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Abstract 

 
In this paper, a scheme for online identification of multivariable systems (MIMO) and a linear state feedback control is 

considered. The identification algorithm takes into account the input/output behavior in order to obtain a linear state 

spaces model that describes adequately the system in discrete time. This representation is obtained by using an online 

identification method such as the projection algorithm. An optimal linear quadratic regulator is applied in discrete time, 

where the obtained state feedback control law minimizes the quadratic cost function to calculate the optimal gain matrix. 

The proposed methodology for identification and multivariable control is applied an evaluated in a wind turbine with a 

Permanent Magnet Synchronous Generator (PMSG). 

 

Keywords: Control, identification, optimal gain, multivariable, linear model, feedback. 

 

Resumen 

 
En este trabajo, se considera un esquema de identificación en línea de sistemas multivariable (MIMO) y un control lineal 

por realimentación de estados. El algoritmo de identificación considera el comportamiento de entrada/salida con el fin de 

obtener un modelo de espacio de estados lineal que describe adecuadamente el sistema en tiempo discreto. Esta 

representación se obtiene mediante el uso de un método de identificación en línea, tales como el algoritmo de proyección. 

Un regulador lineal cuadrático óptimo se aplica en tiempo discreto, donde la ley de control por realimentación de estados 

obtenida, minimiza la función de costo cuadrática para calcular la matriz de ganancia óptima. Se aplica la metodología 

propuesta para la identificación y el control multivariable, en una turbina eólica con un generador síncrono de imanes 

permanentes (PMSG). 

 

Palabras clave: Control, identificación, ganancia óptima, multivariable, modelo lineal, retroalimentación. 

 

1. Introduction 

 
With its abundant, inexhaustible potential, its increasingly 

competitive cost, and environmental advantage, wind 

energy is one of the best technologies available today to 

provide a sustainable supply to the world development. 

Now, the wind energy is an important sustainable energy 

resource and with this creates the need for increased power 

production from the wind in adverse conditions, when the 

wind turbine generator system is coupled to a power 

system [1]. Recent studies are focused on investigating the 

system behavior with internal disturbances and variable 

wind speed that affects the system [2], and other 

investigations proposing new techniques about the system 

identification and the control systems in the maximum 

extracting of energy of the whole system [3]. 

 

The systems that use the subspace identification methods 

(SIMs) have become quite popular in recent years. The 

SIMs objective is to estimate the state variables or the 

extended observability matrix directly from the input and 

output data [4]. The most influential methods are CVA 

(Canonical Variate Analysis [5]), MOESP (Multivariable 

Output Error State Space [6]) and N4SID (Numerical 

Subspace State-Space System Identification [6]). But exist 

other methods that used the Darma model to estimate the 

plant parameters in each time with past inputs/outputs 

values [7]. 
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Linear system identified with SIMs, are suitable for the 

application of state space controllers. The investigations 

around the discrete linear quadratic regulator (DLQR) 

control are oriented to the convergence of control 

strategies for discrete-time linear systems in state space 

based on dynamic programming (DP) and the classical 

DLQR. The performance of the DP algorithms is 

evaluated for changes in control targets that are mapped in 

Q and R weighting matrices [8]. 

 

This paper is focused on the mathematical model of a wind 

generator where the behavior of its variables will be 

examined. So, a nonlinear multivariable system 

identification scheme is proposed, based on a linear state 

space representation to improve the performance of the 

wind turbine. Lastly, the system's closed loop response is 

evaluated with the optimal adaptive controllers and the 

parameters stated by using the identification schemes. 

 

2. Model description 

 
The model of a wind turbine with Permanent Magnet 

Synchronous Generator (PMSG) is constructed from a 

number of sub models of the turbine, drive train, 

synchronous generator and rotor side converter. A general 

structure of the model is shown in Figure 1 [9,13]. 

 

 
Figure 1 General structure of the wind 

 

2.1 Turbine Model 

 

The main purpose of the wind turbine is to obtain energy 

from the wind and transform it into electrical energy [9]. 

The power extracted from the wind is described by (1) 

𝑃𝑤 =
𝜋𝜌𝑅𝑎2

2
𝐶𝑝(𝜆)𝑣3 

 

 (1)    

 

 

Where, ρ is the air density, Ra is the radius of the area 

covered by the wind, v is the wind speed and Cp is the 

performance coefficient in function of the tip speed. 

The torque developed from the wind and the Cp 

approximation is presented in (2) and (3).  

𝑇𝑤𝑡 =
𝜋𝜌𝑅𝑎3

2
𝐶𝑝(𝜆)𝑣

2 

 

(2) 
 

𝐶𝑝(𝜆) = 0.22 (
116

𝜆
− 5) 𝑒

−12.5
𝜆  

 
(3) 

 

A second order approximation, of the coefficient Cp, is 

calculated employing the least square technique. 

𝐶𝑝 = 𝑎0 + 𝑎1𝜆 + 𝑎2𝜆
2 

 

(4) 

 

The tip speed is (5) 

𝜆 =
𝜔𝐿𝑅𝑎

𝑣
 

 

(5) 
 

The speed in the generator side is (6), where G is the 

multiplier coefficient of the gear box. 

𝜔𝐻 = 𝜔𝐿𝐺 

 

(6) 

 

The torque in the generator side is: 

𝑇𝑚 =
𝑇𝑤𝑡
𝐺

 

 
(7) 

 

Replacing equations (5) and (4) in (2), the torque in the 

generator side is represented by the approximation (8) 

𝑇𝑚 =
𝑑1𝑣

2

𝐺
+
𝑑2𝑣𝜔𝐻
𝐺2

+
𝑑3𝜔𝐻

2

𝐺3
 

 

(8) 
 

3. Drive train system 

Las figuras y tablas deben aparecer lo más cerca posible 

del lugar de su primera cita, por ejemplo, La figura. 1, en 

el texto. Las figuras se numerarán con números arábigos, 

con la leyenda centrada debajo de la figura, en negrita. 

The drive train of PMSG consists of five parts, namely, 

rotor, low speed shaft, gearbox, high-speed shaft and 

generator. When the study focuses on the interaction 

between wind farms and AC grids, the drive train can be 

treated as one-lumped mass model for the sake of time 

efficiency and acceptable precision. So, the drive train 

takes the form of the latter one in the paper in which the 

parameters have been referred to the generator side [10]. 

{
 

 
𝑑𝜔

𝑑𝑡
= (𝑇𝑒 − 𝑇𝑚 − 𝐵𝑚𝜔𝐻)

1

𝐽𝐻
𝑑𝜃

𝑑𝑡
= 𝜔𝐻

 

 

(9)  

 

ωH the angular velocity, Te electrical torque, Tm 

mechanical torque, Bm is the rotating damping, JH is the 

inertia constant and θ the angular position angle. 

 

4. Pmsg modeling 

The PMSG has been considered as a system which makes 

possible to produce electricity from the mechanical energy 

obtained from the wind. 

The dynamic model of the PMSG is derived from the two-

phase synchronous reference frame, which the q-axis is 

90° ahead of the d-axis with respect to the direction of 

rotation [1]. By the application of the Park transform and 

presenting the model as a generator with negative currents; 

the system is expressed in the coordinates of the rotor 
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which makes the design of the driver simpler because their 

signals are treated as direct current and that reduces the 

model to two axes.  

 

The system is modeled with the set of equations (10) to 

(13) where idq and udq represent currents and voltages of 

the stator in the axis q and d respectively [9]. 

𝑑𝜃

𝑑𝑡
= 𝜔 

 

(10) 
 

𝑑𝜔

𝑑𝑡
=
𝑛𝑝
𝐽𝐻
𝜑𝑚𝑖𝑞 −

𝑇𝑚
𝐽𝐻

 

 
(11) 

 

𝑢𝑑 = −𝑅𝑖𝑑 + 𝑛𝑝𝐿𝑠𝜔𝑖𝑞 − 𝐿𝑠
𝑑𝑖𝑑
𝑑𝑡

 

 

(12) 

 

𝑢𝑞 = −𝑅𝑖𝑞 − 𝑛𝑝𝐿𝑠𝜔𝐻𝑖𝑑 − 𝐿𝑠
𝑑𝑖𝑑
𝑑𝑡

+ 𝜔𝜑𝑚 

 

(13) 
 

np is the number of pole pairs, R is the stator resistance, Ls 

is the inductance of the stator, φm the magnetization flow 

in the rotor. 

The system in state space is represented in (14) to (15) to 

feed a RL load, L is the inductance of the load, RL the 

variable resistance of the load, JH inertia coefficient at the 

side of the generator. The state vector is 𝒙 = [𝑥1, 𝑥2, 𝑥3]
𝑇 =

[𝑖𝑑, 𝑖𝑞 , 𝜔]
𝑇
, the inputs of the system 𝒖 = [𝑢1, 𝑢2]

𝑇 = [𝑅𝐿, 𝑣]
𝑇 and 

the rotor speed ω is the output. 

𝑑𝑥1
𝑑𝑡

=
1

𝐿 + 𝐿𝑠
(−𝑅𝑥1 + 𝑛𝑝(𝐿 + 𝐿𝑠)𝑥2𝑥3 − 𝑥1𝑢1) 

 
(14) 

 

𝑑𝑥2
𝑑𝑡

=
1

𝐿 + 𝐿𝑠
(−𝑅𝑥2 + 𝑛𝑝(𝐿 + 𝐿𝑠)𝑥1𝑥3

+ 𝑛𝑝𝜑𝑚𝑥3 − 𝑥2𝑢1) 

 

(15) 

 

𝑑𝑥3
𝑑𝑡

=
1

𝐽𝐻
(𝜂 (

𝑑1
𝐺
𝑢2
2 +

𝑑2
𝐺2
𝑢2𝑥3 +

𝑑3
𝐺3
𝑥3
2)

− 𝑛𝑝𝜑𝑚𝑥2) 

 

(16) 
 

𝑦 = [0     0     1]𝒙 

 
(17) 

 

η is the drive train performance coefficient. 

 

5. Subspace identification method 

 
5.1. Representation of Multivariable Systems 

The representation of a multi-variable discrete system 

with m outputs and r inputs with q as delay operator can 

be stated in [7]: 

𝑨(𝑞−1)𝑦(𝑘) = 𝑩(𝑞−1)𝑢(𝑘) 
 

(18) 

 

where A is given by: 

𝑨(𝑞−1) = 𝑨0 + 𝑨𝟏(𝑞
−1) +⋯+ 𝑨𝑛1(𝑞

−𝑛1) 
 

(19) 

 

 

and B is given by: 

𝑩(𝑞−1) = 𝑩𝟏(𝑞
−1) + ⋯+ 𝑩𝑛2(𝑞

−𝑛2) 
 

(20) 
 

wit𝑛1 ≥ 𝑛2h  and where 𝑨𝑖 ∈  ℜ
𝑚𝑥𝑚, 𝑩𝑖 ∈  ℜ

𝑟𝑥𝑟 , the 

inputs 𝒖 ∈  ℜ𝑟𝑥1 and the outputs 𝒚 ∈  ℜ𝑚𝑥1 as 

𝑦(𝑘) = [
𝑦1(𝑘)
⋮

𝑦𝑚(𝑘)
]   ,   𝑢(𝑘) = [

𝑢1(𝑘)
⋮

𝑢𝑚(𝑘)
] 

 

(21) 

 

If 𝑨𝑜 = 𝑰 with I the identity matrix, y takes the form: 

𝑦(𝑘) = 𝑩1𝒖(𝑘 − 1) +⋯+𝑩𝑛2𝒖(𝑘 − 𝑛2)

− 𝑨1𝒚(𝑘 − 1) −⋯
− 𝑨𝑛1𝒚(𝑘 − 𝑛1) 

 

(22) 

 

where 𝑨𝑖 and iB
 are of the form: 

𝑨𝑖 = [
𝑎1𝑚
𝑖 … 𝑎1𝑚

𝑖

⋮ ⋱ ⋮
𝑎𝑚1
𝑖 ⋮ 𝑎𝑚𝑚

𝑖
] 

𝑩𝑖 = [
𝑏1𝑚
𝑖 … 𝑏1𝑚

𝑖

⋮ ⋱ ⋮
𝑏𝑚1
𝑖 ⋮ 𝑏𝑚𝑚

𝑖
] 

 

(23) 

 

Equations (22) and (23) can be expressed the output yi in 

terms of past inputs/outputs as: 
𝑦𝑖(𝑘) = 𝑏𝑖1

1 𝑢1(𝑘 − 1) +⋯+ 𝑏𝑖𝑟
1 𝑢𝑟(𝑘 − 1) +⋯

+ 𝑏𝑖1
𝑛2𝑢1(𝑘 − 𝑛2) + ⋯+𝑏𝑖𝑟

𝑛2𝑢𝑟(𝑘

− 𝑛2) 
−𝑎𝑖1

1 𝑦1(𝑘 − 1) − ⋯− 𝑎𝑖𝑚
1 𝑦𝑚(𝑘 − 1) −⋯

− 𝑎𝑖1
𝑛1𝑦1(𝑘 − 𝑛1) − ⋯− 𝑎𝑖𝑚

𝑛 2𝑦𝑚(𝑘

− 𝑛1) 

 

(24) 

 

It appears from the above equation that the DARMA 

model of the equation (18) can be expressed as [11]: 

𝒚(𝑘) = 𝜽𝑇𝜙(𝑘 − 1);   𝑘 ≥ 0 

 

(25) 

 

where θT is transposed of θ, and θ has dimension 

(mn1+rn2) x m that holds the parameters of 𝑨𝑖 and iB
 of 

the form:  

𝜽𝑇 = [−𝑨1⋯−𝑨𝑛𝑩0⋯𝑩𝑛−1] 
 

(26) 

 

and 𝜙(𝑘 − 1)   is a vector of dimension (mn1+rn2) x 1 

that holds the values of past input/output 

𝜙(𝑘 − 1)   =

[
 
 
 
 
 
 
 
𝒚(𝑘 − 1)

⋮

𝒚(𝑘 − 𝑛2)

𝒖(𝑘 − 1)

⋮

𝒖(𝑘 − 𝑛1)]
 
 
 
 
 
 
 

 

 

(27) 

 

An state space representation can be obtained from (22) 

and (27) by selecting 𝜙(𝑘 − 1)as the state space vector, 

as follows: 

𝜙(𝑘)  = 𝐸𝜙(𝑘 − 1) + 𝐹𝑢(𝑘) 
𝑦(𝑘) = 𝑀𝑒𝜙(𝑘 − 1) 

 

(28) 

 

being   
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𝐸 =

[
 
 
 
 
 
−𝑨1 ⋯ −𝑨𝑛1 −𝑩1 ⋯ 𝑩𝑛2
𝑰 0 0 ⋯ 0 0
0 ⋱ 0 ⋯ 0 0
0 0 0 ⋯ 0 0
0 ⋯ 0 𝑰 0 0
0 ⋯ 0 0 ⋱ 0 ]

 
 
 
 
 

 

 

(29) 
 

and 

𝐹𝑇 = [0 ⋯ 0 𝑰 ⋯ 0] 
 

(30) 

 

and 

𝑀𝑒 = [−𝑨1 ⋯ −𝑨𝑛1 𝑩1 ⋯ 𝑩𝑛2] 
 

(31) 
 

The PMSG has been considered as a system which makes 

possible to produce electricity from the mechanical energy 

obtained from the wind. The PMSG has been considered 

as a system which makes possible to produce electricity 

from the mechanical energy obtained from the wind. The 

PMSG has been considered as a system which makes 

possible to produce electricity from the mechanical energy 

obtained from the wind. The PMSG has been considered 

as a system which makes possible to produce electricity 

from the mechanical energy obtained from the wind.  
 

5.2. Online Estimation Schemes 

The estimated parameters �̂�𝑇(𝑘) are calculated in terms of 

the previous matrix of the estimated parameters �̂�𝑇(𝑘 −
1) as follows 

�̂�(𝑘) = �̂�(𝑘 − 1) +𝑴(𝑘 − 1)𝜙(𝑘 − 1)𝑒(𝑘 − 1) 
 

(32) 

 

where �̂�(𝑘) is the matrix of parameters estimated in time 

k, 𝑴(𝑘 − 1) denotes the algorithm gain (possibly a matrix), 

𝜙(𝑘 − 1)is a regression vector composed of past 

inputs/outputs, and 𝑒(𝑘 − 1) is the error of the form 

𝑒(𝑘) = 𝒚𝑇(𝑘) − �̂�𝑇(𝑘) 
 

(33) 

 

where  �̂�(𝑘) = �̂�𝑇(𝑘 − 1)𝜙(𝑘 − 1)is given by 

�̂�(𝑘) = �̂�𝑇(𝑘 − 1)𝜙(𝑘 − 1) 
 

(34) 
 

 

5.3. Projection Algorithm 

 

The projection algorithm raises an optimization problem 

where  �̂�(𝑘) is being minimised with the  �̂�(𝑘 − 1) and 

𝒚(𝑘)  given, such that 

𝑱 =
1

2
‖�̂�(𝑘) − �̂�(𝑘 − 1)‖

2
 

 

(35) 

 

subject to  

𝒚(𝑘) = 𝜙𝑇(𝑘 − 1)�̂�(𝑘) 
 

(36) 

 

The projection algorithm is given by  
𝑒(𝑘) = 𝒚𝑇(𝑘) − 𝜙𝑇(𝑘 − 1)�̂�(𝑘) 

𝑴(𝑘) =
1

𝜙(𝑘 − 1)𝑇𝜙(𝑘 − 1)
 

�̂�(𝑘) = �̂�(𝑘 − 1) +𝑴(𝑘)𝜙(𝑘 − 1)𝑒(𝑘) 

 

(37) 
 

Least Squares Algorithm  

The least squares algorithm is given by  

 

𝑴(𝑘) =
𝑃(𝑘 − 1)

1 + 𝜙(𝑘 − 1)𝑇𝑃(𝑘 − 1)𝜙(𝑘 − 1)
 

�̂�(𝑘) = �̂�(𝑘 − 1) +𝑴(𝑘)𝜙(𝑘 − 1)𝑒(𝑘) 
𝑃(𝑘) = 𝑃(𝑘 − 1) −𝑴(𝑘)𝜙(𝑘

− 1)𝜙(𝑘 − 1)𝑇𝑃(𝑘 − 1) 
 

 

(38) 

 

5.4. Discrete Linear Quadratic Regulator 

 

The formulation of the DLQR problem in the discrete-time 

case is analogous to the continuous-time LQR problem. 

Consider the time-invariant linear system described in 

(28) where the vector 𝜙(𝑘 − 1) represents the variables 

to be regulated [11]. The DLQR problem is to determine a 

control sequence {𝑢∗(𝑘)}, 𝑘 ≥ 0, which minimizes the 

cost function 

𝐽(𝑢) =∑[𝜙𝑇(𝑘 − 1)𝑄𝜙(𝑘 − 1)

∞

𝑘=0

+ 𝑢𝑇(𝑘)𝑅𝑢(𝑘)] 

 

(39) 

 

where the weighting matrices Q and R are real symmetric 

and positive definite. 

Assume that (𝐸, 𝐹, 𝑄1/2𝑀𝑒) is reachable and observable. 

Then the solution to the DLQR problem is given by the 

linear state feedback control law 

𝑢∗(𝑘) = 𝐾∗𝜙(𝑘 − 1) = −[𝑅
+ 𝐹𝑇𝑃𝑐

∗𝐹]−1𝐹𝑇𝑃𝑐
∗𝐸𝜙(𝑘

− 1) 

 

(40) 

 

where 𝑃𝑐
∗ is the unique, symmetric, and positive-definite 

solution of the (discrete-time) algebraic Riccati equation, 

given by 

𝑃𝑐 = 𝐸𝑇[𝑃𝑐 − 𝑃𝑐[𝑅 + 𝐹
𝑇𝑃𝑐

∗𝐹]−1𝐹𝑇𝑃𝑐]𝐸
+ 𝑀𝑒

𝑇𝑄𝑀𝑒 

 

(41) 
 

As in the continuous-time case, it can be shown that the 

solution 𝑃𝑐
∗ can be determined from the eigenvectors of 

the Hamiltonian matrix, which in this case is 

𝐻

= [
𝐸 + 𝐹𝑅−1𝐹𝑇𝐸−𝑇𝑀𝑒

𝑇𝑄𝑀𝑒 −𝐹𝑅−1𝐹𝑇𝐸−𝑇

𝐸−𝑇𝑀𝑒
𝑇𝑄𝑀𝑒 𝐸−𝑇

] 

 

(42) 

 

The linear state feedback control law can be extended for 

reference tracking performance as follows 

𝑢(𝑘) = −𝐾𝜙(𝑘 − 1) + 𝐾𝑔𝑟(𝑘) 
 

(43) 

 

being 𝑟(𝑘) a reference vector and 𝐾𝑔 a steady state 

matrix gain or reference gain defined by 
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𝐾𝑔 = (𝑀𝑒(𝐼 − 𝐸 + 𝐹𝐾)
−1𝐹)# 

 

(44) 

 

being (𝑀𝑒(𝐼 − 𝐸 + 𝐹𝐾)
−1𝐹)# the pseudoinverse of 

(𝑀𝑒(𝐼 − 𝐸 + 𝐹𝐾)
−1𝐹). 

 

6. Results 
 

The proposed model of PMSG is constructed with 

MATLAB/Simulink using the parameters of Tables 1, 2 

and 3. 

 

Table 1 Wind turbine parameters. 
Ra 2,5 m 

G 1 

JH 0,5042 kg.m2 

η 1 

ρ 1,2259 

Bm 0 

 

Tabla 2 Load parameters. 
RL 80 Ω 

L 0,08 H 

 

Tabla 3 PMSG parameters. 
R 3,3 Ω 

Ls 0,04156 H 

Φm 0,48 Wb 

np 3 

 

This section presents the simulated responses of the 

system with a variable wind speed from 5m/s to 12 m/s 

and a time varying load.  

The open loop response of the wind turbine is shown in 

Figure 2. 

 

 
Figure 2 The system's response in open loop. 

 

By applying the online identification scheme, a discrete linear model of the PMSG is obtained. Estimated model is 

represented in state space as shown in (45) 

 

 

𝜙(𝑘) =

[
 
 
 
 
 
 
 
 
0,814 0,905 0,127 0,913 0,632 0,097 0,278 0,546 0,957
1,000 0 0 0 0 0 0 0 0
0 1,000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1,000 0 0 0 0 0
0 0 0 0 1,000 0 0 0 0
0 0 0 0 0 1,000 0 0 0
0 0 0 0 0 0 1,000 0 0 ]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0]

 
 
 
 
 
 
 
 

[
𝑢1(𝑘)

𝑢2(𝑘)
] 

𝑦(𝑘) = [0,814 0,905 0,127 0,913 0,632 0,097 0,278 0,546 0,957]𝜙(𝑘 − 1) 

 

(45) 

 

with  
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𝑦(𝑘) = [
0,7976 0,5495 0,5449 0,4239 0,4657 0,3544 0,5152 0,2776 0,2062
0,8779 0,4747 0,4902 0,4603 0,4686 0,3088 0,4560 0,2497 0,1855

] 
(46) 

 

and  

𝐾𝑔 = [
0,4547
0,4704

] 
 

(47) 

 

being  

𝜙(𝑘 − 1) =

[
 
 
 
 
 
 
 
 
 
𝑦(𝑘 − 1)
𝑦(𝑘 − 2)
𝑦(𝑘 − 3)
𝑢1(𝑘 − 1)
𝑢2(𝑘 − 1)
𝑢1(𝑘 − 2)
𝑢2(𝑘 − 2)
𝑢1(𝑘 − 3)
𝑢2(𝑘 − 3)]

 
 
 
 
 
 
 
 
 

 

 

(48) 

 

 

 
Figure 3 Output and control signal with the DLQR control and no reference gain. 

 

 
Figure 4 Output and control signals with the DLQR control and reference gain. 
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Figure 3 shown the system's regulation with the DLQR 

control: K as feedback gain but without 𝐾𝑔 as reference 

gain, the values are the same that is previously used. 

Output signal has a steady state time around the 0.3s after 

changing the reference value, an overshoot around the 6 

rad/s and an oscillatory response before reaching the 

steady state. 

 

The system's response using the DLQR control is shown 

in Figure 4 with K as feedback gain and 𝐾𝑔 as reference 

gain, in equations (46) and (47), respectively. In Figure 4, 

the system has a steady state time around the 0.5 s, an 

overshoot around the 0.3rad/s and the output signals 

follows the references. 

 

7. Conclusions 
 

The identification methods of state variables with least 

squares and projection algorithms, where the observer of 

states is included, allows a better estimation the linear 

model in state space of a multivariable discrete system. 

With a adequate estimation of the system, control 

strategies can be used where the controller adapts to 

changes response to any disturbance reference, at each 

instant time. 

The work developed shows that a satisfactory 

performance of control algorithms depends of the 

performance of identification algorithms. The steady state 

time and overshoot of output signal, can be changed 

depending of the performance of the control algorithms or 

non-following reference output signal (steady-state error). 
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