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Abstract 

Non-linear analysis of electrograms (EGM) has been proposed as a tool to detect critical 

conduction sites (e.g., rotors vortex, multiple wavefronts) in atrial fibrillation (AF). 

Likewise, studies have shown that multifractal analysis is useful to detect critical activity in 

EGM signals. However, the multifractal spectrum does not consider the temporal 

information. There is a new mathematical formalism to overcome this limitation: the time-

singularity multifractal spectrum distribution (TS-MFSD), which involves the time 

variation of the spectrum. In this manuscript, we describe the methodology to compute the 

TS-MFSD from EGM signals. Moreover, we propose a methodology to extract features from 

time-singularity spectrum and from singularity energy spectrum (SES). We tested the 

features in an EGM database labeled by experts as: non-fragmented, discrete fragmented 

potentials, disorganized activity, and continuous activity. We tested the area under the 

receiver operating characteristic (ROC) curve. The proposed features achieve an area under 

the ROC curve of 95.17% when detecting signals with continuous activity. These results 

outperform those reported using multifractal analysis. To our knowledge, this is the first 

work that report the use of TS-MFSD in biomedical signals and our findings suggest that 

time-singularity has the potential to be used in the study of non-stationary behavior of EGM 

signals in AF. 
 

Keywords 

Cardiac signals, Detrended Fluctuation Analysis, multifractal singularity spectrum, non-
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Resumen 

El análisis de la dinámica no lineal de señales de Electrogramas Intracardiacos (EGM) 

ha sido propuesto como una herramienta para detectar sitios críticos de conducción eléctrica 

(ejm: rotores o múltiples frentes de onda) en fibrilación auricular (AF). Estudios previos han 

mostrado que el análisis multifractal puede ser de utilidad para detectar actividad crítica en 

la señal EGM. A pesar de esto, el análisis multifractal no considera la información temporal 

de la señal. Existe un nuevo formalismo matemático para superar esta limitación, el cual es 

llamado Distribución Tiempo-Singularidad del Espectro Multifractal (TS-MFSD), que 

involucra la variación en el tiempo del espectro. Este artículo describe una nueva 

metodología para calcular características a partir del TS-MFSD en señales EGM. Nosotros 

evaluamos los métodos descritos en una base de datos de EGM etiquetada por expertos en 

cuatro clases: no fragmentada, potenciales fragmentados discretos, actividad desorganizada 

y actividad continua. Para evaluar el rendimiento se calculó el área bajo la curva ROC. El 

mejor resultado de las características propuestas alcanzó un área bajo la curva ROC de 

95.17% en la detección de señales con actividad continua. Este resultado supera los 

reportados mediante la utilización del análisis multifractal. Hasta donde sabemos, este es el 

primer trabajo que reporta la utilización de la TS-MFSD en señales biomédicas, y nuestros 

resultados sugieren que el análisis Tiempo-Singularidad tiene el potencial para estudiar el 

comportamiento no estacionario de las señales EGM en AF. 

 
Palabras clave 

Análisis de series de tiempo, análisis no lineal de señales, Espectro de Singularidad 

Multifractal, señales cardiacas. 
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1. INTRODUCTION 

 

Atrial Fibrillation (AF) is one of the 

most common arrhythmias, with a preva-

lence of approximately 3% in adults and it 

is associated with heart failure and 

stroke[1]. Besides pharmacological treat-

ment to control AF, catheter ablation of AF 

is the recommended treatment to cure AF. 

This procedure uses a radiofrequency cath-

eter to burn sites in the endocardium to 

block the action potential propagation. 

Pulmonary vein isolation (PVI) is one of 

the most useful types of ablation. PVI is 

used to isolate the ectopic foci that are 

located in pulmonary veins and initialize 

AF. PVI presents a success rate of around 

80% in patients with paroxysmal AF. Nev-

ertheless, in patients with persistent AF, 

the correct rate is less than 40% [2]. Au-

thors have developed other ablation strat-

egies to improve the success rate of AF 

ablation. Since PVI is only guided by ana-

tomical information, ablation guided by the 

analysis of electrogram (EGM) signals has 

been proposed to detect critical conduction 

sites on the atria. Critical sites are related 

with arrhythmogenic substrates or mecha-

nisms that generate or sustain the ar-

rhythmia –e.g., ectopic foci, multiple wave-

fronts or rotors’ vortices. EGM are signals 

acquired using intra-cardiac catheters in 

contact with the endocardium. Several 

studies have shown that sites related with 

sustaining mechanisms of AF present 

EGM signals with continuous activity or 

local activity with multiple deflections 

(fragmented EGMs) [3], [4]. Therefore, 

several authors have proposed mathemati-

cal tools to study EGM complexity. Studies 

have shown that EGMs exhibit a non-

linear behavior. Therefore, the computa-

tion of entropy measures and fractal anal-

ysis has been useful to detect fragmented 

EGMs [5]–[7]. 

Evidence obtained in a previous work 

shows that fragmented EGM signals can 

be detected by using multifractal analysis 

(MF), which outperform fractal and entro-

py features [8]. Multifractal analysis is an 

extension of the fractal concept. Fractal 

signals present self-similarities and statis-

tic properties of scale invariance, which 

can be described by a single quantity –e.g., 

Hausdorff dimension or Hurst exponent. If 

the fractal properties are not homogenous 

and change with time, the signal must be 

described by different local Hurst expo-

nents [9]. Accordingly, multifractal analy-

sis is a more suitable method for studying 

EGM signals. 

The multifractal spectrum shows the 

distribution of singularity exponents. 

However, this spectrum does not display 

the temporal information. This condition 

makes it difficult to describe the non-

stationary behavior of biomedical signals. 

There is a new mathematical formalism to 

overcome such limitation: time-singularity 

multifractal spectrum distribution (TS-

MFSD), which involves the time variation 

of the MF spectrum [10]. The difference 

between MF and TS-MFSD could be com-

pared to the difference between frequency 

and time-frequency transforms. TS-MFSD 

has been reported as a mathematic tool 

and it has been tested in synthetic signals; 

however, its application in biomedical sig-

nals has not been tested. 

This paper describes the methodology 

to compute the TS-MFSD from EGM sig-

nals and the development of new methods 

to extract features from the time-

singularity spectrum. We tested the fea-

tures in an EGM database labeled with 

four classes, including continuous activity. 

The aim of this work is to test TS-MFSD 

on EGM signals and compare the perfor-

mance of TS-MFSD with respect to MF 

analysis. Features computed from TS-

MFSD could improve the performance of 

the detection of signals with continuous 

activity. Then, these features could be used 

as a tool to detect critical conduction sites 

in AF and assist ablation procedures guid-

ed by EGM. 
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2. MATERIALS AND METHODS 

 
2.1 EGM Database 

 

A database of 429 EGM signals ac-

quired from 11 AF patients was used in 

this work. This database was collected in 

the Staedtisches Klinikum Karlsruhe in 

Germany and it was made available to our 

group by the Karlsruhe Institute of Tech-

nology [11]. In this database, signals were 

recorded using the NavX system (St. Jude 

Medical, St. Paul, USA) and a multipolar 

circular catheter during AF ablation pro-

cedures. The sample frequency was 1200 

Hz and the signals were filtered with a 

band-pass filter between 30 Hz and 250 

Hz. Each EGM was independently anno-

tated by two electrophysiologists and di-

vided into four classes. Class 0: EGM with 

non-fragmented potentials and organized 

activity. Class 1: EGM with fragmented 

potentials separated by a non-activity 

baseline. Class 2: EGM with fragmented 

potentials and disorganized activity. Class 

3: EGM with continuous electrical activity. 

In this work, the aim of the analysis is to 

detect signals belonging to Class 3. 

The 429 EGM signals were distributed 

as follows: 153 signals in Class 0, 75 sig-

nals in Class 1, 148 signals in Class 2, and 

53 signals in Class 3. A signal of each 

Class is shown in Fig. 1. For a complete 

description of the database, see the manu-

script by Schilling et al. [12]. 

 
2.2 TS-MFSD Power Law Representation 

 

Fractals describe irregularities of time-

series whose properties of self-similarity 

are evidenced with statistical similarity at 

different scales. For fractal dimension 

estimation, the covering of the set is con-

sidered by means of balls of diameter 𝜺 >
𝟎, where 𝑵(𝜺) represents the number of 

balls needed to cover the whole set. Thus, 

an approximation of the irregular longitu-

dinal measurement is defined as 𝑳(𝜺) =
𝜺𝑵(𝜺), where 𝑵(𝜺) satisfies the power law 

𝑵(𝜺)~𝜺−𝑫 as 𝜺 → 𝟎. Constant D represents 

the fractal dimension or Hausdorff dimen-

sion [13]. 

 

 
Fig. 1. Samples of EGM signals from Classes 0, 1, 2 and 3. Source: Authors.
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Fractal dimension has shown to contain 

relevant information about the signals that 

present a nonlinear dynamic, but a single 

fractal dimension cannot completely char-

acterize a signal with a single descriptor. 

Therefore, it becomes necessary to incorpo-

rate multifractal analysis, a term used for 

systems characterized by a range of differ-

ent fractal dimensions with which a func-

tion 𝒇(𝜶) noted as multifractal spectrum 

(MFS) or spectrum of singularities is asso-

ciated. In this sense, the power law be-

comes 𝑵(𝜶)~𝜺−𝒇(𝜶) , where, α is the singu-

larity exponent (SE) or Hölder exponent 

[14]. 

The multifractal spectrum measures 

the global distribution of singularities with 

different regularities. However, it has no 

information on the time-varying singulari-

ties exponents, which makes it complex to 

analyze the dynamics involved in non-

stationary and non-linear processes [10]. 

Xiong, in 2012, introduces the mathe-

matical formalism of the TS-MFSD. It is 

given by the function 𝒇(𝒕, 𝒂), which repre-

sents a convex function and indicates the 

characteristic spectral points of the signal 

evolution. After the analysis of the theory 

of measurement and Hausdorff dimension, 

the power law is 𝑵𝒕(𝜶)~𝜺−𝒇(𝒕,𝜶) [10]. 

Fig. 2 shows a comparison between 

MFS 𝒇(𝜶) and TS-MFS 𝒇(𝒕, 𝒂). The repre-

sentation of the fractal dimension D corre-

sponds to a single point in the MFS space. 

MFS is composed of several points, which 

highlights the minimum singularity expo-

nent 𝜶𝒎𝒊𝒏, the maximum singularity expo-

nent 𝜶𝒎𝒂𝒙 and the singularity exponent 

𝜶𝟎 that correspond to the maximal 𝒇(𝜶) . 
By contrast, TS-MFSD is composed of the 

time distribution of MFS. 

 
2.3 TS-MFSD based on Detrended Fluctua-

tion Analysis (DFA-MFSD) 

MFS estimation can be computed by 

several methods; the well-known Detrend-

ed Fluctuation Analysis (DFA) proposed by 

Kantelhardten in 2002 [15] is one of the 

most commonly used in practical applica-

tions. DFA consists of five basic steps: 

 

 
a) b) 

Fig. 2. a) MFS example of an EGM signal. Points αmin, α0 and αmax are marked in the spectrum. b) TS-MFSD example of 

the same signal. Values of f(t, α) are plotted in a jet color scale. Source: Authors. 
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1. Determine the time series “profile” 𝐘, 

by subtracting the mean value and in-

tegrate the time series. This step con-

verts the signal to a random walk like 

time series. 

2. Divide the profile into non-overlapping 

𝑵𝒔 segments of an equal length of scale 
𝒔. 

3. Determine the local fluctuation 

𝑭𝟐(𝒔, 𝒗) for each segment, 𝒗 = 𝟏, … , 𝑵𝒔. 

𝑭𝟐(𝒔, 𝒗) is computed based on the vari-

ance of the series profile 𝒀 by subtrac-

tion the fitting polynomial 𝒇𝒊𝒕(𝒀𝒗) in 

the segment 𝒗, as in [16]: 

𝑭𝟐(𝒔, 𝒗) =
𝟏

𝒔
∑ {𝒀𝒗,𝒊 − 𝒇𝒊𝒕(𝒀𝒗,𝒊)}

𝟐𝒔
𝒊=𝟏        (1) 

4. Estimate the average of the segments 

for different scales 𝒔 and the 𝒒-order 

statistical moments (𝒒 ∈ 𝓡 − {𝟎}) for 

obtaining the fluctuation function, de-

fined as: 

𝑭𝒒(𝒔) = {
𝟏

𝟐𝑵𝒔
∑ [𝑭𝟐(𝒔, 𝒗)]

𝒒

𝟐𝟐𝑵𝒔
𝒗=𝟏 }

𝟏

𝒒

                 (2) 

5. Determine the correlation of the power 

law 𝑭𝒒(𝒔)~𝒔𝒉(𝒒) using the log-log graph 

of 𝑭𝟐(𝒔, 𝒗) and 𝒔 for each 𝒒, where the 

exponent 𝒉(𝒒) is called generalized 

Hurst exponent. 

By analogy with the multifractal for-

malism, Kantelhardt relates 𝒉(𝒒) with 

the exponent of scale 𝝉(𝒒), as 𝝉(𝒒) =
𝒒𝒉(𝒒) − 𝟏, where 𝝉(𝒒) is defined by the 

partition function 𝒁𝒒(𝒔):  

 

𝒁𝒒(𝒔) = ∑ |𝑷𝒔(𝒗)|𝒒 ~ 𝒔𝝉(𝒒)𝑵𝒔
𝒗=𝟏                 (3) 

 

With 𝑷𝒔(𝒗) as a probability box [15]. 

 

The singularity spectrum 𝒇(𝜶) is ob-

tained via the Legendre transform, as 

follows: 

 

𝜶 = 𝝉′(𝒒) and 𝒇(𝜶) = 𝒒𝜶 − 𝝉(𝒒)           (4) 

 

In the estimation of TS-MFSD by DFA, 

Xiong et al defined the instantaneous 

cyclic autocorrelation function of a dis-

crete time-series x (k) as [17]: 

 

Where 𝒌 denotes the delayed sample 

and 𝒏 the time series samples. Estima-

tion of instantaneous cyclic autocorre-

lation is the new first step in DFA. The 

series profile for each n value is com-

puted by subtracting the mean of 

〈𝒓𝒏〉 to 𝒓𝒏(𝒌) as follows: 

 

Finally, the steps 2 to 5 of DFA are fol-

lowed for each instant of time 𝒏; for 

more detailed information see [17]. 

 
2.4 Singularity Energy Spectrum estimation 

 

If the TS-MFSD contains additional in-

formation to the MFS, the Singularity 

Energy Spectrum (SES) could describe it. 

By analogy with traditional energy, the 

energy of a TS-MFSD is the sum of the 

square modules of 𝑓(𝑡, 𝛼) on the time axis 

[17]. SES was proposed in 2012 for practi-

cal applications in engineering. 

Given the analysis presented by the au-

thors in [17] and based on the fractal ener-

gy measurement theory, the estimation of 

the multifractal spectrum distribution 

energy of the signal can be seen as: 

𝑤(𝛼𝑚) = ∑ ‖𝑥𝛼𝑚
(𝑛)‖

2
𝑛                          (7) 

Where 𝑥𝛼𝑚
 represents a signal that cor-

responds to a discrete fractal sub-band 

defined as:  

 
𝑥𝛼𝑚

(𝑛) = {(𝑛, 𝑥(𝑛))},   𝛼(𝑛) ∈ [𝛼(𝑚), 𝛼(𝑚 + 1)] 

 

To obtain 𝛂𝒎, the SE, 𝜶(𝒏) ∈ [𝜶𝒎𝒊𝒏, 𝜶𝒎𝒂𝒙], 
is divided into such a uniform partition 

that satisfy the Eq. (8) for 𝜶(𝒎)  ≤ 𝜶(𝒏) ≤
𝜶(𝒎 + 𝟏). 

𝒓𝒏(𝒌) =  𝒙(𝒌)𝒙⋆(𝒏 +  𝒌);   
  𝒏, 𝒌 = 𝟎, 𝟏, 𝟐, 𝟑, … . , 𝑵 − 𝟏  

             (5) 

𝑫𝒏(𝒊) ≡ ∑[𝒓𝒏(𝒌) − 〈𝒓𝒏〉]

𝒊

𝒌=𝟎

 

 𝒊 = 𝟎, 𝟏, 𝟐, 𝟑, … , 𝑵 − 𝟏 

 

               

(6) 
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𝛼(𝑚) = [𝛼𝑚𝑖𝑛 = 𝛼0, 𝛼1, … , 𝛼𝑖−1, 𝛼𝑖, 𝛼𝑖+1, … , 𝛼𝑚−2, 𝛼𝑚−1 = 𝛼𝑚𝑎𝑥]   
 

             (8) 

 

 
Fig. 3. SES computation from the TS-MFSD of an EGM. Solid rectangles represent the small intervals 𝑨𝒊(𝜹) = [𝜶𝒊 − 𝜹, 𝜶𝒊 + 𝜹], 

that are used to compute the energy over time. Source: Authors. 

 

 
a) b) 

Fig. 4. a) SES of an EGM signal and representation of 68.2% of the area. This area is computed centered on the mean and 

uses one standard deviation. b) SE of an EGM – time vs α. 𝒇(𝒕, 𝒂) is represented by a color scale (black is the maximum 

and blue is the minimum value). Source: Authors. 

 

As depicted in Fig. 3, the 𝜶𝒎𝒊𝒏 and 

 𝜶𝒎𝒂𝒙 are extracted from the SE. Each 

𝜶𝒎 represents the interval 𝐴𝑖(𝛿), 

where 𝜹 = (𝜶𝒊 − 𝜶𝒊+𝟏)/𝟐.  

The square module of 𝑓(𝑛, 𝐴𝑖) is taken 

for all 𝜶𝒎(𝒏) ∈ 𝑨𝒊 at each time sample 𝒏. 

Fig. 4. A) shows an example of 

the 𝑾(𝜶𝒎). Using 𝑾(𝜶𝒎), we propose to 

evaluate the energy contained in the 68.2% 

of the total area centered on the mean (µ). 

This value was selected based on one 

standard deviation. Although this is true 

only for the normal distribution, in this 
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work we use it as a practical rule of thumb 

[18]. The difference between SES for EGMs 

belonging to different classes can be cap-

tured by these features. The variability of 

the SE over time is evidenced in Fig. 4. B), 

where the black continuous line represents 

the maximum of the function 𝒇(𝒕, 𝒂) over 

time. 

 
2.5 Receiver Operating Characteristic 

 

We used the Receiver Operating Char-

acteristic (ROC) curves to evaluate the 

performance of each characteristic in Table 

1 and detect continuous activity in EGM. 

For each feature, a threshold 𝑐 to discrimi-

nate two classes is selected. The perfor-

mance of the classification can be deter-

mined by the confusion matrix shown in 

Table 2 [19]. We computed the 

𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚(𝐒𝐞𝐧𝐬) =
𝑻𝑷

𝑻𝑷+𝑭𝑵
  and the 

 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚(𝐒𝐩𝐞𝐜) =
𝑻𝑵

𝑻𝑵+𝑭𝑷
 for a set of values 

of 𝒄. The ROC curve is given by ROC(∙) =
{(1 − Spec(c), Sens(c))}. The best cut-off 

point is defined as in [20]. 

 

min {√(Sens(𝑐))2 + (1 − Spec(𝑐))
2

}               (9) 

 

3. RESULTS AND DISCUSSION 

 

Experimental results of the TS-MFSD 

on EGM signals showed a representative 

change when is computed in signals from 

different AF classes. Fig. 5 shows the time-

singularity spectrum for some samples of 

EGM signals. We can see difference be-

tween spectrum width and changes in SE 

distribution in time. 

Given the dynamic behavior in time of 

the SE, the visual analysis can be more 

representative if we focus on the following 

three lines: the minimum singularity ex-

ponent  𝛼𝑚𝑖𝑛(𝑡); the maximum singularity 

exponent 𝛼𝑚𝑎𝑥 (𝑡) ; and the singularity 

exponent 𝛼0 (𝑡). The latter corresponds to 

the maximal 𝑓 (𝑡, 𝛼). Fig. 6 illustrates the-

ses lines for the EGM signals shown in Fig. 

5. We can see that these lines for the class 

3 signal shows a lower variance in the SE, 

particularly in 𝛼0 (𝑡). This line is analo-

gous to the maximum of the spectrum in 

multifractal analysis [21]. However, in 

multifractal spectrum, the maximum is a 

scalar value, and it cannot capture the 

changes in time of this feature. By con-

trast, In TS-MFSD, 𝛼0 (𝑡) is a vector. Ac-

cordingly, we used the standard deviation 

as features to describe the deviation in 

time of 𝛼0 (𝑡). The same analysis is made 

for  𝛼𝑚𝑖𝑛(𝑡), 𝛼𝑚𝑎𝑥 (𝑡). 

On the other hand, we computed the 

SES for a more complete analysis of the 

information contained in the time-

singularity spectrum. Fig. 7 shows the SES 

of samples of EGM signals in each Class. 

 
Table 1. Characteristics extracted from TS-MFSD to be tested in atrial fibrillation. Source: Authors. 

Method Feature Description 

TS-MFSD 

Width SES The width of the SES that corresponds to 68.2% of the total energy. 

Std(αmin) Standard deviation of the time-varying minimum singularity exponent  

Std(α0) 
Standard deviation of the time-varying singularity exponent that corresponds 

to the maximal 𝒇(𝒕, 𝜶) 

Std(αmax) Standard deviation of the time-varying maximum singularity exponent  

 

 

Table 2. Confusion matrix to compute the performance of each feature. Source: Authors 

 Test (𝑻) 

 Positive (𝑻 >= 𝒄) Negative (𝑻 < 𝒄) 

Class A True Positive (TP) False Positive (FP) 

Class B False Negative (FN) True Negative (TN) 
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Fig. 5. TS-MFSD representation of the four Classes of EGM signals. The SE distribution for Class 0 signal is wider and the 

values are skewed to the right. SE distribution in Class 3 is narrower and it is not clearly skewed. Source: Authors. 

Fig. 6. Distribution of time-varying singularity exponent. Source: Authors.
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Fig. 7. Singularity energy exponent (SES) in EGM signals. Source: Authors 

 

We can see the characteristics described in 

the spectrum, where class 0 and class 1 are 

wider and skewed to the right. Class 3 is 

narrower. This behavior is captured by the 

proposed feature 𝑊(𝛼𝑚). 
At last, we computed four features: the 

68.2% of the area from 𝑾(𝜶), which con-

tains information about the SES; and the 

standard deviation of  
𝛼0

 (𝑡),   𝛼𝑚𝑖𝑛(𝑡) and 𝛼𝑚𝑎𝑥 (𝑡), which repre-

sents the changes of the SE over time. 

Fig. 8. and Fig. 9. shows the violin plot 

distribution for each feature. We can see 

the ability of all the features to distinguish 

Classes. Only standard deviation of 𝛼𝑚𝑖𝑛(𝑡) 
does not contain representative infor-

mation for this task. Taking into account 

that some authors have suggested that 

only a high level of fractionation is related 

with critical sites (e.g., rotor’s vortex) [22], 

[23], we calculated the Receiver Operating 

Characteristic (ROC) curves only for dis-

tinguishing between Class 3 and the rest. 

Table 3 shows the comparison between our 

results and a previous study that reported 

conventional and multifractal features 

computed in the same database [8]. The 

proposed features in this study outperform 

those results regarding the discrimination 

of Class 3 (signals with continuous electri-

cal activity). 

Fig. 10 shows the ROC curves for the 

proposed characteristic. The thresholds for 

each cut-off point are 0.544, 0.238, 0.197, 

and 0.493 for Width SES, Std (αmin), Std 

(α0), Std (αmax), respectively. 

TS-MFSD was proposed by Xiong et al. 

[10] to overcome the limitation of capturing 

temporal information of multifractal anal-

ysis. TS-MFSD has been tested in synthet-

ic signals and in one application using sea 

clutter data from an ocean radar. To the 

best of our knowledge, this manuscript is 

the first work that reports an application 

of TS-MFSD in biomedical signals pro-

cessing.  

Instantaneous cyclic autocorrelation 

function (ICAF) is the most representative 

step in the computation of TS-MFSD. The 

process of ICAF calculation generates sev-  
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. 
 

 

 
Fig. 8. Violin plot of the features extracted from the TS-MFSD for each class. Source: Authors.  

 

 

 

 
Fig. 9. Violin plot of the features extracted from the TS-MFSD for Classes 0-1-2 vs. Class 3 (signals with continuous electrical 

activity). Source: Authors.  
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Table 2. Comparison of the results of ROC curves between features reported in a previous study and the width SES and distri-

bution of time-varying singularity exponent in this work. Sensitivity (Sens) and specificity (Spec) of the area under the curve 

(AUC) are reported. Source: Authors. 

Author (year) Method Features Results (Sens - Spec) % 

Orozco-Duque et al,  

(2015) [8] 

Multifractal 

(MF-DFA) 

h-fluctuation index (hFI) 83.3 88.4 

Asymmetric Ratio (AR) 84.8 66.2 

𝒉𝒎𝒂𝒙      ≡    𝜶𝟎 74.2 82.6 

width 89.4 83.2 

Fractal 
Correlation dimension 84.0 78.3 

Fractal dimension 77.3 76.3 

No-Fractal 
Dominant frequency 50.0 87.0 

CFE mean 74.2 85.1 

Current study TS-MFSD 

width SES 92.45 85.64 

Std(αmin) 64.15 67.55 

Std(α0) 92.45 87.50 

Std(αmax) 94.34 86.17 

 

 
Fig. 10. ROC curve of the features extracted from the TS-MFSD. Source: Author 

eral temporal series with a high computa-

tional cost. Although TS-MFSD includes 

temporal information of the multifractal 

spectrum and it could be a useful approach 

to study biomedical signals, the computa-

tional cost limits its application in real 

time. However, TS-MFSD can become an  

important tool for offline medical applica-

tions where non-linear systems are in-

volved. 
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EGM signals during AF exhibit non-

homogeneous local scaling properties that 

change over time. In a previous work, a 

multifractal analysis was performed using 

the same database of EGM signals [8]. 

Those results showed that multifractal 

features outperformed fractal features to 

discriminate between four Classes of frac-

tionation. Particularly, the detection of the 

Class with continuous activity achieved a 

sensitivity of 83.3% and a specificity of 

88.4%. Since EGMs are non-stationary and 

non-homogeneous signals, in our work we 

hypothesized that the time-singularity 

spectrum is a better descriptor of the dy-

namic involved in the system. Our results 

showed that, in the particular case of de-

tecting EGMs with continuous activity, TS-

MFDS presents better performance (92.4% 

sensitivity and 87.5% specificity) than 

multifractal features. 

Some studies only distinguish between 

non-fragmented and fragmented EGM 

signals in AF [3]. However, fragmented 

signals include different morphologies 

associated with different conduction pat-

terns [24]. Therefore, the classification of 

different levels of fractionation has been 

proposed [11], [25]. Likewise, some studies 

have shown that catheter ablation of sites 

that display continuous activity is associ-

ated with termination of chronic AF [11], 

[22], [25]. Therefore, a highly-accurate 

detection of continuous activity (Class 3) 

could help to guide ablation procedures. 

Our findings suggest that the features 

extracted from TS-MFDS are reliable for 

discriminating continuous activity in EGM 

and improving the performance of previ-

ously reported features. 

The degree of fractionation of EGM sig-

nals is, in reality, assumed to be naturally 

continuous. Nevertheless, a discrete set of 

levels of fractionation is used in this study 

due to the impossibility of having experts 

classify the signals on a smoother scale. In 

this regard, our findings show that Class 2 

and Class 3 are difficult to differentiate. 

Despite this, the proposed features pre-

sented higher sensitivity than specificity. 

Therefore, the probability of Type II errors 

is lower than that of Type I errors. Accord-

ing to Hunter el al [23], both Classes are 

associated with critical sites for AF (e.g., 

focal drivers and rotors). Even so, the effi-

cacy achieved when ablating areas with 

continuous electrical activity (Class 3) may 

suggest greater proximity to the rotor vor-

tex. Therefore, if our features are used to 

guide ablation procedures, Type I errors 

imply that Class 2 signals could be classi-

fied as continuous activity and a broader 

region would be ablated. On the other 

hand, Type II errors imply that signals 

with continuous activity are not classified 

as Class 3, which may result in the target 

area not being ablated. Thus, higher sensi-

tivity is expected in this application. 

Future work will be focused on feature 

selection and classification among the four 

Classes described in the databases. Moreo-

ver, some parameters required to compute 

the proposed features could be optimized. 

TS-MFDS features could be used in combi-

nation with others as the input for a classi-

fier. Classifying different levels of fraction-

ation could help to locate different conduc-

tion patterns on the atrial surface. 

 

 

4. CONCLUSIONS 

 

Our findings suggest that TS-MFSD 

implementation using MF-DFA is a useful 

tool to study the underlying non-linear 

dynamics of biomedical signals –e.g., EGM 

during AF. Likewise, the features extract-

ed from the time-singularity spectrum and 

the singularity energy spectrum exhibit 

better performance to detect EGM with 

continuous activity than multifractal fea-

tures. This property can be used to locate 

critical conduction sites in AF. As future 

work, new features from TS-MFSD must 

be explored and their discrimination abil-

ity tested in a recognition task and the 

electrophysiological meaning of the TS-

MFSD and SES in AF. 
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