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Abstract 
  

In this work we describe the implementation and analysis of different optimization algorithms used for finding the best set of 

parameters for a Fuzzy Inference System intended to classify solar flares. The parameters will be identified among a universe 

of possible solutions for the algorithms, and the system will be tested in the particular case of dealing with the aim of 

classifying the solar flares. 
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Resumen 

 
Se describe la implementación y análisis de diferentes algoritmos de optimización usados para encontrar el mejor conjunto 

de parámetros de un Sistema de Inferencia Difusa destinado a la clasificación de fulguraciones solares. Los parámetros serán 

identificados entre un universo de posibles soluciones para los algoritmos y el sistema será probado en el caso particular de 

tratar con el objetivo de clasificar las fulguraciones solares. 
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1. Introduction 

 
The Sun is the main responsible for the varying conditions 

of the interplanetary medium, particularly, in the space 

surrounding our planet, in what is commonly known as 

space weather. Multiple solar phenomena show up at many 

spatial and temporal scales, and are studied through 

observations, theoretical models and simulations. Among 

the most energetic phenomena in the solar system are the 

solar flares. These are transient events associated to the 

activity of the star in which certain regions of the solar 

atmosphere can emit a vast amount of energy up to 

1025 Joules.  

These zones in the solar atmosphere are associated with the 

presence of dark spots in the solar surface (photosphere) 

called sunspots. Sunspots are the manifestation of intense 

magnetic fields emerging from the solar interior and 

crossing the photosphere, inhibiting the normal convection 

of solar plasma and thus reducing the radiation emission.  

 

For this reason the temperature values in sunspots drop 

approximately 2000 K compared to the temperature in the 

non-active photosphere, known as quiet sun. Sunspots are 

proxies of solar activity and their number on the solar disk 

was used to discover the solar cycle in 1843 [1] and are the 

main constituents of the so-called solar active regions. 
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Table 1 Classification of Solar Flares. Source: Based on [3]. 

 

Flare class Peak Flux Range / 𝑊𝑚−2 

A < 10−7 
B 10−7 to 10−6 

C 10−6 to 10−5 

M 10−5 to 10−4 

X > 10−4 

 

Solar activity has become a very important research topic 

due to its connection with space weather and the possible 

impact of energetic phenomena on the normal development 

of the current technological society, based on satellites, 

which could be affected by intense solar emissions [2]. 

 

Depending on the amount of energy released (flux in Wm−2) 

during the intensity peak of flaring events, solar flares are 

classified in A, B, C, M or X, as listed in Table 1. The effect 

of the different types of flares is also different depending on 

the flare type [3]. 

 

The main goal of this work is to choose the best Fuzzy 

Inference System (FIS), from among several FIS tuning 

methods used, through a validation index Starting from the 

solar flares characteristics and quantity of them in the solar 

disk (as inputs of the FIS), each FIS allows to obtain a 

classification of the solar flares (as output of the FIS).  

 

The parameters of each system were tuned using five 

methods: Manual Tuning, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) with random initialization [4], Compact 

Genetic Algorithm (CGA) [5], Differential Evolution (DE) 

[6] and Stochastic Hill Climbing (SHC) with random 

initialization [7]. 

 

The flow chart that describes the problem is shown in Figure 

1, in which the “Problem in Nature” is the unknown way that 

makes the input values to be related with the output values, 

observed from Sun behavior. This behavior should be 

emulated by the FIS. The validation index is a function of 

the expected output, generated by the Problem in Nature, 

and from the output obtained by the FIS. 

 

The sunspot features and their associated flares were 

obtained by generating a database according to [2], through 

a cross search in the sunspots and solar flares catalogs from 

the National Geophysical Data Center (NGDC). The 

parameters for the cross search allowed to obtain a total of 

1391 individual values, using a time span of 6 hours, in the 

records from 1999 to 2002, to cover the activity peak of the 

Solar Cycle 23.  

 

The quantities for each class with these parameters are 

recorded in Table 2.  

 

 
 

Figure 1 Flow chart of the Global description for the 

Artificial Intelligence problem.  

 

Note that the generated data presents an imbalance: the 

number of type C (common) flares are big compared to the 

M (moderate) flares, data class. Similarly, the M class has 

more data than X (extreme) flares, as expected from 

displaying activity of the Sun during its cycle of 

approximately 11 years. 

 

Aiming to abbreviate, the inputs of the database were 

numerated as follows: 

 

1. Modified Zurich Class 

2. Penumbra: Largest Spot 

3. Sunspot Distribution 

4. Normalized number of Sunspots 

 

Creating scatter plots from pairs of inputs like in Figure 2, 

shows that it is not possible to plot a linear function that 

separates the classes.  

 

Also, it is quite clear from the Figure 2 that class M seems 

to be “absorbed” by class C. Furthermore, class X, having 

the lower amount of data, is almost not recognizable from 

class M. Thereby, the attention is focused on classify the 

class X solar flares.  

 

2.  Methodological Considerations 

 
2.1 Fuzzy Inference System 

 

A FIS consists of five components: a base of fuzzy rules, a 

data base that defines the membership functions of the fuzzy 

sets used in fuzzy rules, the fuzzy inference engine, the 

fuzzifier and defuzzifier [4].  

 

Table 2 Data used by class. 

 

Flare Class Quantity 

C 1194 

M 179 

X 18 
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Figure 2 Scatter plots of possible combinations from pairs of the inputs.  

 

 

The FIS can be represented with a fuzzy basis function 

expansion in which an input vector x is related with a 

punctual y output, such that y=f(x). Thus, it is possible to 

represent in a compact manner the inference process of a FIS 

and the resulting function is a universal estimator [5] 

 

𝑓(𝑥) =
∑ 𝑦𝑙 ∏ 𝜇

𝐴𝑖
𝑙(𝑥𝑖)𝑁

𝑖=1
𝑀
𝑙=1

∑ ∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖)𝑁
𝑖=1

𝑀
𝑙=1

 (1) 

The FIS represented by (1) has the following characteristics: 

 

• Fuzzification: Singleton 

• Membership Functions: Gaussian. 

• Implication: Product 

• Defuzzification: Average of centers. 

 

The 𝑙 index refers to the 𝑙-th rule, being 𝑀 the total number 

of rules. By its part, the 𝑖 index refers to the 𝑖-th input and 𝑁 

are the total of them. The 𝜇
𝐴𝑖

𝑙(𝑥𝑖) membership function (MF) 

is then unique for each input in every rule. Similarly, the 

center of the consequent set 𝑦𝑙  is unique in every rule [5]. 

 

The MFs 𝜇
𝐴𝑖

𝑙(𝑥𝑖) are of Gaussian type, and can be written as 

(2). 

𝜇
𝐴𝑖

𝑙(𝑥𝑖) = 𝑒
[−

(𝑥𝑖−𝑐𝑖
𝑙)

2

2(𝜎𝑖
𝑙)

2 ]

 (2) 

Every MF in (2) has their 𝑐 mean value and a 𝜎 standard 

deviation. 

The total quantity of parameters that defines a FIS in the 

form (1) are given by (3), having in mind that, for each input 

and every rule there are two parameters due to the antecedent 

set (𝑐 and 𝜎), and an additional parameter being the center 

of the consequent. 

𝐶𝑇𝑝 = (2 ∗ 𝑀 ∗ 𝑁) + 𝑀 (3) 

2.2 Manual Tuning Method 

 

Starting from the authors’ perceptions about the data and the 

possible relations that may be present in it, it is possible to 

create an initial FIS with their fuzzy sets for each of the 

inputs, their punctual output values, and the rule base 

allowing to link the fuzzy sets of the inputs to the punctual 

outputs.  

 

The purpose of this method is to deepen into the problem 

recognizing possible relationships among features as well as 

revealing preliminary classification rules.  
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Although a valid solution can be found, the most important 

result of this method is the knowledge derived from 

approaching the problem. 

 

Initially the software used was GNU’s Octave, loading the 

packages “io” and “fuzzy-logic-toolkit”. The first allows 

that Octave reads the generated CSV dataset, and the second 

to design, test and verify the manual tuned FIS. 

 

Despite the fact that in the following algorithms the software 

used was MATLAB, the final FIS created with Octave was 

migrated to MATLAB through the Fuzzy Logic Designer, a 

graphical tool part of the Fuzzy Logic Toolbox; with the 

mere purpose to use the same software tool at the final 

validation stage. 

 

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) with 

random initialization 

 

ANFIS, a FIS based on adaptive networks, is a method based 

on a supervised learning model that, given a set of 

input/output pairs (x,y), related by an unknown function f, 

there is an apprentice and a supervisor of the learning 

process from f, with the use of a validation metric to evaluate 

the results of the apprentice and able to correct it. The 

algorithm uses a hybrid model that combines least squares 

method and the decreasing gradient or back-propagation 

method. 

 

 In this case the apprentice is a fuzzy system that can be 

written as the expansion of fuzzy based functions for a 

Sugeno type system shown in (1). The parameters to be 

determined correspond to 𝑦
𝑙
, 𝑥𝑙

𝑖 and 𝜎𝑙
𝑖 [4]. The validation 

metrics represents the root mean square error (RMSE) 

between the output value for the fuzzy apprentice system 

and the output value y of the data pairs [5]. The process aims 

at minimizing the error for the input values in a set 

comprising part of the complete available data, which is 

generally about 70% of them. Searching for an apprentice 

generalization, it is validated with the remaining 30% of the 

database. 

 

Additional to the individual (apprentice system with its 

parameters and rules) to be adjusted, ANFIS requires initial 

conditions such as the number of rules, number of inputs and 

the rate of initial learning. For the case mentioned above, the 

inputs stay constant and the other two parameters are tuned 

up. Because ANFIS fits the parameters of an existing 

individual, thus implying a local search, it executes several 

times and, prior to this, it generates the individual with 

initialized parameters in random values, aiming at 

(depending on randomization) perform a global search in a 

whole universe of possible solutions. 

 

Algorithm 1 Pseudo code for the MATLAB implementation 

using the ANFIS function.  
 

 1: Training = 70% of Base 

 2: Validation = 30% of Base 

 3: Vector of rules to be tested 𝑅𝑇 

 4: Vector of Initial Learning Rates to be tested 𝑇𝐴𝑇 

 5: 𝑛 = number of tests 

 6: 𝐸𝑝 = number of epochs 

 7: for 𝑖 ∈ 𝑇𝐴𝑇 do 

 8:  for 𝑗 ∈ 𝑅𝑇 do 

 9:   for 𝑙 = 1: 𝑛 do 

 10:    Generate random FIS with 4 inputs and 𝑅 = 𝑗 

 11:    Evaluate ANFIS function with 𝑇𝐴 = 𝑖, 𝐸𝑝, Training, 

Validation and random generated FIS 

 12:    Save the FIS with lowest validation error, the training error 

and the output vector validation 𝑘. 

 13:   end for 

 14:  end for 

 15: end for 

 16: Lowest validation error = 𝑀𝑖𝑛𝑉, associated FIS = 𝐶ℎ𝑒𝑐𝑘𝐹𝑖𝑠 

 

2.4 Compact Genetic Algorithm (CGA) 

 

This belongs to a series of algorithms known as Probabilistic 

Model Building Genetic Algorithm (PMBGA) [8], which 

are characterized by discriminating the significant 

contribution attributes in the construction of an optimal 

individual. The validation indexes for determining the 

performance of an individual is the “Fitness” function, 

which in turn depends on the problem to be solved. The 

implementation considers an individual with the best 

performance when the value of this function is minimized. 

 

Because in this work we are dealing with a classification 

problem, besides using the RMSE, we decided to also 

consider the use of classification error and correlation. With 

that in mind, we can assemble an initial brief of a fitness 

function (4). 

 

𝐹 = (𝐸𝐶𝐶 + 𝐸𝐶𝑀 + 𝐸𝐶𝑋)2 × 𝐸𝑅𝑚𝑠𝑒 × (1 − 𝜌)2 (4) 

And 

𝐸𝐶𝑥 =
ℎ𝑥

𝐶𝑥
𝑤𝑥 (5) 

Where: 

 

 𝐸𝐶𝑥 : Classification error for the class 𝑥 

 ℎ𝑥 : Number of bad classified data for class 𝑥 

 𝐶𝑥 : Total number of data for class 𝑥 

 𝑤𝑥 : Weight assigned to the classification error of class 

𝑥 

𝐸𝑅𝑚𝑠𝑒  : Root Mean Square Error 

 𝜌 : Correlation 
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Every 𝐸𝐶𝑥 classification error has its respective wx weight. 

As the database is inherently imbalanced, every weight wx 

was assigned to be greater than the proportion of data 

belonging to class C, to the quantity of data from the other 

classes: 

 

𝑤𝑀 >
1194

179
~6.7 → 𝑤𝑀 = 10 

 

𝑤𝑋 >
1194

18
~66 → 𝑤𝑋 = 100 

 

Therefore, the weight associated to the class X of solar flares, 

for which the number of data is lower, has the highest value. 

By doing this, a badly classified data that belongs to this 

class produces a more significant increase in the first factor 

of (4) that one not incorrectly classified in class C, in the 

final fitness function factors (6) 

 

𝐸𝐶𝐶 =
ℎ𝐶

𝐶𝐶
, 𝐸𝐶𝑀 =

ℎ𝑀

𝐶𝑀
× 10, 𝐸𝐶𝑋 =

ℎ𝑋

𝐶𝑋
× 100            (6) 

 

To explain the 𝐸𝑅𝑚𝑠𝑒  Root Mean Square Error in (4), 

suppose that the problem is not a classification problem, but 

a prediction problem instead. For a conceptual brief, the 

𝐸𝑅𝑚𝑠𝑒  gives an idea on how the individual are not 

“following” the expected sequence from the training data 

[5].  

 

Then, a bad predictor will have a greater 𝐸𝑅𝑚𝑠𝑒  value, than 

other that gets closer to the output values of the database, 

and considering that the data also depends on some time 

unit. The root mean square error is mathematically described 

as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  (7) 

𝑒 = (𝑣𝑜 − 𝑣𝑒) (8) 

Where 

 𝑣𝑜 is the value obtained 

 𝑣𝑒 is the expected value 

The number of rules was taken from the obtained result with 

the ANFIS algorithm, R=8 rules. For developing the 

algorithm, the parameter for adjusting the converging speed 

of the probability vector n is tuned. Since the optimal value 

is unknown, it is randomly designated based on [5], and 

implemented in MATLAB. The process of randomly 

varying n and developing the algorithm, is repeated several 

times (w = number of experiments). Finally, among the best 

solutions the value generating the lowest number in (4) with 

(6) is found. 

Algorithm 2 Pseudo code for CGA. Based on [5]. 

 

 1: Training = 70% of Base  

 2: Validation = 30% of Base 

 3: 𝑤 = number of tests 

 4: 𝑁𝑝= number of parameters 

 5: 𝑏𝑝= number of bits per parameter 

 6: 𝑎 = 𝑁𝑝 ∗ 𝑏𝑝  

 7: 𝑛 = probability adjustment parameter 

 8: 𝑝 = probability vector 

 9: 𝑁𝑖 = number of individuals 

 10: 𝐼𝑎𝑙𝑒𝑎 = vector of  𝑁𝑖 individuals 

 11: for 𝑖 = 1 𝑡𝑜 𝑤 do 

 12:  𝑛 = Random value  

 13:  for 𝑙 = 1: 𝑁𝑖 do 

 14:   𝐼𝑎𝑙𝑒𝑎(𝑙) = Random FIS 

 15:   Evaluate and order individuals so that the best is in position 

𝐼𝑎𝑙𝑒𝑎(1) 

 16:  end for  

 17:  for j= 2: 𝑁𝑖 do 

 18:   Winner, Loser = competition (𝐼𝑎𝑙𝑒𝑎(1), 𝐼𝑎𝑙𝑒𝑎(𝑗)) 

 19:   for g = 1: 𝑎 do 

 20:    if Winner(g) ~ Loser(g) then 

 21:     if Winner(g) = 1 then  𝑝(𝑔) = 𝑝(𝑔) + 1/𝑛 

 22:     else 𝑝(𝑔) = 𝑝(𝑔) − 1/𝑛 

 23:     end if 

 24:    end if 

 25:   end for 

 26:  end for 

 27:  for g = 1: 𝑎 do 

 28:   if 𝑝(𝑔) > 0 𝑎𝑛𝑑 𝑝(𝑖) < 1 then 

 29:    go to step 13 

 30:   end if 

 31:  end for 

 32: end for 

 

The parameters describing every FIS (individual) are then 

converted from real to binary data, due to the method 

adjusting every bit. 

2.5 Differential Evolution 

This is an algorithm based on the evolution of a population 

of vectors (individuals) with real parameters, which 

represent solutions in the searching space. 

 

The algorithm of differential evolution is basically 

composed by 4 steps, as follows: 

 

 Initialization: Every vector (individual) of the 

population is randomly initialized. 

 Mutation: A mutation is applied in order to create a 

testing population of individual. 

 Crossing: Every vector is used as a mutant vector. 

 Selection: The testing vector previously obtained is 

used to do the crossing procedure, which compete 

with the target vector by the evaluation of the 

Fitness function [6]. 
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Algorithm 3 Pseudo code for DE. Source: Based on [6]. 

 

1:Training = 70% of Base 

 2: Validation = 30% of Base 

 3: 𝑓𝑚  = mutation constant 

 4: 𝑐𝑟  = crossover constant 

 5: 𝑁𝑖 = number of individuals 

 6: 𝑁𝑔 = number of generations 

 7: 𝑤 = number of tests 

 8: 𝑉𝑖= individuals vector 

 9: 𝑁𝑝= number of parameters 

 10: 𝑉𝑜= target vector 

 11: 𝑉𝑚= mutation vector 

 12: 𝑉𝑐= crossover vector 

 13: 𝑏𝑖= vector of the best individual 

 14: for 𝑖 = 1 𝑡𝑜 𝑤 do 

 15:  for 𝑙 = 1: 𝑁𝑖 do 

 16:   𝑉𝑖(𝑙) = Random FIS 

 17:   Evaluate individuals with the fitness function (4) 

 18:  end for 

 19:  for j= 1: 𝑁𝑔 do 

 20:   for g = 1: 𝑁𝑖 do 

 21:    𝑉𝑜 = 𝑉𝑖(𝑔) 
 22:    Sort the individuals from best to worst according to (4) 

 23:    𝑏𝑖 = 𝑉𝑖(1) 

 24:    𝑉𝑚= mutation(𝑏𝑖 , 𝑓𝑚)  

 25:    for 𝑘 = 1: 𝑁𝑝 do 

 26:     𝑉𝑐 = cross(𝑉𝑜, 𝑉𝑚, 𝑐𝑟)    

 27:    end for   

 28:    if  𝑉𝑐 is better than 𝑉𝑜 then 

 29:     replace 𝑉𝑜  with  𝑉𝑐 

 30:    else  keep  𝑉𝑜 

 31:    end  if 

 32:   end for 

 33:  end for  

 34: end for 

2.6 Stochastic Hill Climbing (SHC) with random 

initialization. 

The Stochastic Hill Climbing, consist on taking a FIS (1) and 

keep evaluating the solutions in the vicinity of it [7] [9] in a 

maximum number of iterations. The parameters of the input 

FIS are randomly initialized. 

Algorithm 4 Pseudo code for Stochastic Hill Climbing [10]. 

 1: Require: 𝐼𝑚𝑎𝑥, Dimensions 

 2: Ensure: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

 3: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← RandomSolution(Dimensions) 

 4: for 𝑖𝑡𝑒𝑟𝑖 ∈ 𝐼𝑚𝑎𝑥 do 

 5:  𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← RandomNeighbor(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) 

 6:  if Cost(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) ≤ Cost(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) then 

 7:   𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
 14:  end if 

 15: end for 

 

Here: 

 𝐼𝑚𝑎𝑥 : Maximum number of iterations 

 𝑆𝑜𝑙 : Some particular solution (like 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 or 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 

 Cost(𝑆𝑜𝑙) : Fitness function, obeys (2) 

RandomNeighbor(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) in Algorithm 3 also requires 

the center and deviation variations, that refers to the allowed 

absolute value variations of the related parameters when 

searching for a neighbor. As example, if some of the 

parameters has the value 0.6, and the specified variation of 

this parameter is 0.1, then the neighbor will have some 

uniformly distributed random value between 0.5 and 0.7. 

Every separate experiment consist on a single run of a 

program that implements the Algorithm 4, to obtain a final 

single individual, but 𝑛 individuals can be obtained by 

running 𝑛 experiments. Afterwards, the individuals can be 

evaluated with (4) and the validation base, in order to choose 

the best individual of the 𝑛 individuals. 

2.7 Confusion Matrixes 

 

The classifier output consists on C values, corresponding to 

the 𝜔1, 𝜔2, … , 𝜔𝑐  classes. Due to the erroneous 

classifications occasionally occurring, the multiclass sorter 

is evaluated through a (𝐶 ×  𝐶) – dimensional confusion 

rate matrix showing the respective classification errors 

between classes (off diagonal) and correct classifications 

(diagonal elements) [11]. 

 

Table 3 shows an example of a confusion matrix for a total 

of 𝐶 = 3 classes. The 𝐶𝜔𝑖,𝑗
 elements correspond to the data 

quantity from the 𝜔𝑖 class that was classified as elements of 

the 𝜔𝑗 class. 

 

3. Parameters for the Algorithms 

 
Excluding the manual tuned FIS, and in order to allow the 

replicability of similar results, we expose briefly the 

parameters used for the algorithms. For the CGA, DE and 

SHC algorithms, the number of rules was taken from the best 

ANFIS result, as shown in Table 3. 

 

Table 3 Confusion Matrix for a three class sorting 

problem. Source: Based on [11]. 

Predicted Class 

 

𝝎𝟏 𝜔2 𝜔3 

A
c
tu

a
l 

C
la

ss
 𝝎𝟏 𝐶𝜔1,1

 𝐶𝜔1,2
 𝐶𝜔1,3

 

𝝎𝟐 𝐶𝜔2,1
 𝐶𝜔2,2

 𝐶𝜔2,3
 

𝝎𝟑 𝐶𝜔3,1
 𝐶𝜔3,2

 𝐶𝜔3,3
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Table 4 Classification of Solar Flares.  

Parameter Value 

MFs for Input 1 7 

MFs for Input 2 6 

MFs for Input 3 4 

MFs for Input 4 3 

MFs for the Output 3 

Rules 8 

Table 5 Initialization Parameters for the implementation of 

ANFIS with random initialization.  

Parameter Value 

Epochs 500 

Number of experiments 200 

Tested learning rates 

(TA) 

0.01, 0.1, 1 

Tested number of rules 8, 14, 16, 32 

Performance Function Root Mean Square Error 

(7) 

Table 6 Initialization Parameters for the Compact Genetic 

Algorithm (CGA) implementation. 

Parameter Value 

Number of rules 8 

Number of parameters to 
optimize 

72 

Number of bits per parameter 8 

Binary coding method Sign-magnitude 
Population size 30 

  

Number of experiments 500 
Maximum number of generations 10000 

Stop criterion 

Convergence of probability 

vector 
and error repetition 

Performance Function Fitness function (4) 

Table 7 Initialization Parameters for the Differential 

Evolution (DE) Algorithm implementation.  

Parameter Value 

Number of rules 8 

Number of parameters to 

optimize 
72 

Population size 30 

Number of generations 50 

Mutation constant 0.5 

Crossover constant 0.9 

Number of experiments 500 

Variant DE/best/1/bin 

Stop criterion 

Number of generations 

and  

number of experiments 

Performance Function Fitness function (4) 

3.1 Manual Tuning 
 

As the parameters for this method obey to human 

perceptions of the problem, only the main features are shown 

in Table 4, for this reason this method was applied only as 

an exercise of comparison between the human performance 

and machine performance, in building a FIS that solves the 

classification problem. These values are not normative by 

the same fact that the parameters were based from human 

perceptions of the authors, are then allowed to test other 

values, but the manual tuning method takes too much time 

to get a single FIS. 

 

Tables 5-8 show the initialization parameters for each 

implementation. 

Table 8 Parameters for the implementation of the 

Stochastic Hill Climbing (SHC) with random initialization 

algorithm. 

Parameter Value 

Number of rules 8 

Number of parameters to 

optimize 
72 

Number of experiments 10 

Number of iterations by 

experiment 
8000 

Center variation 0.1 

Deviation variation 0.5 

Stop criterion 
Number of 

iterations 

Performance Function Fitness function (4) 

 

 

4. Results 

In this section we show first the best results for every method 

and their analysis. This analysis includes a comparison of 

their performance. 

4.1 Confusion Matrices 

The best FIS obtained by each algorithm was evaluated 

using the whole database. With the evaluated output values 

and the expected output values a confusion matrix can be 

filled as shown in Table 3 to obtain the matrices shown in 

Tables 9, 11, 12, 13 and 14. 

 

In the case of ANFIS, the individual with the lowest 

validation error was selected for each of the different 

combinations of number of rules and initial learning rate 

(LR) as shown in Table 10.  
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Table 9 Confusion Matrix for the manual tuned FIS.  

Predicted Class 

𝑪 𝑀 𝑋 

A
ct

u
a

l 
C

la
ss

 𝑪 0 815 198 

𝑴 0 100 44 

𝑿 0 12 6 

 

Table 10 List of the lowest validation error (RMSE) for 

every 𝑛 test.  

 Number of Rules 

LR 8 14 16 32 

0,01 0.3681 0.3688 0.3708 0.3747 

0,1 0.3667 0.3682 0.3705 0.3735 

1 0.3658 0.3661 0.3667 0.3687 

 

Table 11 Confusion Matrix for the best ANFIS individual 

chosen.  

Predicted Class 

𝑪 𝑀 𝑋 

A
ct

u
a

l 
C

la
ss

 

𝑪 1133 0 0 

𝑴 155 0 0 

𝑿 15 0 0 

 

Table 12 Confusion Matrix for the best individual obtained 

by CGA. 

Predicted Class 

𝑪 𝑀 𝑋 

A
ct

u
a

l 
C

la
ss

 

𝑪 1194 0 0 

𝑴 179 0 0 

𝑿 18 0 0 

Table 13 Confusion Matrix for the best individual obtained 

by the DE Algorithm.  

Predicted Class 

𝑪 𝑀 𝑋 

A
ct

u
a

l 
C

la
ss

 

𝑪 0 552 552 

𝑴 0 57 113 

𝑿 0 0 18 

Table 14. Confusion Matrix for the best individual 

obtained by the SHC Algorithm. 

Predicted Class 

𝑪 𝑀 𝑋 

A
ct

u
a

l 
C

la
ss

 

𝑪 0 0 1194 

𝑴 0 0 179 

𝑿 0 0 18 

Table 15. Validation Errors for the best functions obtained. 

Method Fitness 𝐸𝐶𝐶  𝐸𝐶𝑀 𝐸𝐶𝑋 

Manual 13282 1 3,7736 61,111 

ANFIS 4487.2 0.0446 10 100 

CGA 3895.1 0 10 100 

DE 33.2454 1 4.9057 0 

SHC 96.712 1 10 0 

 

From Table 10 the best individual are chosen to make the 

confusion matrix shown in Table 11. In order to compare the 

results with the same metric, this individual was evaluated 

with (4) and its results are part of Table 15. The chosen 

individual was obtained with the following parameters: 

 𝑅𝑢𝑙𝑒𝑠 = 8 

 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝐿𝑅) = 1 

The best FIS obtained by the CGA occurred on experiment 

𝑤 =  175 and for a value 𝑛 =  41 of the probability 

adjustment parameter.  
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Table 16 Results for the Welch's t-test between DE and 

CGA.  

 DE CGA 
Mean 2074.216694 15808.9081 

Variance 30477597.49 45636475.15 

Observations 500 500 
Hypothetical difference of means 0  

Degrees of freedom 960  

Statistic t -35.20233147  

P (T ≤  t) one tail 2.7328E-175  

Critical value of t (one tail) 1.646442429  

P (T ≤  t) two tails 5.4656E-175  

Critical value of t (two tails) 1.962438166  

Table 17 Results for the Welch's t-test between DE and 

ANFIS with Random Initialization.  

 DE ANFIS with Random 

Initialization 

Mean 2074.216694 5737.628906 

Variance 30477597.49 184874.1979 

Observations 500 2400 
Hypothetical difference 

of means 

0  

Degrees of freedom 500  
Statistic t -14.82880602  

P (T ≤  t) one tail 8.5552E-42  

Critical value of t (one 

tail) 

1.647906854  

P (T ≤  t) two tails 1.71104E-41  

Critical value of t (two 
tails) 

1.964719837  

Table 18. Results for the Welch's t-test between DE and 

SHC.  

 DE SHC 

Mean 2074.216694 2001.247664 

Variance 30477597.49 19996528.91 

Observations 500 500 

Hypothetical difference 

of means 

0  

Degrees of freedom 957  

Statistic t 0.229662015  

P (T ≤  t) one tail 0.409201745  

Critical value of  t (one 

tail) 

1.646447414  

P (T ≤  t) two tails 0.818403489  

Critical value of  t (two 

tails) 

1.962445932  

 

4.2. Final Result by the validation Metric 

 

Table 15 lists the more relevant metrics for the individuals 

in every scheme. The final individual was the one with the 

lowest value of the Fitness function (4), using the validation 

database. 

4.3 Statistical Analysis 

To perform a statistical analysis of the algorithms 

implemented, the Welch's t-test was used for two-samples, 

assuming unequal variances to confirm or reject the null 

hypothesis whether both methods provide similar analytical 

results or not [12]. 

Comparing the results of the test between DE with the CGA 

and ANFIS algorithms as shown in Tables 16 and 17 

respectively, it is possible to reject the null hypothesis and 

conclude that the methods provide different analytical 

results with a 99% confidence level. 

On the other hand, from Table 18 it can be evidenced that, 

although the best solution was achieved with the DE 

algorithm, the average and the variance of the fitness of the 

individuals obtained with SHC are better than those obtained 

with DE. This result makes sense in the light of the non-free 

lunch theorems [13], which state that optimization methods 

perform similarly in average over the entire set of possible 

optimization problems.  

The result of the Welch's t-test shows that the null hypothesis 

should not be rejected because in the case of two tails the 

confidence level to reject is less than 20% and in the case of 

one tail it is less than 60%. Therefore, both methods provide 

the same average results and the observed differences are 

purely due to random errors. 

5. Conclusions 

In this section we summarize the obtained results and 

discuss on the different aspects of their performance. 

 

Due to the imbalance in the database, systems and 

algorithms used in the present work have limited options to 

learn from class M, and much lower ones from class X. 

 

Additionally for ANFIS, because of the fact mentioned 

before, the validation metrics for RMSE is not adequate for 

solving the problem since it ignores the classification error, 

from which it is evidenced that the best individual obtained 

in this method is an optimal class C classifier, but not so for 

the rest of classes. 

 

Despite the Compact Genetic Algorithm has a simple 

description with little memory, it sufficiently restricts the 

space of solutions since it works with parameters 

represented in fixed point, having a more reduced universe 

as compared to the representation in floating points. 
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From the items listed above, and from Table 4, it cannot be 

discarded different problems in which either class C are 

distinguished from being or not solar flares (modifying the 

generation parameters of the database), or type M or X solar 

flares are distinguished. As a future work, the problem can 

be addressed by using neural network algorithms, e.g. 

Cascade-Correlation Neural Networks (CCNNs), Support 

Vector Machines (SVMs) and Radial Basis Function 

Networks (RBFNs) [2] instead of FISs, in order to determine 

if it is feasible to obtain a best classifier and therefore extend 

the problem of estimating the occurrence of solar flares. 
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