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Abstract 
 

This paper shows the implementation in hardware of signal processing techniques known as compressive censing, 

compressed sensing, or compressive sampling. The CS technique works in a sparse signal space; the methods used in this 

article are: derived (D), discrete Fourier transform (DFT), discrete cosine transform (DCT), and discrete wavelet 

transform (WDT). Additionally, electronic circuits to acquire voice, electromyography, and electrocardiogram signals 

were implemented. Application of CS in these signals showed significant results, which promise a substantial increase in 

transmission speed and development of new technologies for communications in the world. Hardware implementation 

was performed in an FPGA (SPARTAN 3E) and a microcontroller (18F4550 PIC). The results demonstrated that it is 

possible to reconstruct 1D signals, breaking the Shannon-Nyquist theorem. Also, we conclude that the FPGA 

implementation is faster and allows higher compression ratios than with the microcontroller. 
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Resumen 
 

El presente trabajo muestra la implementación en hardware de una de las técnicas más modernas y útiles en el tratamiento 

de señales conocida como: Compressive Sensing (CS), sensado comprimido o muestreo compresivo. Dicha técnica, 

trabaja en un espacio de señales Sparse: los métodos usados en este artículo para la obtención de señales Sparse son: 

derivada (D), transformada discreta rápida de Fourier (TDRF), transformada discreta del coseno (TDC) y la transformada 

wavelet discreta (TWD). Adicionalmente, se implementaron los circuitos electrónicos para el registro de señales de voz, 

señales de electromiografía y electrocardiografía. La aplicación de CS en dichas señales mostró resultados significativos, 

que prometen un incremento sustancial de velocidades en la transmisión de información y en el desarrollo de nuevas 

tecnologías para las comunicaciones en el mundo. La implementación en hardware se realizó en una FPGA (SPARTAN 

3E) y en un microcontrolador (PIC 18F4550). Los resultados obtenidos demostraron que es posible reconstruir señales 

1D, rompiendo el teorema de Shannon y Nyquist. Así mismo, se llegó a la conclusión de que la implementación en FPGA 

es más rápida y permite porcentajes de compresión más elevados que con el microcontrolador. 

 

Palabras claves: Sensado compresivo, señales sparse, compresión, hardware compressive sensing 

 

1. Introduction 
 

All communication signal treatment systems have to need 

to consume the least possible amount of resources. A 

system is considered efficient and competent if it uses the 

least amount of resources to obtain better results. Due to 

this diverse techniques of information transformation, 

analysis, and compression emerge, which permit 

improving system performance. Compressive sensing 

(CS) is one of these techniques that permits reconstructing 

a signal with few samples. Also, the Shannon-Nyquist 

sampling theorem establishes that for the perfect 

reconstruction of the signal it is necessary to take samples 

by using a rate of at least double the bandwidth [1]. The 

new compressive sampling theory or CS explains that 

under specific conditions a sparse signal can be 

reconstructed by using a small number of samples, 

obtained from a random subsampling, in such a way that 

it is possible to say that in CS the number of samples is 

lower than that required for the Shannon-Nyquist theorem 

[2].  
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Compressive sensing is a recent signal processing field; 

according to Candes, Romberg, and Tao results [3] and 

Donoho [4], is a way of acquiring compressible signals 

(scarce). In CS, the quality of the reconstruction depends 

on signal compressibility, election of a reconstruction 

algorithm, sparse transformation method, and random 

sampling [5]. Currently, different sparse transformation 

methods exist depending on the signal information [6]. 

The most-used methods include: discrete cosine transform 

and wavelet transform. This article shows the results of 

compression/reconstruction with CS on voice, 

electromyography, and electrocardiographic signals by 

applying conversion methods like: D, DCT, FT, and TW. 

 

Applying the sampling theorem sometimes implies high 

acquisition of data, generating losses in computational 

costs, given that compression is an obligatory step in 

themes like data storage or transmission [7]. The 

aforementioned explains that additional information 

requires a higher number of samples and, hence, a better 

compression technique. For example, digital cameras 

include an increasingly higher number of megapixels 

(these are millions of sensors that take samples), all the 

data acquired are discarded by the compression algorithm 

within (in general, JPEG or JPEG 2000), which produces 

the photograph that is finally observed in the camera [8].  

 

To solve these types of repercussions, it is necessary to 

think beyond the Shannon-Nyquist theorem. Thus, CS can 

be a useful tool. The work by Richard Baraniuk and Kevin 

Kelly, from Rice University, shows a camera with only 

one pixel that works with CS and reduces the number of 

samples taken to acquire an image [6]. The word sparse 

may mean something poor, scarce, limited, short, and 

distributed, but in the context of signals, sparse does not 

mean few data; it is a signal whose majority of values are 

zero or of small amplitude, and some points or few points 

of the signal are of high amplitude. [9]. The signal is high 

density compressible if it has a large number of separate 

low peaks or of low density if it has some high separated 

peaks. Finally, this work makes a novel contribution in the 

implementation of CS in hardware and its validation with 

voice, electromyography, and electrocardiographic 

signals. The vast majority of works presented in this area 

are limited in software implementations, which makes this 

article a starting point for the implementation of CS in 

hardware.  

 

1.1. Compressive sensing  

 

The high compressibility of CS is due to the way the 

samples are taken; the number of M samples is a function 

of the amount of the K-sparse values (point different from 

zero in amplitude) the signal has, the vector measurement, 

and of an x signal having a length of M samples. In fact, 

CS is capable of sampling sparse signal by using smaller 

measurements than those required by the Shannon-

Nyquist theorem. The minimum value of M is double the 

K-sparse points E in the signal, so that M>K<< N, in such 

a way that by using M>3K optimum reconstruction is 

guaranteed; the measurements are made of a subsampling 

of the values of the x signal. To explain this, we defined a 

vector x  R, with N length, which means that screen 

scarce x signal with zero values and non-zero K values. 

Mathematically, CS is defined in “(1)”, [7], and [10]. 

 
𝑥 = 𝜓 ∗ 𝑠 (1) 

Each Si (i = 1, 2... N) value in “(1)” may be obtained from 

the product ψiTx; T indicates the transposed, that is, that a 

sparse signal can be reconstructed. The sampling of x is 

carried out without taking N measurements. This is what 

CS represents in a compressed sampling, done from a few 

measurements; the result of this operation is stored in a y 

vector with the aid of random Φ bases. Measurements are 

now made by computing the internal product between the 

x signal and a Φi vector arrangement, whose result is 

defined as yi; the Φ base is also known as coding base, 

designed to facilitate the reconstruction of a sparse signal. 

Φ has dimensions N x M, so that the y vector is defined as 

shown by the following:  

 
𝑦 = 𝜙 ∗ 𝑋 = 𝜙 ∗ 𝜓 ∗ 𝑠 = 𝜙 ∗ 𝑠 (1) 

The prior equation shows how from the x vector and the 

Φ matrix, with N x M size, we may obtain a y compressed 

vector, with M dimension [4]. Within y we find implicit 

operation/combination products like the K-sparse values 

of the x signal. The compression range during the 

sampling is controlled by the user, in conformity with the 

M value, the rows of the coding base; testing M values in 

different dispersed signals will permit finding the 

optimum balance between a very high compression and a 

good reconstruction, an image that explains the 

acquisition of the measurements is shown in Figure 1[7]. 

 

 
Figure 1 Example of sparse signal, the product of each Фi with 

the x column vector is the value of the yi measurement, thus, a 

sampling compression and it is stored in the vector, see also 

that M> 2k 

The reconstruction process is a complex task, which 

implies using the base and the y coding vector, to 

reconstruct the original x signal. If N is the number of 

measurements capable of constructing a system of 

equations with only one solution, but since M << N the 

possible solutions are many (expressed as x* that would 

be the solution vector). The situations complex because 

there is only one single solution (the original x vector). A 

common analogy to explain this is the game of Sudoku; 

the solution in a Sudoku entails finding an answer through 
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a large field of possibilities, which dismisses candidates 

using some type of property, pattern, or norm. In this case, 

the rule is that the number cannot be repeated in any row 

or column of the 3x3 square. Similarly, in CS it is 

necessary to use a rule to dismiss solutions that satisfied 

equation (3):  
𝑦 = 𝜙 ∗ 𝑋  (3) 

An effective way of doing this is through the norm, a 

vector property defined by the linear algebra in the 

following manner [11]: 

L0 norm of vector x 

‖𝑥‖0 = ∑|𝑥𝑖|0

𝑁

𝑖=1

  
(4) 

 

L1 norm of vector x:       

‖𝑥‖1 = ∑|𝑥𝑖|1

𝑁

𝑖=1

  
(5) 

L2 norm of vector x:       

‖𝑥‖2 = ∑|𝑥𝑖|2

𝑁

𝑖=1

  
(6) 

Currently, there are many ways of using the norm to 

dismiss possible x* solutions and discover the value and 

the position of each K significant point in the x vector; 

equation (4) induces that 00 = 0 and equation (5) is a way 

of reconstructing the x values of the vector [6]. The L1 

norm is now a linear optimization problem. The aim of this 

problem is to find an x* with the smallest L1 norm 

(Equation (5)). Given that in each x* the K-significant 

values are combined and supposes that x* satisfies 

equation (5), with a small L1 norm is quite likely the 

desired solution (in these cases the L1 value and the L0 

value of the vector are similar) [6]. This is expressed 

mathematically as:  

 
𝑠∗ = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑠′‖1…. 𝑠𝑜 𝑡ℎ𝑎𝑡 … Θ ∗ 𝑠′ = 𝑦  (7) 

This is the principal premise of L1 minimization, a 

reconstruction method, S’ in equation (7) is called 

reconstruction of x (or the vector solution) and S' is the 

denomination for all the possible x* vectors. Regarding 

signal construction, the procedure known as L1 Magic, or 

L1 minimization is one of the most-used procedures, given 

that it is a very efficient algorithm for CS applications. In 

this work, tests were based on L1 minimization [12] 

 

2. Methodology 
 

During the development of this research, voice, 

electromyographic (EMG), and electrocardiographic 

(ECG) signals were registered. To acquire ECG and EMG 

signals, the instrumentation amplifier (INA 115) was 

used; thereafter, this was converted into sparse and the 

compression process was carried out. The compressed 

signal was sent to a computer, where the reconstruction 

process was applied, to verify the robustness of CS in each 

of the signals. Compressed sensing has had big progress 

and significant results in. However, this technique still 

does not have important accomplishments at hardware 

level. This motivated performing the physical 

implementation that would suggest a solution in real time. 

For the implementation in real time tests were rum with 

different programmable logical devices, obtaining 

satisfactory results with an FPGA (SPARTAN 3E) and 

with a microcontroller (PIC18F4550). For both cases, 

capture of analogue signal and conversion to digital signal 

was carried out by using the microcontroller’s A/D 

converter; likewise, this was used to send the compressed 

signal to the computer via USB port and, thus, 

decompression and analysis was conducted.  

 

2.1 Signal conversion to sparse 

 

The methodology applied to convert signals to sparse is 

shown ahead. Four methodologies were applied. The 

derived (D), the discrete fast Fourier transform (DFFT), 

the discrete cosine transform (DCT), and the discrete 

wavelet transform (DWT). For the derived method 

(Equation 6), x represents the original signal, the y vector 

is the derived signal, and N is the signal length [9]. 

 
𝑦(𝑛 − 1) = 𝑥(𝑛) − 𝑥(𝑛 − 1), … 𝑓𝑜𝑟1 ≤ 𝑛 ≤ 𝑁 (8) 

For the application of the discrete fast Fourier transform 

(DFFT), y1 presents the frequency components of the 

original signal [13]. 

 

𝑦1(𝑘) = ∑ 𝑥(𝑛) ∗ 𝑒−2∗𝑝𝑖∗𝑗∗𝑛|𝑁 … 𝑓𝑜𝑟 … 0 ≤ 𝑘 ≤ 𝑁 − 1

𝑁−1

𝑛=0

 

(9) 

The discrete cosine transform (DCT) was applied by 

following equation9, where y2 represents the DCT 

coefficients [14]. 

 

𝑦2(𝑘) = ∑ 𝑥(𝑛) ∗ cos (
((2 ∗ 𝑛) − 1)𝑘 ∗ 𝑝

2 ∗ 𝑁
) … 𝑓𝑜𝑟 … 0

𝑁−1

𝑛=0

≤ 𝑘 ≤ 𝑁 − 1 

(10) 

Finally, discrete wavelet transform (DWT) was applied, 

where y3 are the wavelet coefficient, s is the displacement 

coefficient, b is the scaling coefficient, and J  is the 

mother wavelet [15]. 

 

𝑦3(𝑠, 𝑏) = ∑ 𝑥(𝑛) ∗ ϑ (
𝑛 − 𝑠

𝑏
) 

𝑁−1

𝑛=0

 

(11) 

 

2.2 Implementation with microcontroller 

To apply CS using microcontroller, segments of 10 

samples of the input signal were acquired, along with an 

output of six elements. That is, 40% compression. This 

decision was made to observe the system’s rapid response 

[16]. Initially, the USB port configuration was performed. 

The random matrix implemented has a size of 

6(rows)*10(columns). It is worth mentioning that during 

the software stage the same random matrix in the hardware 

must be stored, this is for the purpose of achieving a 

successful reconstruction. To perform the respective tests, 

8000 analogous samples were taken of the signal (voice, 

ECG, or EMG), so that 800 segments were processed. As 

previously mentioned, the reconstructed values are within 
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a sparse space. Consequently, the inverse process was 

conducted for signal decompression. Four methodologies 

were applied for this: inverse derived (ID), inverse Fourier 

transform (IFT), inverse discrete cosine transform 

(IDCT), and inverse wavelet transform (IWT). Thereafter 

and to obtain the data in the original space, the inverse 

process was performed during the signal pre-conditioning 

stage. For this case, a subtraction was performed with a 

constant 2.5-volt value. Lastly, the data concatenation 

process was performed to obtain the 8000 length vector. 

2.3 Implementation with FPGA 

 

The Spartan 3E FPGA card has a vast amount of 

characteristics that make it superior to microcontrollers, 

starting with its memory and speed [17]. The 

programming was implemented on the Xilinx Ise 

program. Here, 160 segments from 50 positions were 

taken. That is, 50 possible values of n and 50 possible 

values of k. Then, we have a total of 50*50 = 2,500 

possible combinations. To implement the random matrix, 

a similar 50x50 signal was used. These values were 

introduced to the program through a table of 2500 data in 

a type 3 vector signal, which is an arrangement from 0 to 

2500 and which contains integer values in the range from 

-10000 to 10000. The whole process is carried out in a 

single work cycle of the FPGA card. This permits a big 

advantage for this device, which surely will be one of the 

best alternatives for the application of this novel hardware 

technique. Synthetization of the process in the FPGA 

lasted approximately six hours. The compressed data is 

sent via USB to the computer to be reconstructed with the 

L1 method and compared to the original signal. 

  

3. Results 
 

Table 1 shows the results obtained from the reconstruction 

by using microcontroller PIC18F4550 and DCT as 

conversion technique. To show reconstruction error, 

portions of original signals are compared to the 

reconstructed signal. The mean squared error (MSE) was 

calculated between said signal portions, revealing how the 

best results were obtained by using the ECG signal; also, 

note that with greater compression there is greater loss of 

information.  

 
Table 1 Results of microcontroller PCI 18F4550 compression 

applying DCT method 

% Compression 
MSE ECG 

signal 

MSE Voice 

signal 

MSE EMG 

signal 

10% 2.75 8.90 8.13 

25% 8.45 13.81 13.95 

75% 13.56 15.67 16.83 

80% 20.180 22.31 24.46 

90% 45.5 50.49 51.34 

 

Likewise, Table 2 shows the equivalent results regarding 

the implementation of CS in FPGA and DCT as 

conversion technique. Note how the results using FPGA 

present less MSE than those obtained with PIC18F4550 

and present a coincidence in that the ECG signal has the 

best signal performance.  

 
Table 2 Results of FPGA SPARTAN 3E compression applying 

DCT method 
% Compression MSE ECG 

signal 

MSE Voice 

signal 

MSE EMG 

signal 

10% 1.18 1.83 1.96  

25% 3.05 3.87 3.81  

75% 9.73 9.94 9.79 

80% 15.67 16.34 16.05 

90% 18.25 19.021 18.87 

 

Also and to consolidate the results obtained, Figure 2 

shows the results of the MSE values for different 

compression percentages and the conversion techniques to 

sparse, like FT, D, and TW, for the voice signal. Observe 

how the TW technique permits obtaining more adequate 

reconstructions tan those obtained with D and FT. Also 

note how the best results are obtained by using FPGA, 

given that for example: for a compression percentage of 

10% an MSE of 9.03 id obtained if a microcontroller is 

used and if an FPGA is used the MSE is 6.02. 

   

 

a 

 

b 

Figure 2 MSE results using D, FT, and TW as conversion to 

sparse. a) Microcontroller and b) FPGA 

Figure 3 and Figure 4show analogy with Figure 2; it is 

the same procedure, but for ECG and EMG signals, 

respectively. From these graphics it may be observed how 

the best operation of the system is maintained if an FPGA 

is used, as well as TW as conversion technique. The 

derived method is not the adequate tool for this type of 

procedure; it presents high MSE compared to the other 

techniques, as shown in Figure 3. Using D, we obtained 

an MSE equal to 68.69 for an electrocardiographic signal 

compression of 90% in microcontroller and 49.21 in 

FPGA. This error is much higher than that obtained 

through the Fourier transform (FT) method and the 
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wavelet transform method, whose errors were close to 

48.02 and 47.91, respectively, in microcontroller and 

33.58 and 29.01, respectively, in FPGA. For this reason, it 

is possible to identify that the derived method is not the 

most adequate for signal compression. 

 

 

a 

 

b 

Figure 3 MSE results using D, FT, and TW as conversion to 

sparse. a) Microcontroller and b) FPGA 

 

a 

 

b 

Figure 4 MSE results using D, FT, and TW as conversion to 

sparse. a) Microcontroller and b) FPGA 

Finally and comparing among Figure 2, Figure 3 and 

Figure 4 and Table 1 and Table 2, it may be stated that 

the best conversion technique is DCT and the FPGA is the 

recommended hardware. For this work, tests were 

performed on 35 ECG, 35 EMG, and 35 voice signals.  

 

4. Conclusions 
 

Compressive sensing is a mathematical technique that 

permits reconstructing signals without complying with the 

Shannon and Nyquist theorem, thus, in the future this 

technique will certainly revolutionize 

telecommunications, which is one of the areas that 

benefits most from data compression. Currently, CS is 

being tested in areas like Biology, Geology, 

Telecommunications, and Imaging. This work 

demonstrated that CS functions adequately in the field of 

physiological signals like voice, ECG, and EMG, 

depending on what is sought in the application. Also, for 

good operation of CS, a suitable technique needs to be 

selected to transform data to sparse; this work 

demonstrated that the best technique for physiological 

data is DCT, given that it creates an ideal sparse space for 

the CS requirement. The other techniques, although 

functional, do not permit – upon signal reconstruction – 

obtaining responses similar to the original signal. 

Regarding the system’s velocity in applying CS and 

delivering information, the best system conducted in this 

work was FPGA, given that it took up less time and the 

results were more adequate; this is because signal portions 

were taken from 50 points and with the microcontroller 

only signal portions with 6-point length were taken. It is 

concluded that it is best to take great length frames to 

apply CS. Additionally, voice signals may be correctly 

reconstructed after being compressed at a maximum 

compression rate of 72% in FPGA and 30% in 

microcontroller. The ECG signals can only be 

reconstructed correctly if these are compressed at a 

maximum sampling rate of 40% in FPGA and 10% in 

microcontrollers. Likewise, the maximum compression 

rate that can be applied in EMG signals is of 10%. This is 

because these last signals require greater precision, given 

that small alterations in their characteristics may lead to 

wrong diagnoses. Lastly, it is considered that CS can be 

used as robust coding technique because for its 

reconstruction optimization algorithm is needed to find the 

ideal system response. 
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