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Abstract

Objectives: To develop a computational tool for NEURON simulation environment, user 
friendly, to store the results generated during simulation and to make subsequent analysis 
with other tools such as Matlab and IgorPRo
Materials and Methods: Data Exporter was implemented in the programming lan-
guage hoc. This algorithm is divided in 13 sections or blocks. The first section is necessary 
to edit in a new simulation. These new configuration determine the geometry, biophysic 
properties the neurons to simulate and path to save data.
Results: To check the efficiency of the algorithm, we simulated the propagation of action 
potential in TRN(thalamic reticular nucleus) neuron in different large of simulation. We 
determine that the time of simulation is linear respect to time of simulation.
Conclusions: Data Exporter makes easier to start to neural simulation in NEURON re-
ducing the steps of programming to geometry and biophysical properties of the neuron 
and to allow save data to next steps of analysis.
Keywords: Data Exporter, Computational simulation tool, NEURON’s program-
ming language hoc, Complex neuronal geometry, Action potentials.

Resumen

Objetivos: Desarrollar una herramienta computacional en ambiente lenguaje de pro-
gramación hoc de NEURON y de fácil uso, que permita el rápido almacenamiento de los 
resultados obtenidos para su posterior análisis en otros software tales como Matlab or 
IgorPro.
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Materiales y métodos: Para el desarrollo de Data Exporter se escribió un algoritmo en 
lenguaje de programación hoc de NEURON. El algoritmo, escrito en un único archivo de 
texto, esta dividido en 13 bloques, de los cuales solo el primero debe ser modificado para 
adaptarlo a una geometría y biofísica neuronal particular y para determinar la ruta de 
almacenamiento de los datos.
Resultados: Se desarrollo un software que simula la propagación de potenciales de ac-
ción a través de geometrías neuronales complejas. El uso de esta herramienta permite el 
almacenamiento de los resultados obtenidos, como potenciales y corrientes de membrana 
en diferentes puntos de toda la neurona, sin incremento significativo en el tiempo para el 
desarrollo de los procesos.
Conclusiones: Data Exporter es un software que le da mayor flexibilidad a NEURON 
facilitando el acceso a nuevos neurocientíficos, los cuales pueden usarlo con solo conocer 
los códigos necesarios para el desarrollo de los archivos relacionados con las propiedades 
geométricas y biofísicas neuronales.
Palabras clave: Data Exporter, Herramienta de simulación computacional, Len-
guaje de programación hoc de NEURON, Geometrías neuronales complejas, Po-
tenciales de acción.

IntroductIon

The amount of data collected in neurophy-
siology experiments for both single neuron 
and neural networks has increased expo-
nentially during recent years. These data 
allow the modeling of complex neuronal 
networks with unprecedented amount of 
biophysical and anatomical information. 
These large-scale neural models are fre-
quently non-linear dynamical systems that 
require numerical simulation to observe 
their behavior. Currently, there are several 
specialized software packages available to 
observe neural phenomena from different 
perspectives. For example, NEST (1,2) uses 
single compartmental models; NEURON (3-
7) and GENESIS operate with both single and 
multi-compartmental models (8,9). Other 
software such as XPPAUT (10,11) is centered 
primarily on dynamical system analysis.

NEURON is the most popular with a great 
amount of papers published demonstrating 
its computationally efficiency in simula-
tions resembling experimental data, espe-

cially in problems that range from parts of 
the single cells to small numbers of cells in 
which cable properties play a crucial role 
(12-14). NEURON allows the semiautomatic 
creation of individual neurons as sections 
which are subdivided into individual com-
partments.

The geometry neuron code is based in hoc 
language, but Python graphic interface is 
also available. Furthermore, the programs 
can be written interactively in a command-
line shell as well. The properties of the 
membrane channels of a neuron in terms 
of kinetic schemes or sets of simultaneous 
differential and algebraic equation are ex-
pressed in NMDOL, a high level program-
ming language (16). Nonetheless, NEURON 
requires many hours of programming es-
pecially when it is necessary to store simu-
lation results for subsequent analysis in 
other software such as Matlab or IgorPro, 
for example. Here, we show a complemen-
tary code for NEURON 7.0 for Linux version 
that efficiently exports data without a big 
impact to the simulation time.
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MaterIals and Methods

A simulation in NEURON require, at least, 
one file with the neurons geometry (.hoc) 
and other with kinetic properties of each 
channel (.mod). Simulation conditions are 
included in the hoc file. In the introduction 
we mentioned the possibility of building 
models using graphic interface, however, 
with the interest to keep short time to simu-
late, we chose to use hoc language. 

Two alternative methods are normally used 
to build neural geometry with NEURON, 
Stylized and 3D Method. Stylized specifies 
the length and diameter of each neuron sec-
tion (soma, dendrite, etc). 3D Method uses 
the pt3dadd (x, y, z, diameter) command 

to define spatial location in Cartesian coor-
dinates and diameter for different neuron 
(Figure 1A). We chose a 3D Method for this 
work.

The pt3dadd command is based on using 
cylindrical or truncated cone shapes (Fi-
gure 1B), which it is called line segment. 
From here, NEURON determines the area to 
calculate the current density (in mA/cm2) 
and the membrane potential (in mV) in the 
center of each cylinder or truncated cone. 
These geometric parameters should be sto-
red previously to any posterior simulation 
(17,18). 

The simulation were tested on a standard 
PC (an Intel ® Core TM2 Duo processor of 
2.66Hz and 3.468GB of RAM memory). 

Figure 1. Neural structure generate with NEURON. A. General view of neural section. The straight 
line between two successive coordinates is defined according to command pt3dadd (x, y, z, diam). 
The central colored dot of each segment is the point where are measured the parameters (voltage, 

current density). B) Details of one section and the parameters that define it.
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Data Exporter is a routine that stores cu-
rrent and voltage data from simulation in 
.dat files (Figure 2). Additionally, two more 
text files are generated. The first file (neuro-
nal_geometry.txt) is neuron morphology, it 
describes the Cartesian coordinates (x, y, z) 
and diameters for each line segment. 

The second (general_data_relevant.txt) has 
general information related to simulation 
conditions, for example, total time (ms), sti-
mulus frequency (Hz), number of line seg-
ments, neural sections, files generated with 
membrane currents and membrane current 
densities and approximation of total super-
ficial area of neuron membrane (µm2).

results

Tools Details

Data Exporter will generate a folder called 
“OUTPUT” in the username main folder 
where data will be stored (Figure 3 and 4). 
Three sub-folders will also be included: CU-
RRENT_LS (membrane currents), CURRENT_
DENSITIES_MPLS (membrane current den-
sities) and POTENTIALS_MPLS (membrane 
potentials). The term MPLS refers to Mem-
brane Potential by Lineal Segment.

We designed a main script, DATA_EXPOR-
TER.hoc, divided into 13 comment blocks, 
with a series of modifiable fields that assign 
software conditions to a specific neuron 
type. The meaning can be checked inside 
each section (Figure 2). These fields can be 
modified before a new simulation in neces-
sary case.

Figure 2: Data Exporter structure. Each block name and dependency is presented in diagram to 
explain the code in Data Exporter, details are in the text.
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Block 1: Username

First, it should be modified the field user_
name by corresponding name of user.
user_name = “user_name”
Next, it should be included the hoc files 
name that defined the geometry and bio-
physical characteristics of a neuron in fo-
llowing fields: 

Geometry = “geometry_file.hoc”
Biophysics =“biophysics_file.hoc”

Now, the names of currents involved in the 
neuron (ionics, passive, and capacitive) are 
added. For example, 

list_curr.o(0).s = “ina”(sodium current) 
list_curr.o(1).s = “ik”(potassium current) 
list_curr.o(2).s = “i_pas” (passive current) 
list_curr.o(3).s = “i_cap”(capacitive current) 
list_curr.o(4).s = “ica”(calcium current)

To add more currents in case were neces-
sary, follow this syntax list_curr.o (i).s = 
“current_i”, where “i” corresponds to the 
name of the new current. If there are less 
currents that defined by default only delete 
from the list. Subsequently, you can set the 
position where the current will be measu-
red in the section. In NEURON, every section 
has length equal 1, then electrode could lo-
cated in coordinates goes between 0 to 1, in 
this example we chose at the middle of the 
section.

section_stim = “section_name”
x_stim = 0.5 (middle section)

The last list of parameters correspond to sti-
mulation conditions as:

Minimum time interval or time lapse (ms): 
st = 0.01
Total simulation time (in ms): tts = 5 
Temperature (ºC): tgc= 40
Number of current stimulus (square pul-
ses): ns = 4
Time between stimulus current pulses (ms): 
ipt = 2 
Time delay of stimulus initiation (ms): sit = 
10
Scope of each current stimulus (nA): ampl 
= 5
Duration of each current stimulus (ms): du-
rat = 30

The last parameter is the number of dat out-
put files. We fixed to generate up to 50000 , 
which is written as nma_dat = 50000

Block 2: Imported geometry and Biophysical 
Files

Here, the geometry biophysics files are im-
ported explicitly using xopen( ) function. 
After that is created the complete list of sec-
tions extracted from imported files.

Block 3: Counter Sections

A counter was defined to include the total 
number of section created (dendrites, soma 
and axon). This parameter is possible to 
display in the NEURON terminal prompted 
writing vec_sum_segl.sum( ).

Block 4: Setting Simulations

The function param_initio( ) load the simu-
lation conditions set up in block 1. 

Block 5: Procedure to write output currents si-
mulation - Part 1
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The block creates the procedure to save the 
output currents of the simulation and these 
outputs are stored in definition_vector_re-
gister.hoc file. 

Block 6: Mathematical expression of Section

We defined the segment area under the idea 
that each section is a truncate cone, as fo-
llows:

2 2( ) ( ) 4
4

A D d D d hπ= + − +  (1)

where D and d are the major and minor dia-
meters of the line segment (Figure 1), this is 
applied to every section in block 9, which 
were fixed in block 3. 

Block 7: Current stimulus setting

This block create the external current pul-
ses (time start, duration, amplitude and fre-
quency) that were set on block1.

Block 8: Default names output

The file names of currents, currents densi-
ties and potentials are establish as membra-
ne_currents_xxx.dat, membrane_currents_
densities_xxx.dat and membrane_poten-
tial_xxx.dat, where xxx are signed the time 
when was stored. 

Block 9: Procedure to write output currents si-
mulation - Part 2

Complementary to block 6. These code li-
nes use the equation in block 6 adapted to 
each segment (axon, dendrites, soma) to 
measure the current densities, currents and 
membrane After that, they are stored in the 
output file (variable_vector_register.hoc). 

Block 10: Neural geometry

The neuronal anatomy is stored in file txt 
(neuronal_geometry.txt). In contrast, geo-
metry.hoc that we mention above, here is 
explicit every component (xyz coordinates, 
name section) to difference geometry.hoc 
that only are the coordinate and general 
expression about spatial feature of sections. 
The data is ordered in columns: a cardinal 
number, section, (x,y,z) coordinates initial 
section, diameter initial section, (x,y,z) coor-
dinates end section, diameter end section. 

Block 11:

Here is the procedure that creates the vector 
that store the different type of currents from 
the simulation.

Block 12: Printing File outputs

This section is a code to print variables crea-
ted during simulation in the output files 
(CURRENTS_DENSITIES_MPLS, CURRENT_LS, 
POTENTIAL_MPLS) 

Block 13:

Finally, others aspects of simulation are sto-
red general_data_relevant.txt, for example: 
total time, stimulus frequency, and number 
of sections. And some statistics as the num-
ber of densities, currents and potentials files 
is created along with the lateral area neu-
ron.

dIscussIon

Performance tool

In order to show tool functionality, Tha-
lamic Reticular Nucleus neuron (TRNn) 
(Figure 4D) was used as a test. The neuron 
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geometry and biophysics (Table 1) data 
were obtained from the ModelDB (http://
senselab.med.yale. edu/ModelDB/defa ult.
asp), a NEURON database available. The si-
mulation started with a square current pul-
se as shown in Figure 4C in the soma the 
TRNn and density current and membrane 
potential in a dendrite were registered (Fi-
gure 4A, 4B). 

In Figure 5, we show the output results 
from Data Exporter, as it was described in 
block 8 (Tools Details). In detail, a dendrite 
was labeled as dend1 [6] according to NEU-
RON language (Figure 4B). The spatial neu-

ron coordinates were stored in the neuro-
nal_geometry.txt. To continue, the folders 
CURRENT_DENSITIES_MPLS and POTEN-
TIAL_MPLS .dat files are labeled in relation 
to time simulation (Figure 5). When these fi-
les are opened we see two columns, the first 
corresponds to line segment and the second 
to membrane current densities or membra-
ne potentials, with this information is use-
ful to analysis with other pieces of software.

In terms of time processing, the implemen-
tation showed a linear relation between 
time simulation and number of files were 
printed (Table 2).

Table 1. Inserted mechanisms and maximum conductance values in model TRNn. HH: Maximum 
conductance on Hodgkin and Huxley style (Sodium: gNa, Max. and Potassium: gK, Max.), Pas: 
Maximum passive conductance (gpas, Max.), It: Maximum calcium conductance (gCa, Max.).

Neuron
section

Inserted 
mechanisms

gNa,Max.
(S/cm2)

gK,Max.
(S/cm2)

gCa,Max.
(S/cm2)

gpas,Max.
(S/cm2)

Soma
HH, Pas, It

0.5 0.1 8x10-4 5x10-4

Dendrites 0 0 2x10-4 5x10-4

Source: Tabulated by authors

Table 2. General results of action potentials propagation simulation through TRNn. 5 different times 
were simulated (first column), with different text files obtained for each case (third column), and 

different real simulation times (second column)

Simulated time (ms) Real time (min) Nº .dat files dt (ms) Nº Line segments Nº Sections

200 8,0 60000 0.01 1444 81

150 6,0 45000 0.01 1444 81

100 4.2 30000 0.01 1444 81

50 2.1 15000 0.01 1444 81

10 0.1 3000 0.01 1444 81

Source: Tabulated by authors



295Salud Uninorte. Barranquilla (Col.) 2013; 29 (2): 288-297

Data Exporter: A complementary tool to export data simulation from NEURON

Figure 3: General structure of one cycle of simulation. Here, it is exposed in details,
the outputs (CURRENT_LS, CURRENT, DENSITIES_PMLS and POTENTIAL_MPLS)

and the file names are created from Data Exported.

Figure 4: Graphics generated through the NEURON graphical interface. A) Current membrane densi-
ty. B) Membrane potential. C) Stimulus and D) Reticular Thalamus neuron anatomy. Note that in A 

and B, current and potential density values and the corresponding time instants.
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Figure 5: Results scheme from Data Exporter. This shows how the specific value
of a variable in a given time instant should be located.

In conclusion, Data Exporter makes easier to 
start to neural simulation in NEURON redu-
cing the steps of programming to geometry 
and biophysical properties of the neuron.

In the future, we expect to improve this tool 
by including a graphical interface compati-
ble with the NEURON as well as exporting 
other variables such as extracellular poten-
tials. Also adding support for Windows and 
Mac OS.
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