9. Derivate for the function of Figure 8. 

Source: the authors
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