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Abstract 
 

This work is frameworked within the development of phoneme recognition systems and seeks to establish whether the 

incorporation of information related to the movement of the articulators helps to improve the performance thereof. For 

this purpose, a pair of systems is compared and developed, where the acoustic model is obtained from training hidden 

Markov chains. The first system represents the voice signal by Mel Frequency Cepstral Coefficients; the second uses the 

same Cepstral coefficients but together with articulatory parameters. The experiments were conducted on the MOCHA-

TIMIT database. The results show a significant increase in the system´s performance by adding articulatory parameters 

compared to that based only on Mel Frequency Cepstral Coefficients. 
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Resumen 
 

El presente trabajo se enmarca dentro del desarrollo de sistemas de reconocimiento de fonemas y busca establecer si la 

incorporación de información relacionada con el movimiento de los articuladores ayuda a mejorar el desempeño de los 

mismos. Para ello, se desarrollan y comparan un par de sistemas, donde el modelo acústico se obtiene a partir del 

entrenamiento de cadenas ocultas de Markov. El primer sistema representa la señal de voz mediante coeficientes 

cepstrales en la escala Mel; y el segundo, utiliza los mismos coeficientes cepstrales pero en conjunto con parámetros 

articulatorios. Los experimentos fueron realizados sobre la base de datos MOCHA-TIMIT. Los resultados muestran un 

incremento significativo en el desempeño del sistema al agregar parámetros articulatorios con respecto a sistemas basados 

en coeficientes cepstrales en la escala Mel. 

 

Palabras clave: coeficientes cepstrales en la escala de Mel, modelos ocultos de Markov, parámetros articulatorios, 

reconocimiento de fonemas 

 

1. Introduction 
 

Automatic speech recognition has been the object of 

intense research for over four decades, reaching notable 

results. However, while tasks like digit recognition have 

reached rates of 99.6% [1]e, the same cannot be said for 

phoneme recognition for which the best rates are around 

80% [2]. Phoneme recognition is a relevant task that could 

improve the performance of other voice signal processing 

systems like the very automatic speech recognition (ASR) 

[3], speaker verification [4], and learning of a second 

language [5], among others. The capacity to recognize 

phonemes with high precision becomes, then, a 

fundamental problem in the field of language processing. 

One of the advantages of phoneme recognition is its 

versatility, given that it permits knowing the phonetic 

characteristics of speech, independent of the vocabulary, 

adapting to different languages, in contrast to speech 

recognition focused on words or phrases.  

To train phoneme recognition systems we must have 

speech databases with their respective phonemes 

adequately segmented and validated, which requires 

costly and intensive processes in skilled labor. Within 

those databases, two are highlighted: TIMIT and MOCHA 

[6].  

 

For example, in [7] the TIMIT database is used with a 

strategy that consists in using cascaded neural networks 

for a phoneme recognition task independent of the 

speaker. During the first stage, the probability values of 

the phonemes are estimated; and during the second stage, 

these estimated values are used to make up the vector of 
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characteristics of the recognition system. With the 

aforementioned, a 72% rate of success is accomplished 

using context windows of 230 ms for the second stage of 

neural networks. Similarly, [8] uses a layer of neural 

networks to estimate probabilities a posteriori of the 

phonemes and a second layer to classify the phonemes 

from the probabilities estimated, achieving a phoneme 

error rate (PER) of 19.6%. An additional strategy, 

denominated deep belief networks (DBN), is exposed in 

[2]. Also, for phoneme recognition hidden Markov models 

(HMM) have also been used [9] along with classifiers 

based on Support Vector Machines (SVM) [10]. 

Nevertheless, to represent the speech signal, conventional 

characteristics are used, like Mel-Frequency Cepstral 

Coefficients (MFCC) and perceptual linear predictive 

(PLP) analysis for which performance drops as noise starts 

to affect the speech signal [11].  

 

One of the ways to improve the performance of phoneme 

recognition systems consists in using alternative 

representations to the classical representations exposed. 

For example, another work [12] uses myoelectric-type 

signals, as complement of the speech signal, in a phoneme 

recognition system based on hidden Markov models. Said 

work shows that the system’s performance improves, 

particularly under noise conditions. In addition, other 

authors [13] use information extracted from acoustic 

waves travelling through the body tissue of people when 

speaking, whose signals are picked up by special 

microphones placed behind the ear. Likewise, several 

methods have been developed seeking to include visual 

information about lip movement to improve recognition 

systems. An alternative representation to the ways 

previously described corresponds to the use of information 

on the movement of articulators instead of using only 

information of the acoustic signal. This type of 

information can be obtained through devices capable of 

measuring the movement of the articulators in the vocal 

tract. Among these devices, we can highlight the recent 

development of the Electro-Magnetic Articulograph 

(EMA) [14]. 

 

Given the aforementioned, this work sought to establish if 

incorporating articulatory data can improve the rate of 

phoneme recognition, comparing the performance of a 

classical recognition system (based on hidden Markov 

models and Cepstral coefficients) to another in which 

besides using MFCC coefficients, information of 

articulatory nature is used. 

 

2. Materials and methods 
2.1. Database 

 
The articulatory data in this work were obtained from the 

MOCHA database, given that it provides phonetically 

diverse voice signals (desirable for the training task). This 

database also includes four data sequences recorded 

simultaneously: the acoustic signal with a sampling 

frequency of 16 KHz, laryngography, 

electropalatography, and EMA data. In relation to EMA 

data, sensors are installed in the lower incisors (li), the 

upper lip (up), the lower lip (ll), the tip of the tongue (tt), 

tongue body (tb), tongue dorsum (td), and soft palate (v). 

The two sensors on the bridge of the nose and the upper 

incisors provide points of reference that permit correcting 

the errors produced by the head movements. The EMA 

trajectories are sub-sampled at 100 Hz, after an anti-

aliasing filtering process. Thereafter, given that the 

movements of the articulators generally have bandwidths 

below 15 Hz, the EMA trajectories are softened with a 

low-pass filter whose cutoff frequency is 20 Hz. The 

filtering process of EMA signals is carried out directly and 

inversely to avoid possible phase distortions over the 

signal [15].  

 

As per data standardization, a process suggested in [16] 

was carried out. The conventional process calculates the 

average and global standard deviation values to then apply 

them to the EMA trajectories; but this could generate 

difficulties because the mean values vary from one phrase 

to another during the recording process. Also, it is worth 

highlighting that while the rapid changes of the mean 

values are attributed to the phonetic content of each 

phrase, the slow changes are mainly caused by the 

subject’s articulatory adaptation during the recording 

session. Hence, it turns out useful to eliminate the first 

class of variation, maintaining the second. This is 

accomplished by subtracting a version of mean values 

obtained by passing the mean vector through a low-pass 

filter [15]. 

 

2.2. Representation 

 
Regarding signal representation, this work uses two types: 

the first corresponds to parameters that describe the 

behavior of the acoustic signal; the second corresponds to 

the position of the articulating organs with respect to a 

particular point of reference. In relation to the 

representation of the acoustic signal, MFCC coefficients 

are used [17]. This are widely used to obtain the 

characteristic vectors of the speech signal. Said technique 

is inspired on the functioning of the most important organ 

intervening in human hearing: the cochlea. 

 

To obtain the MFCC, the speech signal is first filtered 

through a pre-emphasis single-zero high-pass filter, 

located at 0.97. Then, a window processes is conducted by 

selecting 25-ms lengths of the signal, at a rate of 100 Hz 

(every 10 ms). Each 25-ms block was applied the 

following procedure: 

 

1. The discrete-time Fourier transform was calculated 

and the magnitude response in frequency was 

obtained. The phase was not used, given that, 

generally, the human ear does not distinguish small 

phase variations. 

 

2. A bank of 12 filters was applied to the spectrum’s 

magnitude response and the denominated Energy 

Bands from each filter were obtained [11]. 
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3. The logarithm was applied to the energies of the filter 

bank to construct a vector of R length. 

 

4. The discrete cosine transform (DCT) was calculated to 

the previous vector. 

 

The bank of M triangular filters is defined thus [18]: 

 

𝐻𝑚(𝑘) =

{
  
 

  
 

0, 𝑘 <  𝑓(𝑚 − 1)

2(𝑘 − 𝑓(𝑚 − 1))

(𝑓(𝑚 + 1) − 𝑓(𝑚 − 1))(𝑓(𝑚) − 𝑓(𝑚 − 1))
, 𝑓(𝑚 −  1)  <  𝑘 <  𝑓(𝑚)

2(𝑓(𝑚 + 1) − 𝑘)

(𝑓(𝑚 + 1) − 𝑓(𝑚 − 1))(𝑓(𝑚 + 1) − 𝑓(𝑚))
, 𝑓(𝑚)  <  𝑘 <  𝑓(𝑚 +  1)

0, 𝑘 >  𝑓(𝑚 +  1)

 
(1) 

 

Where the 𝑓(𝑚) values are given by the expression: 

 
 

𝑓(𝑚) =
𝑁

𝐹𝑠
𝐵−1(𝐵(𝑓𝑙) +𝑚

𝐵(𝑓ℎ) − 𝐵(𝑓𝑙)

𝑀 + 1
) 

(2) 

 

With 𝑓𝑙 and 𝑓ℎ being the minimum and maximum 

frequencies of the bank of filters in Hz, 𝐹𝑠 the sampling 

frequency, and 𝑁 the size of the Fourier discrete transform 

of the speech signal portion. 𝐵 is the function that 

approximates the frequency values in the Mel scale. 

 

𝐵(𝑓) =  1125 ln(1 +
𝑓

700
) (3) 

 

𝐵−1 corresponds to the inverse of the approximation 

function. Figure 1 shows a bank of 12 filters. Note that 

the bandwidth ratio is proportional to the central 

frequency. For each filter, the power sum is calculated. 

 

 

Figure 1 Bank of 12 MFCC filters 

2.3. Modeling 

 
Speech recognition systems consist of a series of statistical 

models that represent the different sounds to be 

recognized, in this case the phonemes.  

 

By the speech signal having a temporary structure it may 

be encoded as a sequence of spectral vectors: the MFCC 

coefficients. Due to this circumstance, the hidden Markov 

models (HMMs) can be used to construct said models 

from the characteristic vectors of the speech signal [19].  

 

A Markov model is a finite state machine that changes its 

state every given unit of time, where it is assumed that the 

observations sequence: 𝑶 = o1, o2,…, oT, is generated by 

this state machine (Figure 2). 

 

Every time, t, in which a j state is input, a characteristic 

vector ot is generated, according to the probability density 

bj(ot). Additionally, the transition from state i to j is also 

probabilistic and is given by the discrete probability aij. In 

practice, only the observation sequence 𝑶 is known, while 

the underlying sequence of states is unknown, although it 

may be calculated by using equation: 

 

𝑃(𝑶|𝑀) =∑𝛼𝑥(0)𝑥(1)∏𝑏𝑥(𝑡)

𝑇

𝑡=1X 

𝒐𝒕𝑎𝑥(𝑡)𝑥(𝑡−1) (4) 

 

Where 𝑿 = x(1), x(2), x(3),..., x(t), is the vector of the 

model’s possible states, with x(0) being the initial state and 

x(T + 1) the output state. Although, the direct calculation 

of this equation is not performed, recursive methods exist 

that permit for both amounts to be calculated efficiently, 

like the Baum-Welch and the Viterbi algorithms [19]. 

 

 

Figure 2 Hidden Markov models represented as a state 

machine. Adapted from the HTK-Book [20]. 



 

 

14 

2.4. Experiment configuration 

 
For this stage of the study, HTK software was used for the 

task of extraction of characteristics and for modeling with 

HMMs and its corresponding training and recognition 

stages. As mentioned in the previous section, in the first 

instance a pre-emphasis FIR filter was applied (with 

coefficients 1 and -0.97) and a Hamming window with a 

sampling frequency of 100 Hz (equal to the EMA data) 

whose size is 25 ms per window. Thereafter, the 22 filters 

were obtained in the Mel scale from which 13 MFCC 

coefficients were generated, with their respective delta 

and delta-delta coefficients with which a 39-element 

vector was obtained for each speech block. For the case 

when adding articulatory information, the 14 components 

from the articulatory vector were added to this vector, 

resulting in a 53-element vector. The HMMs were 

initialized by using the Viterbi algorithm and then the 

model parameters were estimated by using the Baum-

Welch algorithm. 

 

The experimentation proposed analyzes four systems 

developed: two with articulatory data (for both speakers: 

male and female), and two similar without articulatory 

data. To evaluate the system performance, the data 

available are separated into the training set and the test 

data set. The MOCHA-TIMIT database has 460 phrases 

labeled in approximately 16,000 phonemes for two 

speakers from both sexes. A total of 80% of the phrases is 

used for training and the remaining 20% is used for 

validation, as done in the system implemented in [21]; 

where the phrases are selected randomly without 

replacement. In total, 15 experiments are carried out for 

each system. 
 

3. Results and discussion 

 
One of the most broadly used ways to evaluate phoneme 

recognition systems is the phonetic error rate (PER) [22] 

[18]. It measures the difference between the sequences of 

recognized phonemes with the correct sequence and is 

calculated by adding the total of errors over the number of 

phonemes of the correct sequence (N). The 

aforementioned is expressed with formula: 
 

𝑃𝐸𝑅 = 100 ∗
𝐼 + 𝑆 + 𝐷

𝑁
 

 

(5) 

Where, I, S, D are defined by other works [18]: S (errors 

by substitution), when an incorrect phoneme substitutes a 

correct one; D (errors by omission), when a correct 

phoneme is omitted; and I (errors by insertion), when an 

extra phoneme is added. The precision value (A) is 

calculated from the PER in the following manner: 

 
𝐴 = 100 − 𝑃𝐸𝑅 (6) 

 

Another way of measuring performance consists in using 

the amount of phonemes correctly identified by the 

system, which we will call rate of success C. This index 

(C) is calculated without bearing in mind errors by 

insertion in the following way: 

 

𝐶 = 100 ∗
𝑁 − 𝑆 − 𝐷

𝑁
 (7) 

The phoneme recognition process is carried out 15 times 

to generate a vector with the performance values; where, 

for each of these times the voice registries of the test and 

training sets were randomly chosen without replacement. 

This is for the system based on MFCC and in MFCC+AP 

(articulatory parameters). Figure 3  and Figure 4  show 

the precision and success rates, respectively, for speakers 

fsew0 and msak0. 

 

This work tests the hypothesis that proposes that using 

articulatory parameters helps to improve the performance 

of phoneme recognition systems. For this, we use the 

Student t statistical test for unknown means and variances. 

With the Student t it can be verified if the mean values of 

the populations are significantly removed; that is, if the 

performance improvement is significant. As a result, it is 

found that the hypothesis test is fulfilled; thereby, it is said 

that it cannot be dismissed that the difference is 

significant. In other words, it is completely reasonable to 

state that performance improves significantly. 

Improvements in recognition rates calculated are 

summarized in Table 1. 

Table 1 Improvements in precision rates and correct 

phoneme percentage for both speakers 

 fsew0 msak0 

A 11.17% 10.53% 

C 5.71% 7.03% 

 

The highest precision rate obtained was 69.26% for the 

second test of the combined system (speaker msak0). It 

may be seen from graphics 3 and 4 that the variance of the 

results is small, both for the male and female speakers; 

besides, the results between the MFCC and MFCC+EMA 

sets never overlap each other. This indicates that the 

system is reliable and that its performance improvement is 

not due to chance.  

 

Regarding the precision rate (A), it is observed that the 

difference between using MFCC and MFCC+EMA sets is 

notable; which supports the importance of using 

articulatory information in phoneme recognition tasks. 

Furthermore, referring to percentage of correct phonemes 

(C), the difference is also noted at plain site.  The Student 

t tests corroborate the prior statements; from which it is 

inferred that the population means corresponding to the 

performance of the MFCC and MFCC+EMA sets are 

statistically significant. 
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Figure 3 Results of the precision rate (A) for both speakers 

 

Figure 4 .  Results of correct phonemes over the total (C) for both speakers 

 

4. Conclusions 

 
This work showed that incorporating articulatory 

parameters, as voice representation, can improve the rate 

of phoneme recognition based on hidden Markov chains. 

The results exhibited a significant increase in the system’s 

performance upon adding articulatory parameters with 

respect to a system based on MFCC parameters, which 

leads to inferring that the articulatory parameters provide 

relevant information for phoneme recognition purposes. In 

addition, it is worth highlighting that the possibility 

remains open to link articulatory information to automatic 

continuous speaking recognition systems to analyze the 

positive effect it may insert on the system’s performance 
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