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By importing some natural abilities from human thinking into the design of computerized 

decision support systems, a cross-cutting trend of intelligent systems has emerged, namely, 

the synergetic integration between natural and artificial intelligence [1]. While natural 

intelligence provides creative, parallel, and holistic thinking, its artificial counterpart is 

logical, accurate, able to perform complex and extensive calculations, and tireless. In the light 

of such integration, two concepts are important: controllability and interpretability. The 

former is defined as the ability of computerized systems to receive feedback and follow users’ 

instructions, while the latter refers to human-machine communication. A suitable alternative 

to simultaneously involve these two concepts—and then bridging the gap between natural 

and artificial intelligence—is bringing together the fields of dimensionality reduction 

(DimRed) and information visualization (InfoVis).  

 

Dimensionality reduction (DimRed) 
 

DimRed is a key tool for artificial intelligence tasks—more specifically machine learning—

that involve high dimensional data sets. The aim of DimRed approaches is to extract lower 

dimensional, relevant information (called embedded data) from high-dimensional input data 

so that the performance of a pattern recognition system is improved and/or the data 

visualization becomes more intelligible. Principal component analysis (PCA) and classical 

multidimensional scaling (CMDS) are two classical DimRed approaches based on variance 

and distance preservation criteria, respectively [2]. The modern focus of DimRed approaches 

relies on more developed criteria, which are aimed at preserving the data topology. In 

particular, data topology is involved in the formulation of the problem through pairwise 

similarities between data points. Therefore, these approaches can be readily understood from 

a graph-theory point of view because data are represented in a non-directed and weighted 

graph where data points denote the nodes, and a non-negative similarity (also affinity) matrix 

holds the pairwise edge weights. Two pioneer methods incorporate similarities, i.e., Laplacian 

eigenmaps (LE) [3] and locally linear embedding (LLE) [4], which are spectral approaches. 

Likewise, since the rows of the normalized similarity matrix can be interpreted as 

probability distributions, methods based on divergences have emerged. Due to its 

probabilistic connotation, the most representative among such methods is called stochastic 

neighbor embedding (SNE) [5]. SNE and its variants have shown to be suitable for obtaining 

high-quality embedded data since they preserve similarities in both low- and high-
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dimensional spaces during the optimization process. Indeed, according to some studies 

[6],[7],[8], SNE-like approaches are the most effective in terms of agreement rate between 

neighbors [9]. Naturally, some alternatives to SNE and improvements have been proposed. 

For instance, in [10], a mixture of divergences is proposed. More recent approaches [11] 

have focused on free-parameter alternatives derived from a multi-scale SNE. 

 

Information visualization (InfoVis) 
 

Recent analyses have indicated that DimRed should reach two goals: (1) ensure that data 

points that are neighbors in the original space remain neighbors in the embedded space and 

(2) guarantee that two data points are shown as neighbors in the embedded space only if they 

are neighbors in the original space. In the context of information retrieval, these two goals 

can be seen as precision and recall measures, respectively. Although clearly conflictive, the 

compromise between precision and recall defines the performance of the DimRed method. 

Furthermore, since DimRed methods are often developed under predetermined design 

parameters and pre-established optimization criterion, they still lack properties such as user 

interaction and controllability. Such properties are characteristic of information visualization 

(InfoVis) procedures. The field of InfoVis aims to develop graphical ways to represent data so 

that information can be more usable and intelligible for users [12]. As a result, based on the 

premise that DimRed can be improved by importing some properties of InfoVis methods, a 

research area that integrates the two has emerged.  

 

Integration between InfoVis and DimRed 
 

The main goal of this research area is to link the field of DimRed with that of InfoVis to 

harness the special properties of the latter within DimRed frameworks. Therefore, 

controllability and interactivity properties are of great interest because they may make the 

DimRed outcomes significantly more understandable and tractable for (not necessarily 

expert) users. Particularly, these two properties provide users with leeway to explore and 

select the best ways to represent data. In other words, the goal of the aforementioned 

integration is to develop a DimRed framework that facilitates an interactive and quick 

visualization of data representations that make DimRed outcomes more intelligible and allow 

users to modify data views according to their needs in an affordable fashion [13]. Such goal is 

of special interest for current artificial intelligence communities, but also greatly challenging. 

Future studies in the field of InfoVis-DimRed integration should address the following 

open issues:  

-Designing a unified or generalized framework for DimRed methods (UFDR) so that the 

embedding approach can be readily and quickly selected according to user needs. 

-Determining a clear and definite relationship between performance and design 

parameters (weights determining the compromise between recall and precision, and 

regularization or smoothness parameters for outlier detection) according to UFDR 

settings. 

-Based on UFDR, designing new or more general divergence-based methods where the 

design parameters are independent and their roles are clearly identified. 

-Designing faster and more stable implementations for DimRed methods in such a way 

that sensitivity to starting parameters is avoided. 

-Developing DimRed approaches that can be successfully incorporated into an interface in 

which users can interact with the parameters in an efficient and interactive way. 
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