Comparison of the ATB® Fungus 2 with the AFST-EUCAST for in vitro susceptibility testing of Candida spp.

Comparación de las técnicas de susceptibilidad in vitro para Candida spp. ATB® FUNGUS 2 y AFST-EUCAST

Jehidys Estella Montiel Ramos ¹, Andrea Corrales Bernal ¹, María Paulina Vélez Bravo ¹, Armando Baena Zapata ¹, Ana Cecilia Mesa Arango ¹

ABSTRACT

The increase of diseases caused by Candida spp., and the treatment failures, has underscored the need for testing the susceptibilities to antifungal agents. The commercial panel ATB® Fungus 2 was compared with the reference testing method of the European Subcommittee on Antifungal Susceptibility Testing of the Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST) for the evaluation of the susceptibility of isolates of Candida spp. to three agents. The percentage of agreement was calculated based on the minimum inhibitory concentrations. There was a high correlation for AMB (100% κ = 1.0 Bhapkar coefficient p = 1.0); while it was lower with azoles (85%, κ = 0.41, p = Bhapkar coefficient 0.02 and 83.0%, κ = 0.15, Bhapkar coefficient p = 0.0006, respectively). The ATB® Fungus 2 and AFST-EUCAST are fully comparable methods for testing the susceptibility to AMB and to lesser extend comparable for ITR and FCA.

Keywords: antifungal susceptibility, Candida spp., ATB® Fungus 2, AFST-EUCAST

1. Grupo Infección y Cáncer, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
Correspondencia: Jehidys Estella Montiel Ramos, Microbióloga y Bioanalista. Dirección: Carrera 51D No 62-29 Laboratorio 283. Correo electrónico: jeyito126@gmail.com Teléfono: +57(4) 219 6585
Recibido: agosto 22 de 2013 Aprobado: diciembre 16 de 2013
agents to guide the use of more appropriate therapies
the susceptibilities of fungal pathogens to antifungal
antifungal therapy has underscored the need for testing
and treatment failures in patients receiving long-term
However, the increasing number of fungal infections
several new antifungal drugs have become available.
triazole antifungal and the lipid AMB formulations,
are time-consuming and labor-intensive 6. A more rapid,
use of these reference methods is limited because they
Candida
spp. respectively. Unfortunately, the
compromised patients 1, 2
and disseminated candidiasis, particularly, in immuno
a variety of diseases ranging from localized forms
ofonychomycosis, vulvovaginitis and oropharyngeal
candidiasis, to serious infections such as fungaemia
and disseminated candidiasis, in particular, in immuno compromised patients 1, 2. After the release of the first
triazole antifungal and the lipid AMB formulations,
several new antifungal drugs have become available.
However, the increasing number of fungal infections and
treatment failures in patients receiving long-term
antifungal therapy has underscored the need for testing
the susceptibilities of fungal pathogens to antifungal
agents to guide the use of more appropriate therapies 1-3.

INTRODUCTION
The incidence of diseases caused by various fungal
pathogens has increased dramatically over the past
few decades being Candida spp. the most common
pathogen involved in these diseases. This yeast causes
a variety of diseases ranging from localized forms
ofonychomycosis, vulvovaginitis and oropharyngeal
candidiasis, to serious infections such as fungaemia
and disseminated candidiasis, particularly, in immuno compromised patients 1-3. After the release of the first
triazole antifungal and the lipid AMB formulations,
several new antifungal drugs have become available.
However, the increasing number of fungal infections and
treatment failures in patients receiving long-term
antifungal therapy has underscored the need for testing
the susceptibilities of fungal pathogens to antifungal
agents to guide the use of more appropriate therapies 1-3. The Clinical and Laboratory Standards Institute
(CLSI) and The European Subcommittee on Antifungal Susceptibility Testing of the Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST)
have developed the reference broth dilution methods M27-A3 4 and AFST-EUCAST 5 for drug susceptibility
testing of Candida spp. respectively. Unfortunately, the
use of these reference methods is limited because they
are time-consuming and labor-intensive 6. A more rapid,
reliable, reproducible, and locally available antifungal
drug susceptibility testing method is desirable for routine
application in clinical laboratories 7. Different
methods such as the ATB® Fungus 2 (BioMérieux,
Marcy-l’Etoile, France) have been commercially
introduced. ATB® Fungus 2 is a visible read panel
designed to evaluate the susceptibility of Candida spp.
and Cryptococcus neoformans to some of the most used
antifungal compounds such as, AMB; 5 fluorocitosine,
(5FC); fluconazole, (FCA) and itraconazole, (ITR).
The aim of this study was to compare the performance of
commercial panel ATB® Fungus 2 and the reference
testing method AFST-EUCAST for the evaluation of
the susceptibility of Candida spp. clinical isolates to
ITR, FCA and AMB.

MATERIALS AND METHODS
A total of 100 clinical isolates of Candida spp. obtained
from individuals attending the Laboratory of Mycology
of the School of Medicine at the University of Antioquia; The infectology laboratory of the University
Hospital San Vicente de Paul and the clinical laboratory
of Las Americas Clinic in Medellin, Colombia, were
included in this study. Candida albicans isolates were
generated from blood culture, growth at 42°C and
chlamydospores formation on cornmeal agar (Beckton
Dickinson, New Jersey, USA). Other Candida species
were identified by the commercial test for carbohydrate
assimilation API-20CAUX (BioMérieux, l’Etoile,
France). Candida parapsilosis (ATCC-22019) and
Candida krusei (ATCC-6258) strains were evaluated
with ITR and AMB as quality control.

The commercial kit ATB® Fungus 2 was used following
manufacturer instructions closely. The kit consists of 16
pairs of cupules; one does not contain any antifungal
agent (growth control) and the other pairs contain
antifungal compounds previously prepared at the
following concentrations: FCA (0.25 µg/mL -128µg/
ml), ITR (0.5µg/mL-16µg/mL) and AMB (0.5µg/
ml -16µg/mL). Samples were resuspended in 5mL
of API®NaCl 0.85% medium (BioMérieux, Marcy-
l’Etoile, France) to obtain a turbidity equivalent to 2
McFarland standard, and then 20µL of diluted sample
was transferred into an ampule of ATB® Fungus 2
medium. One hundred thirty five µL of this suspension
were inoculated into each cupule, and finally incubated
at 35°C for 24 hours.

RESUMEN
El aumento de infecciones por Candida spp. y de las fallas en los tratamientos, suscitan la necesidad de pruebas
de susceptibilidad. Se comparó la marca comercial ATB® Fungus 2 con la técnica estándar del Subcomité para las
Pruebas de Sensibilidad Antifúngica de la Unión Europea, de la Sociedad de Microbiología Clínica y Enfermedades
Infecciosas (AFST-EUCAST) para evaluar la susceptibilidad de aislamientos de Candida spp. a tres antifúngicos.
Con base en las concentraciones inhibitorias mínimas se calculó el porcentaje de acuerdo. La concordancia para
anfotericina B (AMB) fue alta (100% κ = 1.0, Coeficiente de Bhapkar = 1.0); para itraconazol (ITR) y fluconazol
(FCA) fue inferior (85% κ = 0.41, Coeficiente de Bhapkar =0.02 y 83.0 %, κ = 0.15, Coeficiente de Bhapkar =
0.0006, respectivamente). Por lo tanto, ambas técnicas son comparables para la evaluación de la susceptibilidad a
AMB; con los azoles el porcentaje de acuerdo es menor.

Palabras clave: susceptibilidad antifúngica, Candida spp., ATB® Fungus 2, AFST-EUCAST.
Minimum inhibitory concentrations (MICs) were visually determined independently by 3 previously trained readers, comparing the growth of each cupule with the samples, with the growth in the control cupule and informed as follows: 4 = no reduction in growth, 3 = slight reduction in growth, 2 = distinct reduction in growth, 1 = very weak growth, 0 = no growth. For AMB, the MIC corresponded to the lowest concentration producing complete growth inhibition (score “0”). Since there is the possibility of trailing for ITR and FCA, the MICs for these antifungal corresponded to the lowest concentration with which a score of 2, 1 or 0 was obtained. The categorical classification of susceptibility by the ATB® Fungus 2 panel was carried out using the same CLSI M27-A2 MIC breakpoint categories according to the manufacturer’s instructions. A strain was considered susceptible (S) for ITR and FCA if the MICs were ≤ 0.125 µg/mL and ≤ 8µg/mL, susceptible intermediate (SI), if MICs were 0.25–0.50 µg/mL and 16-32µg/mL, and resistant (R) if MICs were ≥ 1 µg/mL and ≥64µg/mL, respectively. These values are not formally defined for AMB by CLSI M27-A2 method, hence, we considered a strain S to this antifungal, if MICs were ≤2µg/mL, and R if MICs were >2µg/mL. Susceptibility testing for each isolate was conducted in triplicate and performed on three separate days.

For the AFST-EUCAST method, standards at the same concentrations with powders of ITR (Sigma Chemical Co, MO, USA) and FCA (Pfizer Pharmaceutical Group New York, NY, USA) were prepared. The inocula were prepared. The inocula were prepared. The inocula for microdilution plates were 0.5-2.5 x 10^5 CFU/mL.

Minimum inhibitory concentrations were determined using a spectrophotometer (Bio-Rad, Hercules, USA) at 450 nm after 24 hours of incubation at 35°C. For ITR and FCA, MICs were defined as the lowest drug concentration that inhibited 50% growth or more, as compared with the control. MIC for AMB was considered susceptible (S) for ITR and FCA if the MICs were ≤ 0.125 µg/mL and ≤ 8µg/mL, susceptible intermediate (SI), if MICs were 0.25–0.50 µg/mL and 16-32µg/mL, and resistant (R) if MICs were ≥ 1 µg/mL and ≥64µg/mL, respectively. These values are not formally defined for AMB by CLSI M27-A2 method, hence, we considered a strain S to this antifungal, if MICs were ≤2µg/mL, and R if MICs were >2µg/mL. Susceptibility testing for each isolate was conducted in triplicate and performed on three separate days.

Comparison of the ATB® Fungus 2 with the AFST-EUCAST for in vitro susceptibility testing of Candida spp.

The geometric mean, range and median of MICs obtained by ATB® Fungus 2 and EUCAST for each antifungal compound were calculated for each species and determined if there was any statistical difference between the median of the MICs obtained by each method by the Mann Whitney test. The overall percentage of agreement of MICs determined by ATB® Fungus 2 and AFST-EUCAST at different tolerances was also calculated. A tolerance equals to zero means that MIC values of the sample tested by both methods were identical, whereas a tolerance equals to one, two or more, means that there was agreement between the results obtained by both methods if they only differ in one, two or more MIC values respectively. The reproducibility of the results of the ATB® Fungus 2 test obtained independently by three readers was estimated using agreement percentage and Cohen’s Kappa index (κ). Concordance between ATB® Fungus 2 and AFST-EUCAST methods for categorical classification of Susceptible (S), Intermediate Susceptible (SI) and Resistant (R) strains was conducted stratifying by species. Finally, an overall analysis including all the 100 clinical isolates comparing the performance of the ATB® Fungus 2 to AFST-EUCAST was conducted using the agreement percentage, κ index, and the Bhapkar coefficient of concordance. Concordance between ATB® Fungus 2 and AFST-EUCAST at different tolerances was also calculated. A tolerance equals to zero means that MIC values of the sample tested by both methods were identical, whereas a tolerance equals to one, two or more, means that there was agreement between the results obtained by both methods if they only differ in one, two or more MIC values respectively. The reproducibility of the results of the ATB® Fungus 2 test obtained independently by three readers was estimated using agreement percentage and Cohen’s Kappa index (κ). Concordance between ATB® Fungus 2 and AFST-EUCAST methods for categorical classification of Susceptible (S), Intermediate Susceptible (SI) and Resistant (R) strains was conducted stratifying by species. Finally, an overall analysis including all the 100 clinical isolates comparing the performance of the ATB® Fungus 2 to AFST-EUCAST was conducted using the agreement percentage, κ index, and the Bhapkar coefficient of concordance in order to test for all the marginal homogeneity (i.e. across all the categories simultaneously). The criteria described by Fleiss, where a κ value less than 0.40 indicates poor agreement, 0.40 to 0.75 from acceptable to good agreement and higher than 0.75 excellent agreement was used. P value ≤ 0.05, was considered significant in all tests. The R program version 2.9, (R Development Core Team (2008): a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0) was used for all data analyses. A significance level of 0.05 was used in all tests.

RESULTS

Sixty percent of the clinical isolates was C. albicans, 19% C. parapsilosis, 12% Candida tropicalis, 8% Candida glabrata, 3% Candida guilliermondii, and 1% Candida famata. Nineteen percent of the isolates were obtained from urine, 22% from nails, 14% from abdominal secretion, 13% from oral mucosa, 8% from bronchial secretion, 7% from catheters, 6% from both blood and peritoneal fluids, 11% from other samples (tongue, vaginal fluid vitreous humour, pleural fluid, ear, cyst, thigh secretion, skin secretion). The analysis of the reproducibility of the interpretation of the results of the ATB® Fungus 2 method showed that there was
Table 1. Geometric mean, range and median of MICs of amphotericin B, fluconazole and itraconazole for 100 clinical isolates of Candida spp. evaluated by ATB fungus 2 and EUCAST techniques

<table>
<thead>
<tr>
<th>Candida spp</th>
<th>MICs (mg/mL)</th>
<th>Geometric Mean</th>
<th>Range</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>ATBF2®</td>
<td>ATBF2®</td>
<td>EUCAST</td>
</tr>
<tr>
<td>C. albicans</td>
<td>60</td>
<td>AMB 0.50</td>
<td>0.64</td>
<td>0.5-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 0.47</td>
<td>0.33</td>
<td>0.25-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.13</td>
<td>0.15</td>
<td>0.125-2</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>19</td>
<td>AMB 0.50</td>
<td>0.63</td>
<td>0.5-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 0.80</td>
<td>0.40</td>
<td>0.25-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.13</td>
<td>0.13</td>
<td>0.125-0.25</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>12</td>
<td>AMB 0.51</td>
<td>0.81</td>
<td>0.5-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 1.36</td>
<td>6.11</td>
<td>0.25-64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.19</td>
<td>0.51</td>
<td>0.125-4</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>5</td>
<td>AMB 0.50</td>
<td>0.87</td>
<td>0.5-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 2.41</td>
<td>18.38</td>
<td>0.25-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.32</td>
<td>0.79</td>
<td>0.125-4</td>
</tr>
<tr>
<td>C. famata</td>
<td>1</td>
<td>AMB 0.50</td>
<td>0.50</td>
<td>0.5-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 0.32</td>
<td>0.25</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.13</td>
<td>0.13</td>
<td>0.125-0.125</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>3</td>
<td>AMB 0.50</td>
<td>0.63</td>
<td>0.5-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCA 2.00</td>
<td>2.94</td>
<td>0.5-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITR 0.32</td>
<td>0.20</td>
<td>0.125-1</td>
</tr>
</tbody>
</table>

†Mann-Whitney test

good agreement between the 3 independent readers for the MICs values (84-100%, κ = 0.74). Table 1 shows the geometric mean; range and median of MICs of AMB, FCA and ITR for 100 clinical isolates of Candida spp. evaluated by EUCAST and ATB® Fungus 2 methods. In order to determine percentage of agreement of MICs value between ATB® Fungus 2 and AFST-EUCAST, the numerical comparison at different tolerances was conducted. Figure 1 shows the percentage of agreement between ATB® Fungus 2 and AFST-EUCAST methods for MICs at several tolerances for each antifungal agent. At tolerance 0, the percentage of agreement for AMB was 60%, for FCA 35%, and for ITR 84%. At one tolerance, the percentage of agreement for AMB increases to 100%, for FCA at around 70% and for ITR at 87%. The only major change at 2 tolerances it is observed for FCA. The percentage of agreement for this antifungal increased to 89% with two tolerances but not major changes were observed for any of the antifungal tested to higher tolerances.

The comparison between AFST-EUCAST and ATB® Fungus 2 methods for the categorical classification of susceptibility to AMB, FCA and ITR of isolates stratified by species are shown in Table 2. The best agreement was obtained with AMB for all species included with both methods (100%; κ = 1). However the agreement with the other two antifungal (FCA and ITR) was more variable and the percentage ranged from 20 to 28.6 and the κ index from -0.03 to 1.0, respectively. The best agreement with both azoles was observed with C. famata, C. parapsilosis and C. albicans. Nonetheless there was difference in the percentage of agreement with the species C. glabrata and C. tropicalis (Table 2).
Comparison of the ATB® Fungus 2 with the AFST-EUCAST for in vitro susceptibility testing of Candida spp.

Table 2. Categorical agreement between EUCAST and ATB® fungus 2 techniques for susceptibility testing of amphotericin B, fluconazole and itraconazole for 100 clinical isolates of Candida spp.

<table>
<thead>
<tr>
<th>Antifungal / Candida spp</th>
<th>N</th>
<th>Percentage agreement</th>
<th>κ index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>60</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>12</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>5</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>19</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. famata</td>
<td>1</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>3</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>100</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Fluconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. famata</td>
<td>1</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>19</td>
<td>94.1</td>
<td>0.00</td>
</tr>
<tr>
<td>C. albicans</td>
<td>60</td>
<td>93.4</td>
<td>0.20</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>12</td>
<td>54.5</td>
<td>0.11</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>3</td>
<td>33.3</td>
<td>0.00</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>5</td>
<td>28.6</td>
<td>-0.03</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>100</td>
<td>83.0</td>
<td>0.15</td>
</tr>
<tr>
<td>Itraconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. famata</td>
<td>1</td>
<td>100.0</td>
<td>1.00</td>
</tr>
<tr>
<td>C. albicans</td>
<td>60</td>
<td>95.0</td>
<td>0.48</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>19</td>
<td>94.1</td>
<td>0.00</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>5</td>
<td>57.1</td>
<td>0.40</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>12</td>
<td>45.5</td>
<td>0.11</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>3</td>
<td>33.3</td>
<td>0.00</td>
</tr>
<tr>
<td>Candida spp.</td>
<td>100</td>
<td>85.0</td>
<td>0.41</td>
</tr>
</tbody>
</table>

N: number isolates

Figure 1. Percentage of agreement between ATB® Fungus 2 and EUCAST methods for MICs at several tolerances for each antifungal agent. Amphotericin B (AMB), Fluconazole (FCA), Itraconazole (ITR)
N: number isolates

When overall categorical agreement between the two methods of susceptibility for AMB, FCA and ITR was calculated the agreement with AMB was 100% ($\kappa = 1.0$) without significant difference between the methods when homogeneity across all the categories simultaneously was evaluated (Bhapkar test, $P = 1.0$) (Table 3). The categorical analysis for ITR and FCA showed percentages of agreement lower than that observed with AMB (85.0%, $\kappa = 0.41$ and 83.0%, κ index = 0.15, respectively) (Table 3). Also it was found significant difference in the coefficient of concordance (Bhapkar test $p= 0.02$ and $p= 0.0006$, respectively) (Table 3).

Table 3. Overall categorical agreement between EUCAST and ATB® Fungus 2 methods for the susceptibility testing of amphotericin B, fluconazole and itraconazole for 100 clinical isolates of Candida spp.

<table>
<thead>
<tr>
<th></th>
<th>EUCAST</th>
<th>AMB</th>
<th>ITR</th>
<th>FCA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATBF2</td>
<td>S SI R</td>
<td>S SI R</td>
<td>S SI R</td>
</tr>
<tr>
<td>S</td>
<td>100 0 0</td>
<td>82 0 7</td>
<td>82 6 8</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0 0 0 1</td>
<td>1 1 5 1</td>
<td>0 0 1 2</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0 0 2 0</td>
<td>2 2 0 0</td>
<td>0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Agreement 100 85 83
κ index 1 0.41 0.15
Bhapkar coefficient - -
p value 1 0.02 0.0006

Amphotericin B (AMB), Itraconazole (ITZ), Fluconazole (FCA)

DISCUSSION

Clinical laboratories need alternative methods less expensive and laborious than the standard methods for testing the susceptibility to antifungal agents. The ATB® Fungus 2 complies with these features to test the susceptibility of Candida spp. and C. neoformans to FCA, ITR, AMB and 5FC. However the performance of this method in clinical settings has not been widely evaluated. In this study we compared this commercial kit with the reference method standard AFST-EUCAST with the antifungal most widely used in clinical practice. Evaluation of 5FC was not included in the study since wide resistance of this antifungal precludes its use as a single agent. Our results showed that the best agreement between AFST-EUCAST and ATB® Fungus 2 techniques for the categorical classification of susceptibility was observed with AMB. Unlike, the agreement between both methods with the azoles was more variable. In contrast to AMB, the azoles are fungistatic and as consequence residual growth of yeasts could occur and prevent the accurate determination of the MIC.

On the other hand, the percentage of agreement and concordance between both tests, with azoles, for categorical classification of susceptibility of the isolates was dependent on the Candida species. However, the reduced number of samples for some of the species tested limits the possibility to make a clear conclusion. The differences observed in the results with azoles could have several explanations: (i) the established
cut-off points to determine the MICs are different in both techniques and the categories established for the ATB® Fungus 2 are broader than the established 50% growth inhibition of the AFST-EUCAST method. This is reflected in the fact that ATB® Fungus 2 method classified as susceptible more isolates than the AFST-EUCAST. Other plausible explanation for the differences is that there are isolates such as C. tropicalis, and C. glabrata that are subject to significant trailing growth, and that this may lead to the inaccuracy in MIC determination with the ATB® Fungus 2. This may influence the poor concordance between tests when evaluating the susceptibility of the C. tropicalis isolates (12) to ITR (45.5% and $\kappa = 0.11$) and C. glabrata (8) to FCA (28.6% and $\kappa = -0.03$), this species showed decreased sensitivity or intrinsic resistance to FCA in other studies, even ATB-F3 6, 12, 13.

To date, few studies have been conducted comparing the correlation between ATB® Fungus 2 and other methods. To our knowledge this is the first time that this method has been compared with the reference method AFST-EUCAST. Kantarcıoğlu (2001) compared the MIC values obtained by ATB® Fungus (version 1.0) with the reference method CLSI- M27A. This study did not include antifungals FCA and ITR, which does not permit comparison with our results 14. More recently Torres-Rodriguez and Alvarado-Ramirez (2007), conducted a study that compared ATB® Fungus 2 with the standard CLSI M27-A2 method and Sensititre Yeast One®. They found that the overall agreements between methods were 94% and 99% for automated ATB® Fungus 2 and visual ATB® Fungus 2 readings, respectively and for Sensititre Yeast One the agreement was 91%. In this study, ITR presented the lowest concordance for Candida spp. 15. Eraso et al. (2008), compared ATB® Fungus 2 with Sensititre YeastOne®, the agreement between methods was assessed with 133 Candida strains. The agreement (no more than two dilutions) of MIC results obtained by both methods was good (91.7-97.7%) for AMB, ITR, but lower for FCA (82.7%). On the other hand, the categorical agreement was good (93.2 to 98.5%) with 5-fluorocytosine and AMB, but lower with both triazoles (ITR and FCA) (72.9-75.9%) 12. All these studies only used percentage of agreement to compare the tests, in contrast in our study κ index and Bhakpar were estimated which are more demanding than percentage of agreement.

In conclusion, our results indicate that ATB® Fungus 2 is comparable to AFST-EUCAST for the in vitro determination of susceptibility of Candida clinical isolates to AMB, and to a lesser extent to FCA and ITR. However, we suggest that minor changes in the scale to determine the MICs or categorical breakpoints may improve the performance of the ATB® Fungus 2 method to test the susceptibility to FCA. Our results are in agreement with other studies that indicate that this commercial method could be a reliable procedure to evaluate susceptibility of Candida spp. isolates, though future studies should include a higher number of other than C. albicans species and previously characterized AMB resistant isolates in order to define the utility of this kit for detect AMB resistance in vitro.

ACKNOWLEDGEMENTS

We thank Grupo Infección y Cáncer. This study was supported by Comite para el desarrollo de la investigación (CODI), Universidad de Antioquia. We also thank to BioMerieux for the donation of ATB® Fungus 2 kits, to Laboratorio de Micología, de la Facultad de Medicina, Universidad de Antioquia and Hospital San Vicente de Paul, de Medellin for their help with collection and identification of clinical isolates.

ETHICAL CLEARANCE

This study did not need an ethics committee approval because it did not include direct contact, personal information or clinical samples of patients, just isolates.

CONFLICT OF INTERESTS

The authors have no conflict of interest to declare.

REFERENCES

4. Institute CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard, 3rd ed, CLSI document M27-A3200