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Abstract 

Peripheral Nerve Blocking (PNB) is a commonly used technique for performing 

regional anesthesia and managing pain. PNB comprises the administration of 

anesthetics in the proximity of a nerve. In this sense, the success of PNB procedures 

depends on an accurate location of the target nerve. Recently, ultrasound images (UI) 

have been widely used to locate nerve structures for PNB, since they enable a non-

invasive visualization of the target nerve and the anatomical structures around it. 

However, UI are affected by speckle noise, which makes it difficult to accurately locate a 

given nerve. Thus, it is necessary to perform a filtering step to attenuate the speckle 

noise without eliminating relevant anatomical details that are required for high-level 

tasks, such as segmentation of nerve structures. In this paper, we propose an UI 

improvement strategy with the use of a pre-image-based filter. In particular, we map the 

input images by a nonlinear function (kernel). Specifically, we employ a correntropy-

based mapping as kernel functional to code higher-order statistics of the input data 

under both nonlinear and non-Gaussian conditions. We validate our approach against an 

UI dataset focused on nerve segmentation for PNB. Likewise, our Correntropy-based 

Pre-Image Filtering (CPIF) is applied as a pre-processing stage to segment nerve 

structures in a UI. The segmentation performance is measured in terms of the Dice 

coefficient. According to the results, we observe that CPIF finds a suitable approximation 

for UI by highlighting discriminative nerve patterns. 

 

Keywords 

Nerve structure segmentation, ultrasond images, pre-images approximation, 

Correntropy. 

 

 

Resumen 

El bloqueo de nervios periféricos (PNB) es una técnica ampliamente usada para 

llevar a cabo anestesia regional en el manejo del dolor. El PNB aplica una sustancia 

anestésica en el área que rodea el nervio que se quiere intervenir, y su éxito depende de 

la localización exacta del mismo. Recientemente, las imágenes de ultrasonido (UI) se han 

utilizado para la localización de nervios periféricos en PNB ya que permiten una 

visualización no invasiva y directa del nervio y de las estructuras anatómicas alrededor 

de él; sin embargo, este tipo de imágenes están afectadas por ruido speckle, dificultando 

su delimitación exacta. De esta manera, es pertinente una etapa de filtrado para atenuar 

el ruido sin remover información anatómica importante para la segmentación. En este 

artículo se propone una estrategia para el mejoramiento de UI usando filtrado basado en 

pre-imágenes. En particular, las imágenes se mapean a un espacio de alta 

dimensionalidad a través de una función kernel. Específicamente, se emplea un mapeo 

basado en Correntropía con el fin de codificar estadísticos de orden superior de las 

imágenes bajo condiciones no-lineales y no-Gaussianas. El enfoque propuesto se valida 

en la segmentación de nervios para PNB. El enfoque de filtrado basado en pre-imágenes 

con Correntropía (CPIF) es usado como pre-procesamiento en tareas de segmentación de 

nervios sobre UI. El rendimiento de la segmentación es medida en términos del 

coeficiente Dice. De acuerdo con los resultados, CPIF encuentra una aproximación 

adecuada para las UI al asegurar la identificación de patrones discriminativos de 

estructuras nerviosas. 

 

Palabras clave 

Análisis de componentes principales, Correntropía, Filtrado, Funciones Kernel, 

Segmentación. 
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1. INTRODUCTION 

 

Ultrasound imaging is a widely used 

technique for visualization, analysis, and 

diagnosis of different areas in a human 

body [1]. In fact, UI offers several ad-

vantages compared to other types of medi-

cal imaging (e.g. magnetic resonance, x-

rays, and computed tomography). The 

benefits include real-time imaging, no 

radiation, and small movable devices [2]. 

In particular, Ultrasound Images (UI) have 

been employed to locate nerve structures 

in Peripheral Nerve Blocking (PNB) 

procedures, and they facilitate pain 

management by regional anesthesia [3]. 

Since PNB comprises the administration of 

an anesthetic on the area surrounding a 

target nerve, an accurate localization of 

such region is crucial to ensure satisfactory 

results [4]. Therefore, this localization is a 

critical step for the success of PNB 

procedures as well [5]. In this regard, UI 

provides a direct visualization of relevant 

objects during PNB. They include the 

nerve, the anatomical structures around it 

(muscles, tissues, arteries and skin), the 

needle used during PNB, and the 

anesthetic drug [6]. However, this type of 

images are distorted by speckle noise that 

makes it difficult to accurately localize the 

region of interest [7]. Speckle noise is a 

form of multiplicative noise generated by 

the non-homogeneous structures analyzed 

in the tissue [8]. This noise degrades the 

image quality and affects the fine details 

and the edges of the anatomical structures 

[9]. Furthermore, another challenge during 

UI-based PNB comes from the dynamic 

properties of the nerve arrangement. The 

latter varies in shape and location, in line 

with the body position, the gravity, and the 

pressure of the ultrasound transductor 

[10]. Consequently, the success of PNB 

mainly depends on the operators’ exper-

tise. They must define a proper setup for 

the ultrasound device, i.e., the gain, the 

spatial resolution, the axial resolution, the 

transductor position, and the contrast. As 

a result, the identification of nerve struc-

tures from UI is not a straightforward 

activity and it demands appropriate skills 

from anesthesiologists [4]. 

Recently, systems for computer-aided 

nerve segmentation have been developed to 

assist the anesthesiologist throughout 

PNB [3]. Overall, such systems are based 

on automatic segmentation of nerve 

structures. This kind of segmentation 

presents the following open issues: i) the 

presence of speckle noise ii) the extraction 

of discriminative nerve patterns, and iii) 

the delimitation of nerve structures based 

on the extracted features. However, we 

highlight that speckle noise reduction is a 

critical step for nerve segmentation [11]. 

Speckle noise is a multiplicative noise 

generated by the heterogeneous structures 

of the tissue [8]. In fact, speckle noise 

significantly degrades the UI quality 

because it affects fine details and edges of 

the anatomical structures [9]. However, 

such noise may contain relevant 

information for the specialist, e.g. 

boundary sharpness to perform visual-

based segmentation of anatomical 

structures [1]. 

In this sense, the problem of speckle 

noise reduction has been widely studied in 

the literature. Among the methods devel-

oped for speckle reduction we can find 

different approaches. Authors in [12] apply 

the Wiener filter to UI as data approxima-

tion using second-order statistics of a Fou-

rier-based decomposition. However, this 

method is not adequate for speckle reduc-

tion since it is designed for reducing addi-

tive noise [13]. In turn, a homomorphic 

approximation was described in [14] to 

handle the multiplicative nature of speckle 

noise. Therefore, a logarithmic function is 

computed on the UI to map the multiplica-

tive noise into an additive one. Then, a 

Wiener filtering approach is adopted. This 

method can effectively minimize speckle 

noise. Nevertheless, it fails to preserve 

useful anatomical details [13]. Moreover, 

authors in [15] introduce a multi-
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resolution wavelet-based filtering that is 

implemented in the logarithmic mapping of 

the UI. Then, both the signal and noise 

components are modeled as Gaussian Pro-

cesses to construct a Bayesian estimator 

for each scale and to support noise reduc-

tion and feature extraction stages. Howev-

er, this approach assumes that the speckle 

noise can be mapped into additive Gaussi-

an noise. Such assumption does not hold 

true in the context of UI, where the noise is 

likely to obey the Fischer-Tippet distribu-

tion [16]. 

Similarly, the median filter is a nonlin-

ear filter that is commonly used to deal 

with multiplicative noise. This filter is very 

popular in the context of image processing 

due to its simplicity and noise reduction 

[13]. Yet, the median filter removes some 

high-frequency components and this pro-

duces a blurring effect at the edges [17]. 

On the other hand, authors in [18] present 

an extension of the Non-Local Means 

(NLM) filter proposed in [19]. This filter is 

based on the assumption that, for a given 

patch in the image, it is possible to find 

other patches with similar statistics. In 

this sense, the de-noised patch will depend 

on both the pixels in the local patch and 

the pixels of the image with similar statis-

tics. Nonetheless, the NLM filter was orig-

inally developed to deal with additive 

Gaussian noise. For this reason the au-

thors employ a Bayesian framework to 

incorporate a model noise related to the UI 

features [18]. This filter, when adapted to 

UI, has shown interesting properties to 

remove speckle noise and preserve the 

edges [18]. 

Now, in the context of nerve identifica-

tion from UI, a few studies have been pro-

posed to deal with the particular features 

of nerve structures. Indeed, the filtering 

approach should enable UI enhancement 

to improve the segmentation by removing 

the components associated with speckle 

noise while highlighting the patterns re-

lated to nerve structures. For instance, 

authors in [20] introduce a segmentation 

approach based on Support Vector Ma-

chines (SVM) and Active Contour Segmen-

tation (ACS). This approach involves the 

use of a linear filter (holding a homogene-

ous mask area) that is applied to minimize 

speckle noise. Similarly, in [21] the au-

thors propose an approach based on active 

contours without considering a filtering 

step. Although promising results are ob-

tained with sophisticated segmentation 

schemes, the above methodologies are not 

focused on speckle reduction. 

In this paper, we propose an UI im-

provement strategy using a pre-image-

based filter [22]. In particular, we map the 

input images by a nonlinear function (Ker-

nel). We perform a principal component 

analysis within the feature space (Kernel 

PCA) to reveal important nerve properties 

and mitigate speckle noise perturbations. 

Then, based on the Kernel PCA analysis, 

we discard the directions with small 

variations. We hypothesize that these 

directions contain information related to 

speckle noise. Additionally, we employ a 

pre-image method in order to retrieve the 

image in the input space. The main 

contribution of our work lies in the kernel 

functional, fixed as a correntropy-based 

mapping to code higher-order statistics 

from the input data under both nonlinear 

and non-Gaussian situations [23], e.g. 

multiplicative noise. The Correntropy-

based kernel is similar to the NLM filter 

[18], [19] in the sense that both approaches 

analyze the similarities between different 

regions in the image. However, both meth-

ods have significant differences since NLM 

examines the gray level over square neigh-

borhoods and the correntropy-based kernel 

performs this process pixel to pixel using 

an information theoretic learning-based 

similarity function [26]. So, our filtering 

approach is based on the pre-image prob-

lem scheme that carries out subspace pro-

jection through correntropy-based kernel 

principal components analysis aiming to 

reveal significant nerve properties and to 

mitigate speckle noise perturbations.  We 
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validate our approach on a real-world UI 

dataset focused on nerve segmentation for 

PNB. In this regard, our Correntropy-

based Pre-Image Filtering (CPIF) is 

applied as a pre-processing stage to further 

segment the nerve by using a Gaussian 

Processes strategy [4]. The obtained re-

sults show that CPIF finds a suitable UI 

approximation by ensuring the identifica-

tion of discriminative nerve patterns. In-

deed, our proposal outperforms state-of-

the-art approaches that carry out UI filter-

ing regarding a Dice coefficient assessment 

[24]. 

The remainder of this paper is 

organized as follows. In section 2 we de-

scribe the background of the introduced 

CPIF. In section 3 we present and discuss 

the nerve segmentation results including 

the CPIF-based UI enhancement. Finally, 

we outline the main conclusions and the 

future work in section 4. 

 

 

2. MATERIALS AND METHODS 

 

Pre-image problem: Let 𝑥 be a point in 

the input space 𝜒 and let 𝜙(𝑥) be its 

representation in the Reproducing Kernel 

Hilbert Space (RKHS) 𝐻𝑘 associated with 

the kernel 𝑘(𝑥, 𝑦) = 𝜙(𝑥)𝑇𝜙(𝑦), where 𝜙(𝑥) 

is a mapping function (usually non-linear) 

from the input space 𝜒 to the high-

dimensional (possibly infinite) space 𝐻𝑘. 

Let 𝜓 ∈ 𝐻𝑘 be a sample in the RKHS. The 

pre-image approach finds its corresponding 

point 𝑥∗ ∈ 𝜒 from 𝜓 = 𝜙(𝑥∗)[25]. Since 𝐻𝑘 is 

usually larger than 𝜒 and commonly we do 

not have acces to the map function 𝜙, an 

approximation of 𝑧 can be computed by 

minimizing [25]: 

 

𝜌(𝒛) = ‖𝝍 − 𝜙(𝒛)‖2. (1) 

 

Thus, the Pre-Image approach has a 

significant range of applications in kernel 

methods, such as compression and 

denoising. In practice, we have a training 

set 𝑥𝑖 ∈ ℝ𝐷, where: ∑ 𝑥𝑖
𝑁
𝑖=1 = 0(𝑖 = 1, … , 𝑁).  

Here, each sample 𝑥𝑖 corresponds to the 

vectorized version of the 𝑖–th UI. This way, 

to solve Eq. (1), a Kernel Principal 

Component Analysis (kPCA) is carried out 

to map the input data to 𝐻𝑘 as a subspace 

projection based on the following 

eigenvalue problem: 𝑁𝜆𝛼 = 𝐾𝛼, where 𝐾 ∈
ℝ𝑁 × 𝑁 is a matrix holding elements 𝐾𝑖𝑗 

through the kernel function evaluation 

𝑘(𝑥𝑖 , 𝑥𝑗), 𝛼 ∈ ℝ𝑁 × 𝑁 is an orthogonal 

eigenvector matrix, and 𝜆 ∈ ℝ𝑁 × 𝑁 is a 

diagonal eigenvalue matrix where the 

eigenvalues are sorted in decreasing order. 

In this regard, kPCA constructs an 

orthogonal set of feature extractors in the 

RKHS as 𝑃𝜙(𝑥) =

{∑ 𝛼𝑖
1𝜙(𝑥𝑖)𝑁

𝑖=1 , … , ∑ 𝛼𝑖
𝑁𝜙(𝑥𝑁)𝑁

𝑖=1 }[22], where 

𝛼𝑖
𝑘 represents the k-th eigenvector at the i-

th position. Now, for a test image 𝑥∗, the 

nonlinear components are extracted as 
𝑃𝜙(𝑥∗) =
{∑ 𝛼𝑖

1𝑘(𝑥𝑖, 𝑥∗)𝑁
𝑖=1 , … , ∑ 𝛼𝑖

𝑁𝑘(𝑥𝑁 , 𝑥∗)𝑁
𝑖=1 }. In the 

case of denoising, we define an orthogonal 

set 𝑃𝑀. This set is formed by the first 𝑀 

elements of the original set 𝑃, such as 

𝑃𝜙(𝑥) = 𝑃𝑀𝜙(𝑥) + 𝑃𝑀
⊥𝜙(𝑥), where we 

assume that the discarded features 

extractors 𝑃𝑀
⊥𝜙(𝑥) contain information 

associated with the speckle noise of the UI 

𝑥. So, the filtered image in the RKHS is 

computed as 𝑃𝑀𝜙(𝑥∗) and, to calculate the 

pre-image 𝑧 from 𝑃𝑀𝜙(𝑥∗), a denoised UI 

can be estimated by minimizing 𝜌(𝑧) =
‖𝑃𝑀𝜙(𝑥∗) − 𝜙(𝑧)‖2. Taking into account 

kernels of the form 𝑘(𝑧, 𝑥) = 𝑘(‖𝑧 − 𝑥‖2), 
the functional in Eq. (1) yields: 

 

𝜌(𝒛) = ∑ 𝛾𝑖

𝑁

𝑖=1

𝑘(𝒛, 𝒙𝑖) + Ω, (2) 

 

where 𝛾𝑖 = ∑ 𝛽𝑘𝛼𝑖
𝑘𝑀

𝑘=1 , 𝛽𝑘 = ∑ 𝛼𝑖
𝑘𝜙(𝑥𝑖)𝑁

𝑖=1 , 

and Ω is a term independent of 𝑧. 

Overall, the Gaussian kernel is 

employed to perform pre-image algorithms 

[22], [25]. However, this kernel is not a 

suitable choice in the context of speckle 
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filtering, since such kind of noise does not 

follow a Gaussian distribution [16]. In this 

sense, as kernel functional, we employ a 

correntropy-based mapping to code higher-

order statistics of the input data under 

both nonlinear and non-Gaussian situa-

tions. Correntropy is a measure that 

probabilistically estimates the similarities 

between two random variables [23]. This 

way, the correntropy functional generalizes 

the concept of correlation in nonlinear and 

non-Gaussian contexts, as follows: 

 

𝑉(𝑋, 𝑍) =
1

𝐷
∑ 𝑘

𝐷

𝑑=1

(𝑋 − 𝑍), (3) 

 

where 𝑋, 𝑍 ∈  ℝ𝐷, and 𝑘(𝑋 − 𝑍) is a 

positive definite kernel. Fixing a Gaussian 

kernel in Eq. (3) allows describing the 

pixel-wise similarities between UIs, as 

follows: 

 

𝑘(𝒙𝑖 , 𝒙𝑗) =
1

𝐷
∑ exp

𝐷

𝑑=1

(−
(𝑥𝑖𝑑 − 𝑥𝑖𝑑)2

2𝜎2
), (4) 

 

where 𝑥𝑖𝑑 is the 𝑑-th pixel value of the 

UI 𝑥𝑖, 𝑧𝑑 is the 𝑑-th pixel value of the 

filtered UI 𝑧, and 𝜎2 ∈  ℝ+ is a kernel band-

width. Consequently, a gradient descent 

approach is employed to solve Eq. (2) using 

a correntropy-based kernel, where the 

gradient w.r.t. 𝑧  is given as: 

 
𝜕𝜌(𝒛)

𝜕𝑧𝑑

= −
1

𝐷𝜎2
∑ 𝛾𝑖exp

𝑁

𝑖=1

(−
(𝑧𝑑 − 𝑥𝑖𝑑)2

2𝜎2
) (𝑧𝑑 − 𝑥𝑖𝑑) (5) 

 

In summary, the proposed pre-image 

filter computes a subspace projection in 

RKHS based on UI similarities from high-

order dependencies using correntropy. Our 

filter also reduces the influence of speckle 

noise perturbations without affecting 

relevant patterns for nerve structure 

segmentation. 

 

 

 
 

3. RESULTS AND DISCUSSION 

 

3.1 Ultrasound imaging dataset 

 

To validate the introduced Correntropy-

based Pre-Image Filtering  (CPIF), we use 

a dataset acquired by Universidad 

Tecnológica de Pereira and Hospital de 

Santa Mónica. This dataset is named UI-

UTP and consists of UI recordings from 

patients who underwent regional 

anesthesia for PNB. This UI-UTP 

comprises 38 images: 16 from the ulnar 

nerve and 22 from the median nerve. Each 

UI was collected using a Sonosite Nano-

Maxx device with a 640 × 480 pixel 

resolution. Each image in the dataset was 

labeled by one specialist in anesthesiology 

to indicate the location of the nerve 

structures. Fig.1 shows some UI-UTP 

dataset examples. 

 
3.2 CPIF training and testing 

 

A leave-one-out validation scheme is 

employed to compute the system 

performance regarding the nerve 

segmentation after CPIF-based UI 

enhancement [20]. UI enhancement based 

on CPIF comprises the following stages: 

First, we use Graph Cuts segmentation 

[20] to define a region of interest (ROI) in 

which the nerve region is probably located. 

This ROI is necessary due to the fact that 

the number of pixels belonging to a nerve 

structure is much lower than the number 

of pixels in the image (Fig. 1). For concrete 

testing, ROI generation is carried out 

using the Graph Cuts algorithm [27], 

which allows to group the pixels into two 

clusters: background and object. Here, we 

use Graph Cuts because of their versatility 

to include topological constraints; for 

example, the nerves’ structures are not 

located on the edges of the UI. Now, since 

the ROIs hold different sizes, we perform a 

resizing step to ensure that all ROIs share 

the same pixel resolution. Then, CPIF is 

applied to the ROIs to reduce the speckle 
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noise effect while enhancing the UI 

quality. The number of eigenvectors M and 

the correntropy free parameter σ2 values 

are experimentally fixed from the leave-

one-out strategy. Finally, these filtered 

ROIs feed the segmentation step that 

identifies the nerve structures. In this 

work, the segmentation step is carried out 

through a straightforward approach based 

on SLIC superpixels and Gaussian 

Processes, as described in [4]. Finally, the 

system performance is measured regarding 

the Dice coefficient (DC). The latter 

quantifies the overlap between the UI 

segment based on CPIF enhancement and 

the segment labeled by the specialist, as 

follows: 

 

 

𝐷𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
, (6) 

 

Where TP is the number of pixels that 

belong  to the nerve that was classified as 

a nerve, FN is the number of pixels 

belonging to the nerve that were classified 

as background, and FP is the number of 

pixels that belong to the background that 

were classified as nerve. Namely, If there 

is a perfect segmentation, then DC=1. On 

the other hand, if there is not overlapping 

DC=0. 

In addition, three state-of-the-art 

filtering methods are considered as 

benchmark: Non-Local Means [18], median 

filtering [13], and pre-image approach 

using a Gaussian kernel [22]. The free 

parameters for the Non-Local Means filter 

and the median filtering are 

experimentally fixed according to the 

applied validation scheme. Fig. 2. presents 

the main sketch of the introduced CPIF-

based UI enhancements for nerve 

structure segmentation. 

 

  

  
Fig.1. UI-UTP dataset. Top left: an ulnar nerve. Top right: a median nerve.  

Bottom: Nerve structures segmented by a specialist. Source: Authors. 
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Fig.2. CPIF-based UI enhancement for nerve structure segmentation. 

Source: Authors. 

 
3.3 Obtained results 

 

To visually compare the attained nerve 

identification after UI enhancement, Fig.3 

presents some segmentation results 

regarding each filtering approach They are 

median filtering, Non-Local Means, pre-

image algorithm using a Gaussian kernel, 

and the introduced CPIF. In general, all 

these filtering methods allow highlighting 

significant patterns associated with nerve 

structures as long as the segmentation 

strategy identifies the nerves from the 

filtered UI. Nevertheless, median filtering, 

Non-Local Means, and pre-image approach 

based on Gaussian kernel obtain false 

positive segmentations related to other 

anatomical structures, e.g., blood vessels 

and the fascia. This is a significant issue 

because the specialist could supply the 

anesthetic in wrong places and cause 

possible complications, such as vessel 

damage or intoxication due to the 

introduction of the anesthetic drug into the 

bloodstream. Unlike these filtering 

methods, our CPIF approach considerably 

reduces the number of false positives, 

favoring a better representation of the 

nerves and the anatomical structures. 

Now, Table 1 shows the results of the 

morphological validation in terms of the 

DC for the leave-one-out scheme. Based on 

the described results, our proposal 

outperforms state-of-the-art filtering 

methodologies. These results can be 

explained in the sense that CPIF offers a 

better representation of the composition of 

the image (i.e. the noise and the pattern 

associated with the anatomical structures). 

Therefore, CPIF allows a considerable 

reduction of speckle noise and highlights 

useful patterns employed for the 

identification of nerve structures. It is 

important to note that the number of 

retained eigenvectors plays an important 

role during UI enhancement. Since our 

pre-image-based approach depends on a 

correntropy similarity, the M value is 

bounded by the number of samples. 

Certainly, a tradeoff between data filtering 

and input information preservation must 

be considered when fixing such a value. In 

particular, in nerve structure 

segmentation tasks, the speckle noise may 

contain relevant information for the 

specialist (boundaries sharpness) [1].
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Fig.3. Some segmentation results after UI enhancement. Top left: Median filtering.  

Top right: Non-local means. Bottom left: Pre-image with Gaussian kernel (𝑀 = 20). 

Bottom right: CPIF (𝑀 = 35). The number of eigenvectors M is fixed according to a leave-one-out  

validation strategy .Source: Authors. 

 

 

Table 1. Morphological validation in terms of the Dice coefficient. M 

 stands for the number of eigenvectors to solve the pre-image problem.  

Source: Authors. 

Filtering Method 
 

Performance 

(Dice Coefficient) 

 𝜇 ± 𝜎 Confidence Interval 

Images without filtering  0.6591 ± 0.0017 [0.6585, 0.6597] 

Non-local Means  0.6667 ± 0.0012 [0.6663, 0.6671] 

Median filtering  0.6735 ± 0.0026 [0.6727, 0.6743] 

Pre-Image 

(Gaussian Kernel) 

𝑀 = 15  0.6680 ± 0.0030 [0.6670, 0.6690] 

𝑀 = 20  0.6679 ± 0.0019 [0.6673, 0.6685] 

𝑀 = 25  0.6677 ± 0.0031 [0.6667, 0.6687] 

𝑀 = 30  0.6674 ± 0.0027 [0.6665, 0.6683] 

𝑀 = 35  0.6677 ± 0.0024 [0.6669, 0.6685] 

CPIF 

𝑀 = 15  0.6803 ± 0.0033 [0.6792, 0.6814] 

𝑀 = 20  0.6807 ± 0.0013 [0.6803, 0.6811] 

𝑀 = 25  0.6847 ± 0.0030 [0.6837, 0.6857] 

𝑀 = 30  0.6781 ± 0.0038 [0.6769, 0.6793] 

𝑴 = 𝟑𝟓  𝟎. 𝟔𝟖𝟕𝟒 ± 𝟎. 𝟎𝟎𝟐𝟗 [𝟎. 𝟔𝟖𝟔𝟓, 𝟎. 𝟔𝟖𝟖𝟑] 
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Fig 4. Parzen-based probability density estimation for the obtained  

Dice coefficients. Source: Authors. 

Now, to verify statistical differences 

among the studied preprocessing ap-

proaches, we estimate the probability den-

sity of the Dice coefficients using a Parzen-

based nonparametric approximation. As 

seen in Fig 4, our CPIF approach outper-

forms state-of-the-art algorithms and ob-

tains the highest Dice coefficient value 

with significant statistical differences con-

cerning the probability densities. Indeed, 

our approach does not show significant 

overlaps with the probability densities of 

the others methods. 
 

 

4. CONCLUSIONS 

 

In this paper, we discuss a Correntro-

py-based Pre-Image Filtering (CPIF) to 

improve the segmentation of nerve struc-

tures depicted in UI. In this sense, a cor-

rentropy-based mapping is coupled within 

a pre-image approximation from RKHS to 

code higher-order statistics of UI. Thus, we 

introduce a gradient-based solution of the 

well-known pre-image filtering cost func-

tional from a correntropy-based RKHS. As 

a result, nonlinear and/or non-Gaussian 

patterns related to nerve structures are 

enhanced to favor further segmentation 

tasks in PNB procedures. We tested our 

strategy on a real-world nerve segmenta-

tion dataset captured by the Automatics 

Research Group at Universidad Tecnológi-

ca de Pereira (Colombia). This dataset 

holds UI images of ulnar and median 

nerves. The experimental results showed 

that a CPIF that complements the raw UI 

by discarding noise components outper-

forms state-of-the-art alternatives for UI 

enhancement in terms of nerve segmenta-

tion accuracy. Hence, our CPIF-based fil-

tering reduces the speckle noise effect 

without affecting relevant patterns used in 

the segmentation of nerve structures. 

As future work, the authors plan to use 

more robust segmentation schemes to fur-

ther improve the quality of the nerve seg-

mentation, e.g., Support Vector Machine-

based approaches [20]. Moreover, the in-

troduced CPIF can be extended by adapt-

ing, not only the pre-image RKHS, but the 

approximation of the cost functional based 

on information theory measures [26]. 
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