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a b s t R a c t 
This paper describes two new methods for comparing two independent, 
discrete distributions, when the sample space is small, using an extension 
of the Storer–Kim method for comparing independent binomials. These 
methods are relevant, for example, when comparing groups based on a 
Likert scale, which was the motivation for the paper. In essence, the goal is 
to test the hypothesis that the cell probabilities associated with two indepen-
dent multinomial distributions are equal. Both a global test and a multiple 
comparison procedure are proposed. The small-sample properties of both 
methods are compared to four other techniques via simulations: Cliff’s 
generalization of the Wilcoxon–Mann–Whitney test that effectively deals 
with heteroscedasticity and tied values, Yuen’s test based on trimmed means, 
Welch’s test and Student’s t test. For the simulations, data were generated 
from beta-binomial distributions. Both symmetric and skewed distributions 
were used. The sample space consisted of the integers 0(1)4 or 0(1)10. For 
the global test that is proposed, when testing at the 0.05 level, simulation 
estimates of the actual Type I error probability ranged between 0.043 and 
0.059. For the new multiple comparison procedure, the estimated family wise 
error rate ranged between 0.031 and 0.054 for the sample space 0(1)4. But 
for 0(1)10, the estimates dropped as low as 0.016 in some situations. Given 
the goal of comparing means, Student’s t is well known to have practical 
problems when distributions differ. Similar problems are found here among 
the situations considered. No single method dominates in terms of power, 
as would be expected, because different methods are sensitive to different 
features of the distributions being compared. But in general, one of the new 
methods tends to have relatively good power based on both simulations and 
experience with data from actual studies. If, however, there is explicit interest 
in comparing means, rather than comparing the cell probabilities, Welch’s 
test was found to perform well. The new methods are illustrated using data 
from the Well-Elderly Study where the goal is to compare groups in terms 
of depression and the strategies used for dealing with stress. 
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R e s u M e n

En este artículo se describen dos nuevos métodos para com-
parar dos distribuciones discretas independientes, cuando 
el espacio muestral es pequeño, usando una extensión del 
método Storer-Kim para comparar binomios independientes. 
Estos métodos son relevantes, por ejemplo, cuando se com-
paran grupos basados en una escala Likert, la cual motivó 
la escritura del artículo. En esencia, el objetivo es evaluar 
la hipótesis de que las probabilidades de células asociadas 
con dos distribuciones multinominales independientes son 
iguales. Se propone una prueba global y un procedimiento 
de comparación múltiple. Las propiedades de las muestras 
pequeñas de ambos métodos fueron comparadas con otras 
cuatro técnicas a través de simulaciones: generalización de 
Cliff de la prueba de Wilcoxon-Mann-Whitney que trata 
eficazmente con heteroscedasticidad y valores vinculados, 
la prueba de Yuen basada en medias truncadas, la prueba de 
Welch y la prueba t de Student. Para las simulaciones, los datos 
se generaron a partir de distribuciones beta-binomiales. Se 
utilizaron distribuciones tanto simétricas como asimétricas. 
El espacio muestral consistió en los enteros 0(1)4 o 0(1)10. 
Para la prueba global que se propone, cuando se evaluó al 
nivel de 0.05, la simulación estimó la probabilidad del error 
tipo I osciló entre 0.043 y 0.059. Para el nuevo procedimiento 
de comparación múltiple, la tasa de error estimada oscilaba 
entre 0.031 y 0.054 para el espacio de la muestra 0(1)4. Pero 
para 0(1)10, las estimaciones fueron tan bajas como 0.016 en 
algunas situaciones. Teniendo en cuenta el objetivo de la com-
paración de medias, la prueba t de Student es bien conocida 
por tener problemas prácticos cuando distribuciones difieren. 
Problemas similares se encuentraron entre las situaciones con-
sideradas. No existe un único método que domina en términos 
de poder, como sería de esperar, debido a que los diferentes 
métodos son sensibles a las diferentes características de las 
distribuciones que son comparadas. Pero en general, uno de 
los nuevos métodos tiende a tener relativamente buen poder 
basado tanto en  simulaciones y la experiencia con los datos 
de estudios reales. Si, sin embargo, existe un interés explícito 
en comparar medias, en lugar de comparar las probabilidades 
de celda, la prueba de Welch se encuentra que tiene un buen 
desempeño. Los nuevos métodos se ilustran usando datos del 
estudio Well-Elderly donde el objetivo es comparar los grupos 
en cuanto a la depresión y las estrategias utilizadas para hacer 
frente al estrés.
Palabras clave autores
Distribución multinominla, escalas likert, método Storer-Kim, 
método de Hochberg, método de Yuen.
Palabras clave descriptores
Prueba de Welch, prueba t de student, estudio Well-Elderly, estrés, 
depresión, metodología.

Introduction 

Consider two independent, discrete random varia-
bles, X and Y, each having a sample space with N 
elements. Of particular interest here are situations 

where Likert scales are being compared, in which 
case N is relatively small and typically has a value 
between 3 and 10, but the results reported here are 
relevant to a broader range of situations, as will 
become evident. The means are denoted by µ1 and 
µ2, respectively. Denote the elements of the sample 
space by x1,...,xN, and let pj = P (X = xj) and qj = 
P (Y = xj), j =1,...,N. There are, of course, various 
ways these two distributions might be compared. 
Six methods are considered here, two of which are 
new. One of the new methods compares multi-
nomial distributions based on a simple extension 
of the Storer and Kim (1990) method for compa-
ring two independent binomial distributions. The 
other is a multiple comparison procedure for all N 
cell probabilities based on the Storer-Kim method 
combined with Hochberg’s (1998) method for con-
trolling the probability of one or more Type I errors. 
(Hochberg’s method represents an improvement on 
the Bonferroni procedure.) These two new methods 
are compared to four alternative strategies in terms 
of power and the probability of Type I error. 

One of the more obvious strategies for compa-
ring the two distributions is to test 

H0 : µ1 = µ2      (1) 

with Student’s t test or Welch’s (1938) test, which is 
designed to allow heteroscedasticity. Note that for 
the special case where N = 2, testing Equation 1 
corresponds to testing the hypothesis that two in-
dependent binomial probability functions have the 
same probability of success. That is, if x1 = 0, x2 = 
1, testing 1 corresponds to testing H0: p2 = q2, for 
which numerous methods have been proposed (e.g. 
Wilcox, 2012b, Section 5.8). The method derived 
by Storer and Kim (1990) appears to be one of the 
better methods in terms of both Type I errors and 
power. The point here is that their method is readily 
generalized to situations where the goal is to test 

H0 : pj = qj, for all j =1, . . . , N.      (2) 

That is, the goal is to test the global hypothesis 
that all N cell probabilities of two independent 
multinomials are equal. In contrast, there might be 
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interest in testing N hypotheses corresponding to 
each of the N cell probabilities. That is, for each j, 
test H0: pj = qj with the goal of determining which 
cell probabilities differ. Moreover, it is desirable to 
perform these individual tests in a manner that 
controls the probability of one or more Type I errors. 
There is a rather obvious approach based in part on 
the Storer–Kim method, but here it is found that 
with small sample sizes, a slight adjustment is ne-
eded to avoid having the actual probability of one 
or more Type I errors well below the nominal level. 

Let    p = P (X < Y )+ 0.5P (X = Y ).      (3) 

Yet another approach to comparing two distribu-
tions is testing  H0 : p = 0.5, which has been ad-
vocated by Cliff (1996), Acion et al. (2006), and 
Vargha and Delaney (2000), among others. More-
over, compared to several other methods aimed 
at testing (3), Cliff’s method has been found to 
compete well in terms of Type I errors (Neuhäuser, 
Lösch & Jöckel, 2007). Note that the Wilcoxon–
Mann–Whitney test is based in part on a direct 
estimate of p. However, under general conditions, 
when distributions differ in shape, it uses the wrong 
standard error, which can affect power, Type I error 
probabilities, and the accuracy of the confidence 
interval for p. Cliff’s method deals effectively with 
these problems, including situations where tied 
values are likely to occur. In particular, it uses a 
correct estimate of the standard error even when 
the distributions differ. 

It is evident that the methods just outlined are 
sensitive to different features of the distributions 
being compared (e.g., Roberson et al., 1995). If, 
for example, there is explicit interest in comparing 
means, testing (1) is more reasonable than testing 
(2). However, even when the means are equal, the 
distributions can differ in other ways that might 
be detected when testing (4) or (2). Nevertheless, 
it is informative to consider how these methods 
compare in terms of power. This paper reports si-
mulation results aimed at addressing this issue, as 
well as new results on controlling the probability of 
a Type I error. Data stemming from a study dealing 
with the mental health of older adults are used to 

illustrate that there can be practical advantages to 
testing (2). 

Details of the Methods To Be Compared 

This section describes the methods to be com-
pared. Three are based on measures of location: 
the usual Student’s t test, Welch’s (1938) test, and 
a generalization of Welch’s method derived by 
Yuen (1974) designed to test the hypothesis that 
two independent groups have equal (population) 
trimmed means. For brevity, the computational 
details of Student’s test are not described simply 
because it is so well known. Yuen’s test is included 
because it has been examined extensively in recent 
years and found to have advantages when dealing 
with distributions that differ in skewness or when 
outliers are commonly encountered (e.g., Guo & 
Luh, 2000; Lix & Keselman, 1998; Wilcox & Kes-
elman, 2003; Wilcox, 2012a, 2012b). However, for 
the types of distributions considered here, evidently 
there are few if any published results on how well it 
performs. The fourth approach considered here is 
Cliff’s method. The final two methods are aimed at 
comparing independent multinomial distributions 
as indicated in the introduction. 

The Welch and Yuen methods 

Here, Yuen’s method is described based on 20% 
trimming. When there is no trimming, it reduces to 
Welch’s test. Under normality, Yuen’s method yields 
about the same amount of power as methods based 
on means, but it helps guard against the deleterious 
effects of skewness and outliers. For the situation 
at hand, it will be seen that skewness plays a role 
when comparing means. 

For notational convenience, momentarily con-
sider a single group and let X1,...,Xn be a random 
sample of n observations from the jth group and 
let gj= [0.2n], where [0.2n] is the value of 0.2n 
rounded down to the nearest integer. Let X(1)  ≤ · 
·· ≤ X(n) be the n observations written in ascending 
order. Let h = n− 2g. That is, h is the number of 
observations left after trimming by 20%. The 20% 
trimmed mean is
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Xt =
X g+1( ) + ...+ X n=g( )

n = 2g

Winsorizing the observations by 20% means 
that the smallest 20% of the observations that 
were trimmed, when computing the 20% trimmed 
mean, are instead set equal to the smallest value not 
trimmed. Simultaneously, the largest values that 
were trimmed are set equal to the largest value not 
trimmed. The Winsorized mean is the average of the 
Winsorized values, which is labeled. In symbols, the 
Winsorized mean is 

The Winsorized variance is, s
w

2 
, the sample 

variance based on the Winsorized values. 
For two independent groups, let 

,

where s
wj 

2 
is the Winsorized variance for the jth 

group. Yuen’s test statistic is 

The degrees of freedom are 

 

The hypothesis of equal trimmed means is re-
jected if  |Ty| ≥ t, where t is the 1 − α/2 quantile of 
Student’s t distribution with  u� degrees of freedom. 
If there is no trimming, Yuen’s method reduces to 
Welch’s method for means. For convenience, Stu-
dent’s t, Welch’s test, and Yuen’s test are labeled 
methods T, W and Y, respectively. 

Cliff’s Method 

Let
p1 = P (Xi1 >Xi2), 

p2 = P (Xi1 = Xi2), 
and 

p3 = P (Xi1 <Xi2). 
Cliff (1996) focuses on testing 

H0 : δ = p1 − p3 =0,

His method is readily adapted to making in-
ferences about p, as will be indicated. (Note that 
p3+0.5p2 corresponds to the left side of equation 
3.) For the ith observation in group 1 and the hth 
observation in group 2, let dih = -1 if P (Xi1 <Xh2), 
dih = 0 if Xi1 = Xh2  and  dih = 1 if  Xi1 >Xh2 . An 
estimate of δ = P (Xi1 > Xi2) − P (Xi1 < Xi2) is 

,  

the average of the dih values. Let

,
,

Then

estimates the squared standard error of  d�. Let z be 
the 1−α/2 quantile of a standard normal distribu-
tion. Rather than use the more obvious confidence 
interval for δ, Cliff (1996, p. 140) recommends
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The parameter δ is related to p in the following 
manner: 

δ = 1 – 2p,

so                                
2

1 d�
=p .

Letting
 

and 

a 1 − α confidence interval for p is 

.

As noted in the introduction, this confidence 
interval has been found to perform well compared 
to other confidence intervals that have been pro-
posed. This will be called method C. 

An Extension of the Storer–Kim Method 

The Storer and Kim method for comparing two 
independent binomials can be extended to compa-
ring independent multinomials in a straightforward 
manner. The basic strategy has been studied in a 
broader context by Alba-Fernández and Jiménez-
Gamero (2009). In essence, a bootstrap method is 
used to determine a p-value assuming (2) is true. 
(See Liu & Singh, 1997, for general results on 
bootstrap methods for computing a p-value.) First, 
we review the Storer–Kim method. 

Note that the possible number of successes in 
the first group is any integer, x, between 0 and n1, 
and for the second group it is any integer, y, between 

0 and n2. Let rj be the number of successes observed 
in the jth group and let 

be the estimate of the common probability of suc-
cess assuming the null hypothesis is true. For any 
x between 0 and n1 and any y between 0 and n2, set 

axy =1 
if

,

otherwise 
axy = 0. 

The test statistic is 

, 

where 

and b(y, n2, p̂) is defined in an analogous fashion. 
The null hypothesis is rejected at the α level if 

T ≤ α. 
That is, T is the p-value. 

Generalizing, let ckj be the number of times 
the value xk (k =1,...,N) is observed among the nj 
participants in the jth group, let 

be the estimate of the assumed common cell pro-
bability, and let 

The goal is to determine whether S is suffciently 
large to reject (2). But as N gets large, computing the 
probabilities associated with every element in the 
sample space of a multinomial distribution becomes 
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impractical. To deal with this, randomly sample n1 
observations from a multinomial distribution hav-
ing cell probabilities  Repeat this process 
only now generating n2 observations. Based on the 
resulting cell counts, compute S and label the result 
S*. Repeat this process B times yielding S

1 
*,...,S

B
*

 
. 

Then a p-value is given by 

, 

where the indicator function IS > Sb 
* = 1 if S>S

b 
*; 

otherwise IS > Sb 
* = 0. Here, B = 500 is used, which 

generally seems to suffice in terms of controlling the 
Type I error probability (e.g., Wilcox, 2012b), but a 
possibility is that a larger choice for B will result in 
improved power (e.g., Wilcox, 2012a, p. 277). This 
will be called method M. 

Multiple Comparisons 

The final method tests H0: pj = qj for each j with the 
goal of controlling the probability of one or more 
Type I errors. This is done using a modification of 
Hochberg’s (1988) sequentially rejective method. 
(A slight modification of Hochberg’s method, de-
rived by Rom, 1990, might provide a slight advan-
tage in terms of power.)To describe Hochberg’s 
method, let p1,...,pN be the p-values associated with 
the N tests as calculated by the extended Storer-
Kim method, and put these p-values in descending 
order yielding p[1] ≥ p[2] ≥· ··≥ p[C]. Beginning with 
k = 1, reject all hypotheses if 

p[k] ≤ α / k . 

If p[1] >α, proceed as follows: 

1. Increment k by 1. If       

2. p[k] ≤ α / k ,

stop and reject all hypotheses having a p-value less 
than or equal p[k] 

If p[k] > α / k , repeat step 1.

3.  Repeat steps 1 and 2 until a significant result 
is found or all N hypotheses have been tested. 

Based on preliminary simulations, a criticism 
of the method just described is that the actual 
probability of one or more Type I errors can drop 
well below the nominal level when the sample size 
is small. The adjustment used here is as follows. If 
the p-value (i.e., p[k] )is less than or equal to twice 
the nominal level, the minimum sample size is less 
than 20, N>4, and the sample sizes are not equal, 
then divide the p-value by 2.  This will be called 
method B. 

3 Simulation Results 

Using the software R, simulations were used to 
study the small-sample size properties of the six 
methods described in section 2. To get a reasona-
bly broad range of situations, observations were 
generated from a beta-binomial distribution that 
has probability function 

(x =0,...,N), where the parameters r and s deter-
mine the first two moments and B is the beta func-
tion. The mean of the beta-binomial distribution is 

and the variance is 

.

when r = s, the distribution is symmetric. Note that 
if both r and s are multiplied by some constant, d, 
the mean remains the same but the variance gene-
rally, but not always, decreases. If r < s, the distri-
bution is skewed to the right. When r = s and r < 
1, the distribution is U-shaped. Here N = 4 and 10 
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are used with sample sizes 20 and 40. Figure 1 shows 
the probability function for N = 10, (r, s)=(0.5,0.5) 
(indicated by lines connecting the points labeled o), 
(r, s) = (2, 2) (indicated by the points corresponding 
to *) and (r, s) = (1, 3) (indicated by a +). 

Table 1 shows the estimated probability of a 
Type I error, based on 4000 replications, when X 
and Y have identical distributions and the nominal 
Type I error probability is 0.05. (If the method in 
Wilcox, 2012, p. 166, is used to test the hypothesis 
that the actual Type I error probability is 0.05, based 
on a 0.95 confidence interval, then power exceeds 
0.99 when the actual Type I error probability is 
0.075. Also, with 4000 replications, the resulting 
half-lengths of the 0.95 confidence intervals for the 
actual Type I error probability were approximately 
0.007 or less.)  In terms of avoiding Type I error 
probabilities larger than the nominal level, all of the 
methods perform well. Only method Y has an esti-
mate larger than 0.06, which occurred when N = 
4 and r = s = 0.5. In terms of avoiding Type I error 
probabilities well below the nominal level, say less 
than 0.04, all of the methods performed well except 
method B when N = 10 and n1 = n2 = 20, where 

the estimate drops below 0.02. This suggests that 
method B might have less power than method M, 
but situations are found where the reverse is true. 

From basic principles, when N = 2, meaning 
that the goal is to test the hypothesis that two in-
dependent binomials have the same probability of 
success, reliance on the central limit theorem can 
be problematic when the probability of success is 
close to zero or one. Also, it is known that when 
distributions differ in terms of skewness, this can 
adversely affect the control over the probability 
of a Type I error when using Student’s t test, par-
ticularly when the sample sizes differ. Of course, a 
related concern is that confidence intervals can 
be inaccurate in terms of probability coverage. It 
is noted that these issues remain a concern for the 
situation at hand. 

Consider, for example, the situation where N 
= 10, (r, s) = (1, 2) for the first group, and (r, s) = 
(10, 1) for the second group. These two probability 
functions are shown in Figure 2, with o correspond-
ing to (r, s) = (1, 2). So the first group is skewed to 
the right and the second is skewed to the left with 
the events X = 0 and 1 having probabilities close 

table 1: Estimated Type I error probabilities, α = 0.05

Methods

N n1 n2 r s B C M Y W T 

4 20 20 0.5 0.5 0.054 0.044 0.052 0.054 0.047 0.047 

4 20 20 2 2 0.053 0.046 0.050 0.043 0.048 0.048 

4 20 20 1 3 0.046 0.055 0.059 0.043 0.054 0.056 

4 20 40 0.5 0.5 0.033 0.048 0.046 0.062 0.049 0.048 

4 20 40 2 2 0.048 0.048 0.054 0.041 0.051 0.05 

4 20 40 1 3 0.031 0.041 0.045 0.036 0.048 0.042 

10 20 20 0.5 0.5 0.016 0.040 0.047 0.052 0.048 0.048 

10 20 20 2 2 0.019 0.043 0.044 0.047 0.05 0.05 

10 20 20 1 3 0.019 0.040 0.046 0.044 0.045 0.046 

10 20 40 0.5 0.5 0.056 0.050 0.046 0.058 0.053 0.052 

10 20 40 2 2 0.053 0.047 0.043 0.049 0.052 0.05 

10 20 40 1 3 0.048 0.048 0.049 0.053 0.049 0.048 

B=modified Hochberg method, C=Cliff’s method, M=generalization of Storer—Kim method, Y=Yuen, W=Welch, 
T=Student’s t.
Source: Own work.
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Figure 1: Beta-binomial probability functions used in the simulations 
N = 10, (r, s)=(0.5,0.5) (indicated by lines connecting the points labeled o), (r, s) = (2,2) (indicated the points corresponding 
to *) and (r, s) = (1,3) (indicated by a +). 
Source: Own work.

Figure 2: An example of two distributions where Student’s t can be unsatisfactory 
Source: Own work.
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table 2: Estimated power 

Group 1 Group 2   Methods

N n1 n2 r s r s B C M Y W T
4  20 20 1 2 3 6 0.078 0.044 0.085 0.058 0.043 0.044
4 20 20 1 2 4 8 0.082 0.051 0.095 0.059 0.052 0.053
4 20 20 1 2 2 1 0.672 0.836 0.696 0.804 0.847 0.847
4 20 20 1 2 6 3 0.716 0.868 0.729 0.813 0.882 0.883
4 20 20 1 2 8 4 0.732 0.877 0.728 0.808 0.892 0.892
4 20 40 1 2 3 6 0.149 0.053 0.086 0.074 0.054 0.064
4 20 40 1 2 4 8 0.171 0.056 0.114 0.073 0.056 0.064
4 20 40 1 2 2 1 0.843 0.922 0.815 0.904 0.924 0.932
4 20 40 1 2 6 3 0.900 0.935 0.844 0.889 0.949 0.960
4 20 40 1 2 8 4 0.903 0.928 0.847 0.884 0.941 0.955
10 20 20 1 2 3 6 0.051 0.054 0.120 0.061 0.054 0.056
10 20 20 1 2 4 8 0.056 0.052 0.135 0.06 0.047 0.047
10 20 20 1 2 2 1 0.146 0.942 0.614 0.921 0.949 0.949
10 20 20 1 2 6 3 0.177 0.973 0.722 0.958 0.983 0.983
10 20 20 1 2 8 4 0.185 0.973 0.73 0.962 0.983 0.983
10 20 40 1 2 3 6 0.133 0.051 0.139 0.067 0.047 0.07
10 20 40 1 2 4 8 0.192 0.062 0.178 0.070 0.054 0.08
10 20 40 1 2 2 1 0.609 0.987 0.773 0.978 0.989 0.989
10 20 40 1 2 6 3 0.802 0.985 0.852 0.978 0.993 0.996
10 20 40 1 2 8 4 0.818 0.985 0.872 0.977 0.994 0.998
4  20 20 2 2 3 6 0.184 0.319 0.18 0.285 0.344 0.345
4 20 20 2 2 4 8 0.200 0.331 0.20 0.289 0.363 0.364
4 20 20 2 2 2 1 0.228 0.312 0.222 0.313 0.319 0.32
4 20 20 2 2 6 3 0.190 0.338 0.184 0.297 0.358 0.36
4 20 20 2 2 8 4 0.202 0.323 0.196 0.279 0.356 0.357
4 20 40 2 2 3 6 0.40 0.419 0.259 0.382 0.43 0.479
4 20 40 2 2 4 8 0.422 0.407 0.264 0.375 0.427 0.484
4 20 40 2 2 2 1 0.347 0.415 0.284 0.418 0.405 0.423
4 20 40 2 2 6 3 0.423 0.421 0.269 0.386 0.441 0.48
4 20 40 2 2 8 4 0.430 0.411 0.266 0.365 0.43 0.483

10 20 20 2 2 3 6 0.046 0.498 0.177 0.466 0.56 0.561
10 20 20 2 2 4 8 0.053 0.505 0.196 0.479 0.574 0.577
10 20 20 2 2 2 1 0.052 0.458 0.183 0.432 0.468 0.469
10 20 20 2 2 6 3 0.054 0.502 0.182 0.464 0.559 0.562
10 20 20 2 2 8 4 0.053 0.511 0.183 0.487 0.579 0.582
10 20 40 2 2 3 6 0.198 0.581 0.227 0.517 0.634 0.705
10 20 40 2 2 4 8 0.228 0.589 0.263 0.538 0.661 0.735
10 20 40 2 2 2 1 0.168 0.616 0.267 0.557 0.593 0.601
10 20 40 2 2 6 3 0.218 0.603 0.243 0.548 0.660 0.724
10 20 40 2 2 8 4 0.252 0.603 0.277 0.543 0.664 0.742

B=modified Hochberg method, C=Cliff’s method, M=generalization of Storer—Kim method, Y=Yuen, W=Welch, 
T=Student’s t.
Source: Own work.
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to zero. If the first distribution is shifted to have a 
mean equal to the mean of the second group, and if 
n1 = n2 = 20, the actual Type I error probability is 
approximately 0.064 when testing at the 0.05 level 
with Student’s t. But if n2 = 50, the actual Type I 
error probability is approximately 0.12. In contrast, 
when using Welch’s method, the Type I error prob-
ability is 0.063. Put another way, if the first groups 
is not shifted, the actual difference between the 
means is 1.8. But the actual probability coverage 
of the nominal 0.95 confidence interval based on 
Student’s t is only 0.88 rather than 0.95, as intended. 
Increasing the sample sizes to 50 and 80, Student’s 
t now has a Type I error probability of 0.085.

Numerous papers have demonstrated that with 
unequal sample sizes, violating the homoscedastic-
ity assumption underlying Student’s t test can result 
in poor control over the probability of a Type I error. 
Adding to this concern is the fact that under gen-
eral conditions, Student’s t uses the wrong standard 
error (Cressie & Whitford, 1986). It is noted that 
these concerns are relevant here. For example, if 
N = 10, n1 = 20, n2 = 50, r = s = 0.5 for the first 
group, and r = s = 4 for the second, in which case 
the distributions are symmetric with µ1 = µ2 = 4.5, 
the actual level of Student’s t is approximately 0.112. 
Increasing the sample sizes to n1 = 50 and n2 = 80, 
the actual level is approximately 0.079. In contrast, 
when using method W, the actual levels for these 
two situations are 0.057 and 0.052, respectively. 

As seems evident, the method that will have 
the most power depends on how the distributions 
differ, simply because different methods are sen-

sitive to different features of the distributions. 
Nevertheless, in terms of maximizing power, it is 
worth noting that the choice of method can make 
a substantial difference with each of the methods 
offering the most power in certain situations. This 
is illustrated in Table 2, which shows the estimated 
power when (r, s) = (1,2) or (2,2) for the first group 
and the second group is based on different choices 
for r and s, which are indicated in columns 6 and 
7. The mean and variance associated with each of 
these distributions is shown in Table 3. Note that 
when (r, s)=(1,2) for group 1 and for group 2 (r, s) 
= (3,6), and (4,8), the population means are equal, 
so Welch’s methods and Student’s t are designed to 
have rejection rates equal to 0.05. 

Also, the null hypothesis associated with 
Cliff ’s method is nearly true, the value of p being 
approximately 0.052. Now, with N=4, there is 
an instance where Student’s t (method T) has an 
estimated rejection rate of 0.064, a bit higher than 
any situation where the distributions are identical. 
Methods B and M have a higher probability of 
rejecting, as would be expected, simply because 
the corresponding null hypothesis is false. Also, as 
expected, the method with the highest power is a 
function of how the distributions differ. Generally, 
method M performs well, but it is evident that it 
does not dominate. Note, for example, that when 
(r, s)=(2,2) for group 1, N=4 and the sample sizes 
are 20 and 40, method B can have a substantial 
power advantage compared to method M. Also, 
there are instances where methods Y and W offer 
a substantial gain in power. This is the case, for 

table 3: The mean and variance of the distributions used in Table 2.

N r s Mean Variance N r s Mean Variance

4 1 2 1.33 1.56 10 1 2 3.33 7.22

4 3 6 1.33 1.16 10 3 6 3.33 4.22

4 4 8 1.33 1.09 10 4 8 3.33 3.76

4 2 1 2.67 1.56 10 2 1 6.67 7.22

4 6 3 2.67 1.56 10 6 3 6.67 4.22

4 8 4 2.67 1.09 10 8 4 6.67 3.76

4 2 2 2.00 1.6 10 2 2 5.0 7.0

Source: Own work.
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example, when N=10 and when the first group 
has r=s=2. 

Some Illustrations 

A practical issue is whether the choice of method 
can make a difference in terms of the number of 
significant results when a relatively large number 
of tests are performed. Data from the Well Elderly 
2 study (Jackson et al., 1997) are used to illustrate 
that this is indeed the case, with method M tending 
to report more significant results. The participants 
were 460 men and women aged 60 to 95 years 
(mean age 74.9) who were recruited from 21 sites 
in the greater Los Angeles area. 

One portion of the study dealt with the process-
es older adults use to cope with stress, which was 
measured by the COPE scale developed by Carver, 
Scheier and Weintraub (1989). The scale consists 
of 36 items where each participant gave one of four 
responses: I usually didn’t do this at all, I usually did 
this a little bit, I usually did this a medium amount, 
I usually did this a lot. Method M was applied to 
all 36 items with the goal of comparing males to 
females. (The frequencies associated with each 
item are available on the first author’s web page in 
the files cope_freq_males and cope_freq_females.) 
Controlling for the probability of one or more Type 
I errors at the 0.05 level, among the 36 hypotheses 
tested, was done via Hochberg’s improvement on 
Bonferroni method. Five significant differences 
were found. COPE contains four items related to 
a scale named “turning to religion,” which con-
stituted four of the five significant results. The 
fifth significant result was for the single scale item 
alcohol-drug disengagement. 

Method B provides more detail about how the 
individual items differ. For the scale named turning 
to religion, the fourth possible response (I usually 
did this a lot) was the most significant. (The esti-
mated difference between the probability a female 
responds 4, minus the same probability for males, 
ranged between 0.20 and 0.23.) If Cliff’s method 
is used instead, three of the five items that are 
found to be significant via method M are again 
significant, with no differences found otherwise. 

(All three significant results are associated with 
religion). Using method W gives the same result 
as method C. 

Another portion of the Well Elderly study dealt 
with feelings of depression as measured by the 
Center for Epidemiologic Studies Depression Scale 
(CESD). The CESD (Radloff, 1977) consists of 
twenty items, each scored on a four-point scale. 
The CESD is sensitive to change in depressive 
status over time and has been successfully used to 
assess ethnically diverse older people (Foley et al., 
2002; Lewinsohn et al., 1988). Here, we compare 
three ethnic groups: white, black/African Ameri-
can, and Hispanic or Latino. Applying method M 
to each of the twenty items, no difference is found 
between the first two groups. However, comparing 
group 1 to 3, as well as group 2 to group 3, again 
controlling for the probability of one or more Type 
I errors at the 0.05 level via the Hochberg’s method, 
four significant differences are found (items 3, 4, 
15 and 17). Using Cliff’s method, three significant 
differences are found (items 4, 15 and 17), Welch’s 
method and Yuen’s method find two significant dif-
ferences (items 4 and 17). Method B rejects for the 
same four items as method M and provides more 
detail about how the groups differ.

Comparing groups 2 and 3, again method M 
yields four significant results (items 4, 15, 17 and 
18). Method C rejects in three instances (items 4, 
15 and 18), while the Welch and Yuen methods 
reject twice (items 4 and 15). 

As a final example, males and females are com-
pared based on nine items aimed at measuring men-
tal health and vitality. This time Cliff’s methods C 
and Welch’s method rejected for four of the items 
(namely, items 1, 2, 4 and 7), while methods M 
and Yuen returned three significant results (items 
1, 2 and 7).  The only point is that the choice of 
method can make a practical difference, as would 
be expected because each method is sensitive to dif-
ferent features of the data and designed to answer 
different questions. Limited results suggest that 
method M often has the most power, but the only 
certainty is that exceptions occur. 
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Concluding Remarks 

In summary, methods were proposed for testing the 
hypothesis that two independent multinomial dis-
tributions have identical cell probabilities. All indi-
cations are that the probability of a Type I error can 
be controlled reasonably well. It is not suggested that 
these methods be used to the exclusion of all other 
techniques. As illustrated, the most powerful method 
depends on the nature of the distributions being com-
pared. Also, if there is explicit interest in comparing 
measures of location, the Welch and Yuen methods 
are preferable. But simultaneously, methods based on 
measures of location can miss true differences that are 
detected by methods B and M. Also, method B has 
the potential of providing a more detailed unders-
tanding of how distributions differ, as was illustrated. 

If Student’s t is viewed as a method for testing 
the hypothesis that two distributions are identical, 
it appears to control the probability of a Type I er-
ror reasonably well. But when distributions differ, 
generally it seems to offer little or no advantage in 
terms of power. Also, consistent with past studies, 
it was found that Student’s t can be unsatisfactory 
as a method for comparing means. Consequently, 
it is not recommended. 

A criticism of using multiple methods to com-
pare groups is that this increases the probability of 
one or more Type I errors. Again, one might use the 
Bonferroni method to deal with this issue or some 
recent improvement on the Bonferroni method, 
such as Hochberg’s (1988) method. Yet another 
possibility is to control the false discovery rate using 
the technique derived by Benjamini and Hochberg 
(1995). But this comes at the cost of reducing the 
probability of detecting all true differences. Conse-
quently, if one of the methods compared here tests 
a hypothesis that is of direct interest, an argument 
can be made to use it to the exclusion of all other 
techniques.  In general, however, it seems prudent 
to keep in mind that the choice of method can 
make a practical difference in terms of detecting 
differences between two groups. 

Given that method M controls the probability 
of a Type I error reasonably well, this suggests a 
modification of method B. If method M rejects, 

compute p-values using method B and at a mini-
mum, reject the hypothesis of equal cell probabili-
ties corresponding to the situations having the two 
smallest p-values. That is, if the distributions differ, 
it must be the case that at least two cell probabilities 
differ. So even if the modified Hochberg method re-
jects for one cell probability only, at least one other 
pair of cell probabilities would be rejected as well. 

Finally, R software for applying methods M and 
B are available from the first author upon request. 
The R functions disc2com and binband perform 
methods M and B, respectively. These functions 
are contained in the file Rallfun-v20, which can 
be downloaded at http://college.usc.edu/labs/rwil-
cox/home.  (Use the source command to get ac-
cess to the these functions.) Alternatively, install 
the R package WRS with the R command install.
packages(̀ `WRS’’, repos=̀ `http:R-Forge.R-project.
org’’).  This requires the most recent version of R. 
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