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Abstract 

The objective of the work is to standardize the method by which the corrections are calculated and applied to make the 

adjustment to the geometric leveling data obtained in ground. For this purpose,  was consulted related bibliography and two 

methodologies were obtained: one for the corrections, taking into account the National Oceanic and Atmospheric 

Administration (NOAA) technical norm of the United States, and one for the adjustment, based on the minimum method 

Squares correlated, exposed by the Cartographic Agency of the United States Department of Defense. The proposed 

methodology, generated by the geodesic leveling seedlings of the Geodesy Internal Geodesy Working Group of the Instituto 

Geográfico Agustín Codazzi  (IGAC), was evaluated by its application to the ground data obtained in a leveling circuit located 

in the department of Cesar, Colombia, and satisfactory results were obtained. 
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Resumen 

El objetivo del trabajo fue estandarizar el método con el cual se calculan y se aplican las correcciones para realizar el ajuste a 

los datos de nivelación geométrica obtenidos en campo. Para ello se consultó bibliografía relacionada y se obtuvieron dos 

metodologías:  una para las correcciones, teniendo en cuenta la norma técnica de la National Oceanic and Atmospheric 

Administration (NOAA) de los Estados Unidos, y una para el ajuste, fundamentada en el método de mínimos cuadrados 

correlativos expuesto por la  Agencia Cartográfica del Departamento de Defensa de los Estados Unidos. La metodología 

propuesta, generada por el semillero de nivelación geodésica del Grupo Interno de Trabajo de Geodesia del Instituto 

Geográfico Agustín Codazzi (IGAC), fue evaluada mediante su aplicación a los datos de campo obtenidos en un circuito de 

nivelación localizado en el departamento del Cesar, Colombia, y se obtuvieron resultados satisfactorios.  

 

Keywords: Altimetría, Nivelación, Geodesia, Ajuste, Corrección. 

 

 

1. Introduction 

 
With the objective/aim of contributing to the establishment 

for a vertical global reference system that unifies altimetric 

data fromSsouth American countries, initiative led by Sigas 

Workgroup III, arises the necessity to evaluate, identify and 

diagnose the state of each component for the vertical 

reference system at a local level. The components are: 

Leveling network, Densification of gravimetric network, 

Geoidal model and Generation of geopotential numbers. 

 

 

 

Geodetic leveling as a basic component for the adjustment 

of vertical networks, must have a standard methodology for 

the treatment of leveling data, with respect to the correction 

of height differences obtained in the field and their 

corresponding geodetic adjust; given that the development 

of the local vertical reference system is one of the 

responsibilities of the Inner Workgroup in Geodesy at 

(IGAC). 

 

http://dx.doi.org/10.18180/tecciencia.2019.26.3
mailto:%20jguevara@igac.gov.co
http://dx.doi.org/10.18180/tecciencia.2019.26.3


 

     

16 

 
 

Figure 1 Leveling schematic. 

 

 

The procedure for geodetic leveling has not presented 

considerable modifications in a long time, as to 

methodology of field surveying is referred, since geodetic 

equipment hasn’t evolved significantly. However, data 

processing at the office has presented certain computing 

difficulties, due to the inexistence of a general method in the 

pertinent procedures for captured data. Hence, the 

determination of corrections and leveling data adjustment 

are proposed and explained step by step, and the correlative 

least-squares method, the structure of condition equations 

and the contents of the matrixes are presented. 

 

With the result of geodetic adjustment the degree of 

precision and accuracy of field surveyed points is 

determined, such that one can determine the order of the 

geodetic network at which the points can be integrated, 

besides identify for which project types the national 

framework can be used, according to their specifications 

and/or accuracy. The article is structured in the following 

way: first we approach the procurement of the digital 

leveling field surveyed data; next, the determination and 

computation of corrections according to technical specs of 

the levels used. Then, we tackle the computation of 

adjustment with the correlative least-squares method for the 

corrected height differences; and last, we present and 

analyze the results obtained. 

 

2. Materials and Measurement Methods 

 
The field measurement method is realized through routines 

where the raw data is obtained with the digital levels. 

Leveling is executed in double path sections, round travels, 

where the length of the sections can be established between 

0.8 and 1.5 kilometers, with first order closing errors [1]. 

The data provided by the Geographic Institute Agustín 

Codazzi belong to a leveling path of the urban area in 

Bosconia, Colombia, and follow the schematic presented in 

Figure 1. The field information is presented in Table 1. 

 

Table 1 Leveling schematic. 

 

Section Direction 
Distance 

(km) 

Observed 

Height 

Difference (m) 

A53TN3 I 0.26657 -0.04157 

CS-1283 R 0.26657 0.04168 

CS-1283 I 0.27972 4.19054 

CS-1277 R 0.27972 -4.19116 

CS-1277 I 0.22912 0.49222 

CS-1271 R 0.22912 -0.49214 

CS-1271 I 0.2334 0.68002 

CS-1272 R 0.2334 -0.68058 

CS-1272 I 0.47568 -2.78881 

CS-1278 R 0.47568 2.78857 

CS-1278 I 0.25306 -0.95892 

CS-1284 R 0.25306 0.95921 

CS-1284 I 0.39857 0.48059 

CS-1285 R 0.39857 -0.48069 

CS-1285 I 0.33683 1.55059 

CS-1279 R 0.33683 -1.55097 

CS-1279 I 0.20997 0.43499 

CS-1273 R 0.20997 -0.43462 

CS-1273 I 0.35439 1.44825 

CS-1274 R 0.35439 -1.44783 

CS-1274 I 0.42018 -1.49098 

CS-1280 R 0.42018 1.49119 

CS-1280 I 0.4197 -1.80528 

CS-1286 R 0.4197 1.80463 

CS-1286 I 0.44963 -0.17688 

20060005 R 0.44963 0.17721 

20060005 I 1.03887 -2.01811 

A53TN3 R 1.03887 2.01677 

 

 

3. Corrections to leveling data 
 

Considering that no field observation is exempt of 

measurement errors, either generated by natural conditions 

or by observer’s flaws, among other systematic errors that 

can affect the process, we have identified such aspects that 

lead to an inaccurate value in the leveling data. Six factors 

have been identified that can have an influence in the 

measurement true value [2]: 

 

• Calibration scale in the level staff. 

• Temperature of the level staff 

• Atmospheric refraction 

• Inexistence of horizontality in the leveling 

instrument line 
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• Effects of Moon and Sun on the Earth’s 

equipotential surfaces 

• Non-parallelism of equipotential surfaces 

 

Here, we briefly describe each one of the corrections. 

 

3.1. Correction to the Level Staff scale 

 

The objective of this correction is to verify if the length of 

the level staff scale is within the guidelines of the standard 

longitudinal norm. In general, such correction is given by the 

manufacturer though a calibration, however, if this 

information is not available, the correction process is 

resumed in a comparison of the length measurements in the 

level staff scale with respect to a standard meter. The 

correction of the level staff scale is calculated with equation 

1 [3], and is added with the resulting algebraic sign to the 

observed height difference: 

 

Cr = De      (1) 

 

where: 

 

Cr = Correction to the level staff scale, in millimeters. 

D = Observed height difference for the section, in meters 

e = Excess of average length of the level staff pair, in mm/m. 

 

3.2 Temperature Correction 

 
The temperature correction of the level staff is applied to the 

height difference between reference points using the mean 

of observed temperatures at the beginning and end of a 

section. This is calculated with equation 2 [3] and is added 

with the resulting algebraic sign of the observed height 

difference in the field: 

 

   Ct = (tm - ts) D CE    (2) 

 

Where: 

 

Ct = Temperature correction of the level staff. 

tm = Average temperature observed in the level staff. 

ts = Standard temperature in the level staff. 

D = Observed height difference between reference points. 

CE = Mean thermal expansion coefficient per unit length, 

per temperature degree in the level staff pair. 

 

With respect to these variables, it should be noted that: 

 

• The average temperature is determined by the 

average between the temperature measurements at the 

beginning and the end of the section (section is the interval 

between materialized adjacent points) 

• The units of D, tm and ts must coincide with the 

units of CE [2]. 

3.3 Refraction Correction 

 

The atmospheric refraction phenomenon is presented when 

“the ray incoming from the target point does not follow a 

rectilinear trajectory but suffers successive refractions when 

travelling through a variable density atmosphere” [4]. While 

the refraction phenomenon varies depending on the 

conditions in the data acquisition instant, in case one can 

assume that conditions such as temperature and atmospheric 

pressure are homogenous along the section, this correction 

can be omitted.  

 

To minimize the effect of refraction, equation 3 is suggested. 

Is noted that this is a reconsideration of the simplified 

version of the model developed by Professor T.J. 

Kukkamäki, of the Finnish Geodetic Institute [5] [6]. 

 

𝑅 =  −(105) ∗  γ(𝑆 50)⁄ 2
∗ δ(𝐷 2)⁄    (3) 

 

Where: 

 

R = Refraction correction for the section, in millimeters. 

S = Section length, in meters.  

δ = Temperature difference between temperatures at 1,3m 

and 0,3m above the ground, in degrees Celsius.  

D = Height differences, in cm.   

 

3.4 Collimation Correction 

 
This correction comes to be the simplest of all, given that it 

refers to the coincidence in measurements in back-view and 

forward-view for a point must be exact; when the 

comparison between these two views differs from zero, this 

value is known as collimation error. This correction is added 

with the resulting algebraic sign of the observed height 

difference with equation 4 [2]. 

 

Cc = -(e SDS)         (4) 

 

where:  

Cc = Level collimation correction, in millimeters 

e = Collimation error, in radians x 1,000 or in mm/m 

SDS = Accumulated differences of the longitudinal views 

for the section, in meters (forward-view and back-view). 

 

3.5 Astronomical Correction 

 

“Astronomical correction is applied to consider the effect of 

tide acceleration due to the Earth’s equipotential surfaces on 

which the Sun and Moon are located” [2]. The main 

characteristic of this correction is that is suggested for 

leveling networks of great density, due that its incidence in 

leveling data for local networks is insignificant (this 

affirmation is linked to the context of the desired precision 

in the leveling network being developed).  
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Figure 2 Effect (α) and tide deflection (ε) in a section of 

length and direction s ⃗   Source: [7]. 

 

The calculation is determined by equations 5 and 6 [7]: 

 
Ca=0.7K S         (5) 

 

𝐾 =  tan εm  cos(𝐴m –  α)  +
 tan εs cos(𝐴s –  α )       (6)  

 
where: 

 

Ca= Astronomic correction 

S = Section length 

εm= Deflection due to the Moon 

εs = Deflection due to the Sun  

As = Azimut for the Sun 

Am= Azimut for the Moon 

α = Azimuth for the section 

 

The 0.7 is a constant based on Earth’s elasticity [8]. 

 

           

3.6 Orthometric Correction 

 

Considering that each height difference taken in the field is 

subject to a level surface related to topography and not to a 

constant physical surface, orthometric correction 

compensates the lack of parallelism of the geometric level 

surfaces, taking into account the range of latitude in the 

leveling line, direction of the line, latitude differences and 

average line height [9]. Equation 7 calculates approximate 

orthometric correction (based on normal gravity) for the 

observed height difference in a section [2]. 

 

𝐶0 = −2ℎα sin(2ρ) ∗[1 + (α −
2𝑏

α
) ∗ cos (2ρ)] ∗ sin (𝑑ρ)   

(7) 

 

where:  

 

C0 = Orthometric correction 

h = Average height for the section 

α = 0.002644 

b = 0.000007 

ρ = Average latitudes for the section 

dρ = latitude difference between initial and final points of 

the section (dρ is positive when the final point of the section 

is located northwards of the initial point; this considering the 

direction of the leveling). 

 

In the case of having real values for the gravity in each 

leveling point (not normal gravity), the recently proposed 

orthometric correction must be replaced by the formulation 

of geopotential numbers, which will determine a more 

accurate orthometric bound. 

 

As to the orthometric bound is referred, is estimated that it 

can vary from very few millimeters to some decimeters with 

respect to the geometric bound, since its value depend not 

only of the ground topography, but also of the material lying 

underground [10]. After correcting the field leveling values, 

the next step is to adjust the leveling network in aim to 

compensate the closing error. 

 

3.7 Practical Case 

 

The corrections previously mentioned are all necessary in 

the leveling process. However, according to the type of 

equipment and the field survey methodology managed by 

the Geographical Institute Agustín Codazzi, one must 

consider the following annotations: 

 

Correction of the level staff scale must not be conducted in 

height differences, since the staff’s material is Invar and 

satisfy the standard calibration scale guaranteed by the 

manufacturer [1]. 

 

Refraction correction is programmed in the digital level, 

which automatically computes the correction as follows 

[11]:  

 

k2=(rkE2)/(2R)                                                        (8) 

 

where: 

 

rk = Refraction coefficient of the equipment. 

E = Distance of leveling change 

R = Earth’s radius (6380000 m). 

 

Collimation correction or collimation error is corrected in 

field by the appointed commission, employing the Förstner 

method, as specified in the procedure manual [1]. 

 

Astronomical correction must not be conducted in height 

differences, since the leveling circuit is too small, meaning 

that the survey is local, and its application is not required.



 

     

19 

 

Table 2 Temperature Correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Orthometric correction must be performed for each height difference obtained in the field. Initial data available in 

table 3 and table 4. 

 

Temperature correction must be performed for each of the 

obtained height differences in the field. For example, for the 

first height difference, the value of thermal expansion in the 

Invar level staffs employed at IGAC is 0.000009 [12], the 

standard temperature of the staff is 25°C [13]. Then, the 

temperature correction is obtained as follows: 

 

Ct = (32 - 25) – 0.04157 * 0,000009 

 

Ct= -0.0000015 

 

From this calculation the temperature correction is obtained 

for each height difference, as presented on Table 2. As an 

example for the height difference that corresponds to the 

section between A53-TN-3 and 20060005, with the 

following data:  

Latitude of 20060005 is 9.9757, latitude of A53-TN-3 is 

9.9830, with a latitude average of 9.9794.The average 

height of the section is equal to 1.83856 m, α is equal to 

0.002644 and β  is equal to 0.000007, latitude difference is 

0.0073278. Then, the orthometric correction is equal to: 

 

Co = -2*(1.83856*0.002644)*(sin (2*9.9794))* 

[1+(0.002644-((2*0.000007)  / 0.002644)* 

(cos (2*9.9794))]*(sin (0.0073278)) 

 

Therefore,  

 

Co =0.0000004. 

 

From this calculation, orthometric correction is obtained as 

shown on Table 5

Section  Direction* 

Measured 

Temperature 

Standard 

Temperature 

Observed 

Height 

Difference (m) 

Temperature 

Correction (m) 

A53TN3 I 29 25 -0.04157 -0.0000015 

CS-1283 R 32 25 0.04168 0.0000026 

CS-1283 I 29 25 4.19054 0.0001509 

CS-1277 R 32 25 -4.19116 -0.0002640 

CS-1277 I 31 25 0.49222 0.0000266 

CS-1271 R 32 25 -0.49214 -0.0000310 

CS-1271 I 32 25 0.68002 0.0000428 

CS-1272 R 32 25 -0.68058 -0.0000429 

CS-1272 I 34 25 -2.78881 -0.0002259 

CS-1278 R 32 25 2.78857 0.0001757 

CS-1278 I 35 25 -0.95892 -0.0000863 

CS-1284 R 32 25 0.95921 0.0000604 

CS-1284 I 36 25 0.48059 0.0000476 

CS-1285 R 32 25 -0.48069 -0.0000303 

CS-1285 I 37 25 1.55059 0.0001675 

CS-1279 R 32 25 -1.55097 -0.0000977 

CS-1279 I 38 25 0.43499 0.0000509 

CS-1273 R 32 25 -0.43462 -0.0000274 

CS-1273 I 39 25 1.44825 0.0001825 

CS-1274 R 32 25 -1.44783 -0.0000912 

CS-1274 I 40 25 -1.49098 -0.0002013 

CS-1280 R 32 25 1.49119 0.0000939 

CS-1280 I 42 25 -1.80528 -0.0002762 

CS-1286 R 32 25 1.80463 0.0001137 

CS-1286 I 43 25 -0.17688 -0.0000287 

20060005 R 32 25 0.17721 0.0000112 

20060005 I 28 25 -2.01811 -0.0000545 

53TN3 R 32 25 2.01677 0.0001271 
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Table 3 Height average per section. 

 

ID Section 
Section’s Height 

Average 

1 A53TN3 a CS-1283 0.28798 

2 CS-1283 a A53TN3 -0.07174 

3 CS-1283 a CS-1277 2.7838 

4 CS-1277 a CS-1283 -2.9853 

5 CS-1277  a CS-1271 -0.92077 

6 CS-1271 a CS-1277 -1.7466 

7 CS-1271 a CS-1272 0.44898 

8 CS-1272 a CS-1271 -0.56947 

9 CS-1272 a CS-1278 -2.22194 

10 CS-1278 a CS-1272 0.84496 

11 CS-1278  a CS-1284 -0.53011 

12 CS-1284 a CS-1278 0.73779 

13 CS-1284 a CS-1285 0.54373 

14 CS-1285 a CS-1284 0.00952 

15 CS-1285 a CS-1279 0.44087 

16 CS-1279 a CS-1285 -1.39955 

17 CS-1279 a CS-1273 -0.14682 

18 CS-1273 a CS-1279 -0.93832 

19 CS-1273 a CS-1274 1.13997 

20 CS-1274 a CS-1273 -0.71349 

21 CS-1274  a CS-1280 -0.58609 

22 CS-1280  a CS-1274 1.1205 

23 CS-1280  a CS-1286 -1.15171 

24 CS-1286 a CS-1280 1.29662 

25 CS-1286 a 20060005 -0.14926 

26 20060005 a CS-1286 0.16224 

27 20060005 a A53TN3 -0.50717 

28 A53TN3 a 20060005 1.83856 

 

4. Network adjustment 
 

For the elimination of closing errors according to the 

corresponding mathematical requirements, the principle of 

least-squares is applied. This principle is based on searching 

that the sum of the squared residues from a set of 

observations is minimal through the most probable value 

(MPV) for a quantity obtained through repeated 

observations of equal weight [14]. To find this value that 

minimizes the sum of the squared residues, first one should 

identify:  

 

 The values of the known vertices or bounds (in 

case the circuit is closed; is not necessary) 

 The unknowns or height differences (dh) to be 

adjusted 

 The bounds to be corrected as product of the 

height differences adjustment 

 The distances between sections 

 The direction of the circuit or leveling line 
 

Table 4 Latitude and Longitude for the vertices. 

 

Point Latitude Longitude 

A53-TN-3 9.9830 -73.8928 

CS-1271 9.9835 -73.8873 

CS-1272 9.9995 -73.8857 

CS-1273 9.9797 -73.8838 

CS-1274 9.9778 -73.8814 

CS-1277 9.9835 -73.8893 

CS-1278 9.9810 -73.8878 

CS-1279 9.9785 -73.8853 

CS-1280 9.9764 -73.8837 

CS-1283 9.9821 -73.8913 

CS-1284 9.9798 -73.8897 

CS-1285 9.9768 -73.8878 

CS-1286 9.9745 -73.8862 

CS-1275 9.9763 -73.8804 

CS-1276 9.9746 -73.8790 

CS-1281 9.9749 -73.8823 

CS-1282 9.9727 -73.8809 

20060005 9.9757 -73.888 

 

As a basis, we should provide a main system of equations or 

general equations. These equations will define the standard 

or general relationships, will depend on the context of the 

network and they will be the basis of comparison and a-

posteriori correction of observation errors. 

 

BX = {

b11x1 + bx2 +⋯+ b1nxn = h1
b21x1 + bx2 +⋯+ b2nxn = h2

           …         …          …         …         ….       
bm1x1 + bm2x2 +⋯+ bmnxn = hm

}      (9) 

 

Now, for the practical case we add the height differences to 

a bound, which makes the final value equal to that of the 

considered bound, both in the forward and backward 

direction. Additionally, height differences in forward and 

backward directions for a section should add up to zero. 

 

BX=

{
 
 

 
 
Bound + dℎ1 + dh3 + ⋯+ dh27 = Bound

Bound +  dh2 + 𝑑ℎ4 + ⋯+ dh28 = Bound

dh1 + dh2 = 0  

dh3 + dh4 = 0  

  … .

dh27 + dh28 = 0 }
 
 

 
 

 (10) 
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Table 5 Orthometric Correction. 

 

Id 

Section’s 

Height 

Average 

α β 

Section’s 

Latitude 

Average 

Latitude 

Difference 

Orthometric 

Correction 
 

1 0.28798 0.002644 0.000007 9.982609 0.0008813 -0.00000001 

2 -0.07174 0.002644 0.000007 9.982609 -0.0008813 0.00000000 

3 27.838 0.002644 0.000007 9.982863 -0.0013884 0.00000010 

4 -29.853 0.002644 0.000007 9.982863 0.0013884 0.00000010 

5 -0.92077 0.002644 0.000007 9.983539 0.0000366 0.00000000 

6 -174.660 0.002644 0.000007 9.983539 -0.0000366 0.00000000 

7 0.44898 0.002644 0.000007 9.991527 -0.0160124 0.00000020 

8 -0.56947 0.002644 0.000007 9.991527 0.0160124 0.00000030 

9 -222.194 0.002644 0.000007 9.990298 0.0184700 0.00000130 

10 0.84496 0.002644 0.000007 9.990298 -0.0184700 0.00000050 

11 -0.53011 0.002644 0.000007 9.980467 0.0011923 0.00000002 

12 0.73779 0.002644 0.000007 9.980467 -0.0011923 0.00000003 

13 0.54373 0.002644 0.000007 9.978346 0.0030492 -0.00000010 

14 0.00952 0.002644 0.000007 9.978346 -0.0030492 0.00000000 

15 0.44087 0.002644 0.000007 9.977697 -0.0017522 0.00000002 

16 -139.955 0.002644 0.000007 9.977697 0.0017522 0.00000010 

17 -0.14682 0.002644 0.000007 9.979161 -0.0011754 -0.00000001 

18 -0.93832 0.002644 0.000007 9.979161 0.0011754 0.00000003 

19 113.997 0.002644 0.000007 9.978805 0.0018881 -0.00000010 

20 -0.71349 0.002644 0.000007 9.978805 -0.0018881 -0.00000004 

21 -0.58609 0.002644 0.000007 9.977174 0.0013740 0.00000003 

22 112.05 0.002644 0.000007 9.977174 -0.0013740 0.00000005 

23 -115.171 0.002644 0.000007 9.975532 0.0019100 0.00000010 

24 129.662 0.002644 0.000007 9.975532 -0.0019100 0.00000010 

25 -0.14926 0.002644 0.000007 9.975149 -0.0011454 -0.00000001 

26 0.16224 0.002644 0.000007 9.975149 0.0011454 -0.00000001 

27 183.856 0.002644 0.000007 9.979386 0.0073278 -0.00000040 

28 -0.50717 0.002644 0.000007 9.979386 -0.0073278 -0.00000010 

 

 

For the practical case one should also provide a system of 

observation equations that will have the unknowns as a 

function of observations, with the following characteristics: 

• The number of observations should be greater or 

equal than the number of unknowns 

• Equations should hold no mathematical relation 

between them (should be linearly independent) 

• All measured magnitudes should be expressed 

through the selected equations 

• The number of observation equations is given by n 

– k: 

 n = Number of measured observations 

 k = number of unknowns 

 

AX{

a11x1 + a12x2 +⋯+ a1nxn = k1
a21x1 + a22x2 +⋯+ a2nxn = k2

           …         …          …         …         ….       
am1x1 + am2x2 +⋯+ amnxn = km

}(11) 

 

The coefficients in the condition equations (Table 6) will 

define the first matrix, Matrix A, which is a m x n matrix (m 

= number of equations, n = number of observations). Roman 

numerals point to the employed equations. 
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Table 6 Condition Equations. 

 
1 

V1+V2 +(dh1+dh2) = 0 

2 
V3+V4 +(dh3+dh4) = 0 

3 
V7+V8 +(dh7+dh8) = 0 

4 
V9+V10 +(dh9+dh10) = 0 

5 
V11+V12 +(dh11+dh12) = 0 

6 
V15+V16 +(dh15+dh16) = 0 

7 
V17+V18 +(dh17+dh18) = 0 

8 
V19+V20 +(dh19+dh20) = 0 

9 
V21+V22 +(dh21+dh22) = 0 

10 
V23+V24 +(dh23+dh24) = 0 

11 
V25+V26 +(dh25+dh26) = 0 

12 
V27+V28 +(dh27+dh28) = 0 

13 V1+V3+V5+V7+…..+V27+(dh1+dh3+dh5+dh7+…+dh27) 

= 0 

14 V2+V4+V6+V8+…..+V28+(dh2+dh4+dh6+dh8+…+dh28) 

= 0 

 

 

A =

a11 a12 … a1n
a21 a22 … a2n
… … … …
am1 am2 … amn

                                     (11) 

 

The values given as a solution of the AX equation systems 

will produce a series of remainders when replaced in the BX 

equation system. These values will conform the second 

matrix, Matrix W, which is a m x 1 matrix (m = number of 

equations). 

 

BXi − AXi = W                                                             (12) 

 

According to the proposed condition equations, matrices A 

and W are: 

 

 

 
In geodetic leveling, given the measurements context, the 

weights will be a function of the leveling lines extension. 

“Weights of the leveling lines are inversely proportional to 

their lengths, and given that the length is proportional to the 

number of station setups, weights are also inversely 

proportional to the number of station setups” [15], which is 

why we will consider as leveling weights the inverse relation 

with respect to length. 

 

Pn =
1

√l
                                                                      (13) 

 

Weight values will define the third matrix, Matrix P, a 

diagonal matrix of n x n (n = number of observations) with 

elements Pi.                                        
 

Theoretically “the sum of the product of the weights 

multiplied by their respective remainders squared has to be 

minimized, that is the condition that should be imposed in 

the adjustment of weighted least squares” [12] [15]. This, 

represented in an equation is: 

 

P1W1 + P2W2 + ⋯+ PnWn = ∑ P W2    (14) 

 

In order to minimize the function and for the equations to 

have a unique solution, a system of Gauss normal equations 

is defined. This system is defined as the partial derivatives 

of the remainders summation with respect to each unknown 

and are established as equal to zero [16]. 

 

S =

[
 
 
 
 
 
 
∂∑Vi

2

∂X1
= 0

∂∑Vi
2

∂X2
= 0

…
…

∂∑Vi
2

∂Xn
= 0]

 
 
 
 
 
 

                                               (15) 
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To specify matrix notation of the Gauss normal equation 

system, we will design the transpose matrix of Matrix A as 

AT, and inverse matrix of matrix P as P-1. The fourth matrix 

is matrix N, square matrix and symmetric with respect to the 

main quadratic diagonal that contains the coefficients of the 

normal equations. This matrix is of size m x m (m = number 

of equations). 

 

N = A ∗ P−1 ∗ AT =

𝐍𝟏𝟏 N12 … N1m
N12 𝐍𝟐𝟐 N21 N2m
… N21 … …
N1m N2m … 𝐍𝐦𝐦

             (IV) 

 

 

The next step is the computation of the correlative factors, 

auxiliary factors that will be introduced in the condition 

equations, looking to find the minimum for the sum of the 

squared remainders using the LaGrange method. This 

methodology is known as compensation by correlative 

method. The values of these factors shall define the fifth 

matrix, matrix K, of size m x 1 (m = number of equations). 

 

K = N ∗ W =

K1
K2
…
Km

                                            (V) 

 

Last, the minimum quadratic solution of the observations X 

is obtained from solving the correlative equation system, and 

from these equalities one can find the desired corrections Vi. 

Obtaining such corrections Vi over the observed values 

allows to eliminate the closing errors W in the equations. 

 

The relationship between the correlative values and the 

observations matrix, with their respective weights is given 

by the sixth matrix, matrix V, of size n x 1 (n = number of 

observations). 

 

V = P−1 ∗ A ∗ K =

V1
V2
…
Vn

                                        (VI) 

 

So, the compensated values for the measured observations 

are computed using equation 15:  

 

X= X_i + V_i                                                               (16) 

 

where:  

 

X = Adjusted or compensated value 

X_i  = Observation value 

V_i = Correction 

 

 

5. Errors 
 

With the purpose of evaluating the degree of functionality 

for the cited adjustment, the different errors are defined 

below. 

 

5.1 Observation Error 

 
The definition starts from the concept of variance. 

Considering that the square root of the variance of an 

observation represents its standard deviation or quadratic 

mean error, equation 16 is cited, since it’s the equation that 

better defines said quadratic mean error [15]. 

 

s = emc = ±√
∑ ei2 
m
i=1

m
                                                   (17) 

 

In order to express the quadratic mean error as a function of 

the compensations, based in the equation P_1 W_1+P_2 

W_2+⋯+P_n W_n=∑P_iW_i,, one can reach the following 

inequality [15]: 

 

√
∑ ei2 
m
i=1

m
≥ √

∑ vi2 
m
i=1

m
                                        (18) 

 

Following an intermediate mathematical development is 

concluded that “the mean error for an isolated observation in 

a set of m observation relations with a lower number of 

unknowns n is obtained through the following expression” 

[16]. 

 

S = emc = ±√
∑ vi

2m
i=1

m−n
                                        (19) 

 

The sum of the squared compensations within the radical can 

be rewritten as follows: 

 

∑ vi
2m

i=1 = Vt ∗ V                                                          (20)          

 

Now, considering that the compensations made are 

weighted, the quadratic mean error of the observation is 

defined as: 

 

S = emc = ±√
Vt∗P∗V

m−n
                                                      (21) 

      
With the purpose of weighting the mean error for each of the 

observations, we use the following equation 

 

𝑚𝑖 =
𝑆

√𝑃𝑖
                                                                       (22) 

 

Here mi is the mean error of the original observations. 
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Figure 3 Leveling line 

 

5.2 Adjusted Value Error 

 

Given the intervention of field observations for the 

computation of adjusted or compensated values, these 

results are also characterized by a mean error. The errors in 

the compensated bounds are in function of the initial 

measurement errors, which is known as propagation of error 

 

For the case of altimetric leveling, a propagation of error is 

generated, since the initial field measurement error is 

intrinsic in the compensated bound error. Given that the 

function that relates compensated height with field 

observation (height difference) is linear, the propagation of 

error is linear in a circuit or leveling line (Figure 3). 

 

HB = HA + dhAB                                            (23) 
 

Here: 

 

H_B=Bound for B 

H_A=Bound for A 

dh_AB=Height difference from A to B 

 

6. Precision of determined quantities 

 

Though adjustment, the unknowns are determined 

indirectly, i.e., they are determined from indirect 

observations related to the expected unknowns through 

linear functions, such as observation equations; then, the 

standard deviation for the unit weight is expressed as [15]: 

 

S0 = √
∑pv2

m−n
                                                                    (24) 

 

Here m is the number of observations, n is the number of 

unknowns. Thus, m - n are the degrees of freedom. 

 

The precision of height differences is determined from the 

covariance matrix formed from the coefficients of the 

unknowns in the observation equations.  

 

This is used to calculate the standard deviations of the 

adjusted values that are indirectly determined and are 

functions of observed values; the covariance matrix is equal 

to the inverse matrix of the normal equation coefficient 

matrix multiplied by the unit variation 

 

Sx
2 = S0

2(ATPA)−1 = S0
2Q                            (25) 

 

The calculated standard deviation Si, for any given 

unknown, having been computed from an observation 

equation system, can be expressed as 

 

Sxi = S0√Qxi 𝑥𝑗                                                                    (26) 

 

where Qij is the diagonal element (row i, column j) from the 

covariance matrix [15]. 

 

7. Results and discussion 
 

The proportionality of corrections inference in height 

differences is presented in figure 4. Orthometric corrections 

were less considerable in all height differences, with respect 

to the temperature correction, whence is concluded that the 

leveling zone can present a constant gravity model.  

 

However, as previously mentioned, the way of precisely 

stating this affirmation is through geopotential numbers. 

Thereby, the respective corrections for the circuit data 

obtained in field by the Geographic Institute Agustín 

Codazzi are summarized in Table 7. 

 

Regarding the least-squares adjustment, the calculated mean 

squared error was 0.05478 centimeters. The observation 

equations were selected with the criteria of conditioning the 

adjustment towards a bound closing, both in forward and 

backward directions.  

 

Also, the remaining equations are related taking as a rule that 

both the forward and backward direction height differences 

must be equal, thus their sum should be equal to zero. 

Obtained results are presented in Table 8, where:  

 

n = Height difference. 

dh= Height difference Initial value (without adjustment 

corrections). 

Vi (m) = Obtained corrections.  

dhii (m) = Corrected height difference value.  

Pi = Weight for each height difference.  

mi (m) = Mean error for original observations. See equation 

21.  

Qxx = Correlation factor.  

Sx (m) = Mean error for adjusted observations. See equation 

25 
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Figure 4 Value of Correction by height difference. 

 

Table 8 Adjustment results. See text for key. 

 

n dhi (m) Vi (m) dhii (m) Pi mi (Cm) Qxx Sx (Cm) 

dh1 -0,0416 -0,00009 -0,0417 1,9368 0,0394 0,24238 0,02697 

dh2 0,0417 0,00020 0,0419 1,9368 0,0394 0,24238 0,02697 

dh3 4,1905 -0,00052 4,1900 1,8908 0,0398 0,24789 0,02727 

dh4 -4,1912 -0,00022 -4,1914 1,8908 0,0398 0,24789 0,02727 

dh5 0,4922 -0,00014 0,4921 2,0891 0,0379 0,36190 0,03295 

dh6 -0,4921 0,00014 -0,4920 2,0891 0,0379 0,36190 0,03295 

dh7 0,6800 -0,00042 0,6796 2,0699 0,0381 0,22775 0,02614 

dh8 -0,6806 -0,00014 -0,6807 2,0699 0,0381 0,22775 0,02614 

dh9 -2,7888 -0,00034 -2,7892 1,4499 0,0455 0,31670 0,03083 

dh10 2,7886 0,00005 2,7886 1,4499 0,0455 0,31670 0,03083 

dh11 -0,9589 -0,00001 -0,9589 1,9879 0,0389 0,23655 0,02664 

dh12 0,9592 0,00028 0,9595 1,9879 0,0389 0,23655 0,02664 

dh13 0,4806 -0,00018 0,4804 1,5840 0,0435 0,42820 0,03585 

dh14 -0,4807 0,00018 -0,4805 1,5840 0,0435 0,42820 0,03585 

dh15 1,5506 -0,00032 1,5503 1,7230 0,0417 0,27026 0,02848 

dh16 -1,5510 0,00001 -1,5510 1,7230 0,0417 0,27026 0,02848 

dh17 0,4350 0,00007 0,4351 2,1823 0,0371 0,21669 0,02550 

dh18 -0,4346 0,00033 -0,4343 2,1823 0,0371 0,21669 0,02550 

dh19 1,4483 0,00009 1,4483 1,6798 0,0423 0,27669 0,02881 

dh20 -1,4478 0,00043 -1,4474 1,6798 0,0423 0,27669 0,02881 

dh21 -1,4910 -0,00013 -1,4911 1,5427 0,0441 0,29925 0,02997 

dh22 1,4912 0,00024 1,4914 1,5427 0,0441 0,29925 0,02997 

dh23 -1,8053 -0,00059 -1,8059 1,5436 0,0441 0,29909 0,02996 

dh24 1,8046 -0,00022 1,8044 1,5436 0,0441 0,29909 0,02996 

dh25 -0,1769 -0,00004 -0,1769 1,4913 0,0449 0,30867 0,03043 

dh26 0,1772 0,00035 0,1776 1,4913 0,0449 0,30867 0,03043 

dh27 -2,0181 -0,00092 -2,0190 0,9811 0,0553 0,44816 0,03667 

dh28 2,0168 -0,00034 2,0164 0,9811 0,0553 0,44816 0,03667 
 

 

-0.0004

-0.0002

0

0.0002

0.0004

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

HEIGHT DIFFERENCE VALUES 

Corrección por… Corrección…
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Table 9 Adjustment Bounds. 

 

Section 
Adjusted 

Leveled Bound 
Sx Cm 

CS-1283 80.729 0.0270 

CS-1277 84.920 0.0273 

CS-1271 85.412 0.0330 

CS-1272 86.092 0.0261 

CS-1278 83.303 0.0308 

CS-1284 82.344 0.0266 

CS-1285 82.824 0.0358 

CS-1279 84.375 0.0285 

CS-1273 84.810 0.0255 

CS-1274 86.257 0.0288 

CS-1280 84.766 0.0300 

CS-1286 82.961 0.0300 

20060005 82.784 0.0304 

 

 

8. Conclusions 
 

Corrections made to the obtained height differences in field 

did not exceed 0.1 mm on average, but in some sections the 

corrections come to 0.03 centimeters. Although the 

corrections do not modify considerable the height 

differences, these should not be disregarded, since geodetic 

leveling is based on high accuracy precisions, whereby a 

variation comparable to a centimeter is considerable for 

height differences that usually don’t exceed 1 meter.  

 

Additionally, depending on the extension or location of the 

survey, physical factors documented in the corrections 

(temperature, height, latitude, etc.) may vary in greater 

extent, hence the corrections can be greater. 

 

Accuracy of adjustment for the leveling circuit is reflected 

in the quadratic mean error equivalent to 0.06 centimeters. 

This error represents an accuracy confidence around half 

millimeter, which is remarkable considering the accuracy 

required in geodesy.  

 

The reason that led to the high accuracy of the adjustment 

was, at first an optimal definition of the initial observation 

equations in which the basic principles for the practical 

leveling case were considered. 

The precision range for the obtained adjusted heights varies 

between 0.0255 and 0.0358 centimeters, which represents a 

standard deviation around half a millimeter, assuring highly 

precise leveled height values.  

 

Obtaining high precision values for each measurement 

enables the use of geodetic information separately, i.e. after 

the adjustment each height difference can be used in 

different projects depending their requirement of precision 

and accuracy; this provides different companies and entities 

more accurate and independent altimetric values. 

 

For the Geographic institute Agustín Codazzi the 

determination of a local vertical reference system has 

become a very important aim, due to the desire of 

contributing to the establishment of the global vertical 

reference system. The computation of geopotential numbers 

and normal heights is a first approximation to the obtention 

of such systems, and since adjusted geometric height 

differences are one of the main inputs for said computation, 

this article supplies the need of standardizing leveling data 

treatment in the office. 
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