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Abstract 

Cutting forces are very important variables in machining performance because they 
affect surface roughness, cutting tool life, and energy consumption. Reducing electrical 
energy consumption in manufacturing processes not only provides economic benefits to 
manufacturers but also improves their environmental performance. Many factors, such as 
cutting tool material, cutting speed, and machining time, have an impact on cutting forces 
and energy consumption. Recently, many studies have investigated the energy consumption 
of machine tools; however, only a few have examined high-speed turning of plain carbon 
steel. This paper seeks to analyze the effects of cutting tool materials and cutting speed on 
cutting forces and Specific Energy Consumption (SEC) during dry high-speed turning of 
AISI 1045 steel. For this purpose, cutting forces were experimentally measured and 
compared with estimates of predictive models developed using polynomial regression and 
artificial neural networks. The resulting models were evaluated based on two performance 
metrics: coefficient of determination and root mean square error. According to the results, 
the polynomial models did not reach 70 % in the representation of the variability of the 
data. The cutting speed and machining time associated with the highest and lowest SEC of 
CT5015-P10 and GC4225-P25 inserts were calculated. The lowest SEC values of these 
cutting tools were obtained at a medium cutting speed. Also, the SEC of the GC4225 insert 
was found to be higher than that of the CT5015 tool. 

 
Keywords 

Cutting forces, Specific energy consumption, High-speed turning, Artificial neural 
networks. 

 
Resumen 

Las fuerzas de corte son variables muy importantes para el rendimiento del mecanizado, 
ya que afectan la rugosidad de la superficie, la vida útil de la herramienta de corte y el 
consumo de energía. La reducción del consumo de energía eléctrica de los procesos de 
fabricación no solo beneficia económicamente a los fabricantes, sino que también mejora su 
comportamiento medioambiental. Muchos factores, como el material de la herramienta de 
corte, la velocidad de corte y el tiempo de mecanizado, afectan la fuerza de corte y el 
consumo de energía de la máquina. En la actualidad, muchas investigaciones se han 
realizado sobre el consumo energético de las máquinas herramienta. Sin embargo, la 
investigación sobre torneado de acero al carbono a alta velocidad es escasa. En este trabajo 
se estudiaron los efectos de los materiales de las herramientas de corte y su velocidad sobre 
las fuerzas de corte y el consumo específico de energía en el torneado en seco de alta 
velocidad de acero AISI 1045. Las fuerzas de corte se determinaron experimentalmente y se 
compararon con las estimaciones de los modelos predictivos desarrollados mediante 
regresión polinomial y redes neuronales artificiales. Los modelos obtenidos fueron evaluados 
según métricas de desempeño como el coeficiente de determinación y la raíz del error 
cuadrático medio, donde los modelos polinomiales no superaron el 70% en la representación 
de la variabilidad de los datos. Se determinó la velocidad de corte y el tiempo de mecanizado 
relacionados con el mayor y menor consumo de energía de las plaquitas CT5015-P10 y 
GC4225-P25. Los valores más bajos de consumo de energía de estas herramientas se 
alcanzaron para la velocidad de corte intermedia. Además, la plaquita GC4225 presentó un 
mayor consumo que la herramienta CT5015. 

 
Palabras clave 

Fuerzas de corte, Consumo específico de energía, Torneado de alta velocidad, Redes 
Neuronales Artificiales. 
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1. INTRODUCTION 

 

Turning is one of the most common and useful machining operations performed in 

factories. Several studies have been developed to improve the machinability of materials 

and estimate the various cutting parameters using different modeling and optimization 

techniques to obtain the best machining characteristics (e.g., surface roughness, tool wear, 

and cutting forces).  

Cutting forces are an important variable in machining, as they could indicate excessive 

wear of the cutting tool. This, in turn, negatively influences the surface roughness of the 

machined workpiece, its productivity and energy consumption, and the costs associated with 

the process. In addition, cutting forces are usually employed to calculate the energy 

consumed during the cutting process, an aspect of great relevance today. However, little 

research has been conducted to optimize the specific energy consumption in the high-speed 

turning of medium carbon steel. 

In [1], Schulz discussed the advantages of High-Speed Machining (HSM). However, the 

author also found that one of its unwanted effects is that the tool wear rate often increases. 

Likewise, the cutting forces, operation stability, cutting power, and energy consumption 

in the machining process could also increase. 

In recent years, many renowned universities, companies, and international 

organizations have conducted extensive research on the energy consumption of machine 

tools [2]. In addition, several researchers have used different optimization techniques to 

determine the optimal cutting conditions for machining operations, with the aim of 

minimizing cutting forces and energy consumption. Nevertheless, studies into the high-

speed turning of plain carbon steel using different cutting tool materials are unusual. 

In [3], tool wear was examined using up to an intermediate cutting speed. Denkena et 

al. [4] evaluated the changes in chip formation, cutting forces, machining energy 

consumption, and cutting temperature when significantly increasing the cutting speed. 

Nonetheless, these authors did not consider the optimization of cutting parameters in 

their study. Lin [5] assessed flank wear at different cutting speeds and feed rates when 

turning AISI 1055 steel (AISI is acronym of the American Iron and Steel Institute). 

Davies et al. [6] calculated temperature distributions during the cutting of AISI 1045 

steel for a variety of cutting parameters. Iqbal et al. [7] studied the tool–chip contact 

interface at different turning speeds (from conventional to high speeds) using uncoated 

cemented carbide inserts. They evaluated the effects of cutting speed on tool rake face 

contact length, contact area, friction, and chip compression ratio [8]. Later, the same 

authors investigated the variations in chip compression ratio and contact length at different 

undeformed chip thickness values [9]. However, they failed to include cutting forces and 

machining energy consumption.  

Moreover, Quan et al. [10] analyzed the influence of cutting speed on cutting heat flux 

and distribution during the machining of plain carbon steel. Stanford et al. [11] examined 

the effect of some cutting fluids on tool wear, cutting force, and cutting temperature using 

up to an intermediate cutting speed. Diniz et al. [12] assessed the effect of coolant pressure 

on tool life at an intermediate cutting speed. Adesta et al. [13] investigated the effects of 

negative rake angle on flank wear and surface roughness. Although these authors developed 

their tests in the high-speed cutting field, they did not analyze cutting energy consumption. 

Ozlu et al. [14] performed some high-speed turning experiments using inserts with 

different rake angles. They calculated the friction coefficient, cutting forces, and total 

contact length, but they did not consider the optimization of cutting parameters. 
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Özel et al. [15] examined the impact of insert geometry on cutting forces and surface 

roughness using intermediate cutting speeds. In addition, these authors used a neural 

network model to predict surface roughness. For their part, Rajemi et al. [16] assessed the 

optimum tool life for a minimum energy consumption taking into account the energy 

budget. However, they considered intermediate cutting speeds. Although Hernández et 

al. [17] analyzed the effect of removed metal volume rate on flank wear during the high-

speed turning of AISI 1045 steel, they did not consider cutting forces nor machining energy 

consumption in their study.  

Furthermore, Stachurski et al. [18] evaluated the effect of insert geometry on cutting 

force during dry and wet turning. Later, Hernández et al. [19] studied the resultant cutting 

force variation using HSM. Nevertheless, these two studies did not consider the 

optimization of cutting parameters.  

Qasim et al. [20] optimized the machining parameters over a wide range of cutting 

speeds and two cutting tool materials to minimize temperature and cutting forces using a 

Taguchi design and Analysis of Variance (ANOVA). Their study revealed that the most 

significant factors for cutting forces are feed rate and depth of cut, even though it did not 

consider energy consumption. 

Rahim et al. [21] found that cutting temperature and force with the Minimum Quantity 

Lubrication (MQL) technique were lower than with dry turning. However, they did not 

consider the optimization of cutting parameters. 

For their part, Xie et al. [2] designed a model to predict specific energy consumption, 

which was validated in a turning process under conventional cutting speeds. The authors 

found that specific energy consumption increases with increasing cutting speed. In [22], a 

model to predict power consumption was developed using the Response Surface 

Methodology (RSM), Support Vector Regression (SVR), and Artificial Neural Networks 

(ANNs), while the RSM and genetic algorithms were employed to design optimization 

models during turning using only conventional cutting speeds. According to the results of 

this study, power consumption increases with the increase in cutting parameters. 

Paul et al. [23] investigated the influence of depth of cut, feed rate, and tool geometry on 

specific cutting energy and back force during turning at conventional cutting speeds. Singh 

and Kant [24] introduced an integrated model to predict energy consumption and the 

corresponding machining parameters using a conventional cutting speed. Moreover, Xie et 

al. [25] presented a multi-objective optimization model based on surface roughness and 

energy saving for the selection of the optimum cutting parameters during the turning of a 

cutting insert at conventional cutting speeds. Abbas et al. [26] employed optimization 

models to select the optimal cutting conditions during the turning of AISI 1045 steel using 

uncoated tungsten carbide inserts and considering parameters such as surface roughness, 

power consumption, and total machining cost. The authors only used a conventional cutting 

speed. 

Makhfi et al. [27] developed an ANN model to predict the influence of cutting 

parameters on cutting force components using a dataset on hard turning of AISI 52100 

steel. The authors first optimized the number of hidden layers and the type of transfer 

functions in hidden and output layers and compared some algorithms, which were used in 

the final ANN model. 

Karabulut [28] employed ANNs and regression analysis to predict surface roughness and 

cutting force during the milling of metal-matrix composites. According to the results, the 

ANN method was able to predict such variables with a low mean squared error.  

Dahbi et al. [29] used an ANN approach to model surface roughness, cutting forces, 

cutting temperature, Material Removal Rate (MRR), cutting power, and specific cutting 



L. W. Hernández-González et al.  TecnoLógicas, Vol. 24, nro. 51, e1671, 2021 

Página 5 | 19 

pressure during the turning of an aluminum alloy under different turning parameters. In 

addition, the authors selected the best architecture of the network. 

Hanief et al. [30] developed a model to investigate the effects of cutting parameters on 

cutting forces during the turning of red brass using a high-speed steel cutting tool.  

In addition, these authors demonstrated that the ANN model was able to predict the 

cutting forces more accurately than the regression one and that cutting force was largely 

influenced by feed rate. 

Arnold et al. [31] applied a machine learning method with ANNs to determine the 

specific cutting force in a milling operation. Zerti et al. [32] studied the influence of 

machining parameters on surface roughness, cutting force, and cutting power during the 

hard turning of AISI 420 steel. According to the results of the ANOVA for main cutting 

force, depth of cut was found to have the greatest influence. Additionally, the ANN models 

proved to be more accurate than the RSM models. 

Peng et al. [33] presented a supervised machine learning model to predict specific 

cutting forces, which was applied in a broaching operation. The results showed that this 

method provided a more accurate prediction than the linear regression model. For their 

part, Wenkler et al. [34] designed an ANN method to predict the specific cutting force in a 

milling operation. Hashemitaheri et al. [35] introduced a support vector regression model 

and a Gaussian process regression model to predict specific cutting forces and maximum 

tool temperatures in orthogonal machining. The data were generated using the finite 

element method. 

Curra et al. [36] developed a model to predict specific energy consumption using an ANN 

during the turning of an AISI 316L steel and compared dry machining with the minimum 

quantity of lubricants. The authors used a JX1 ceramic as the cutting tool and up to 

intermediate cutting speeds. 

According to this literature review, there are few studies into the turning of carbon steel 

dealing with the optimal selection of cutting parameters based on cutting forces and energy 

consumption. 

Thus, the purpose of this study is to investigate the effects of cutting tool materials and 

cutting speed on cutting forces and Specific Energy Consumption (SEC) during the dry high-

speed turning of AISI 1045 steel. The cutting forces are experimentally measured and 

compared with the results of a supervised learning algorithm. The effectiveness of the 

proposed model is validated based on the accuracy in terms of functional fitting using two 

performance metrics (mean squared error and the coefficient of determination). The model 

selected for each insert allowed us to obtain the values of the SEC in each of the established 

cutting regimes. 

 

 

2. MATERIALS AND METHODS 

 
2.1 Workpiece material 

 

In this study, AISI-SAE 1045 steel was selected as the workpiece material. Its 

characteristics are presented in [37]. 

 

 

 

 

 



L. W. Hernández-González et al.  TecnoLógicas, Vol. 24, nro. 51, e1671, 2021 

Página 6 | 19 

2.2 Characteristics of inserts 

 

Coated carbide GC4225-P25 and uncoated cermet CT5015-P10 inserts were used during 

the experiment to calculate cutting forces. Cutting tools were manufactured by Sandvik and 

their characteristics are specified in [37]. 

 
2.3 Machine tool 

 

The workpieces were machined on a MILLTRONICS CNC lathe machine with a 

maximum spindle speed of 3000 r/min and a spindle power of 9/7.5 kW. The samples had a 

diameter of 80 mm and a length of 300 mm. The length/diameter ratio was kept lesser than 

10 to avoid chatter during machining. The workpieces were mounted between the chuck and 

the tailstock. 

 
2.4 Formulation 

 

In this study, the dependence between cutting forces and cutting parameters is 

determined by means of a neural network that represents the functional relationship 

between them. The following relationships are used to calculate the rotational speed (1) and 

the test duration (2): 

 

n =
1000 ∙ vc

π ∙ D
 (1) 

 

where 

n: rotational speed (r/min); 

vc: cutting speed (m/min); 

D: workpiece diameter (mm). 

 

T =
L

n · f
   (2) 

 

where 

T: test duration (min); 

L: workpiece machining length (mm); 

f: feed (mm/r). 

Since the power consumption of machine tools is dominated by the power consumption of 

the spindle system, this article will focus on the latter [2]. 

SEC is the energy consumed by the spindle system when machining 1 cm3 of material. 

As a result, the model can be expressed as (3) [2]: 

 

SEC =
Ec

V
 (3) 

 

Here, Ec represents the energy consumption of the spindle system during the machining 

process (4); V, the volume of material removal (5); Pi(t), the input power of the spindle 

system at t (6); MRR(t), the material removal rate at t (7); Pc(t), the cutting power of the 

machining operation (8); Pu(N), the idle power (9); Pad(t), the additional load loss of the 
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spindle system (10); asp, the depth of cut; and T, the test duration. Functions Pc(t), Pu(N), 

and Pad(t) are, respectively, given by [2]. 

 

Ec = ∫ Pi(t)dt (4) 

V = ∫ MRR(t)dt (5) 

Pi(t) = Pc(t) + Pu(N) + Pad(t) (6) 

MRR(t) =  
asp · f · vc · T

60
 (7) 

Pc(t) = Fr(t) ·
vc

60
 (8) 

Pu(N) =  1.573 · n + 98                   (9) 

Pad(t) = 3 · 10−6 · Pc
2(t) + 0.1939 · Pc(t) (10) 

 

Finally, Fr(t) is the resultant cutting force (11); and Fx(t), Fy(t), and Fz(t), the components 

of the cutting force over time, which will be predicted by the designed model using a 

supervised learning algorithm. 

 

Fr(t) = √Fx
2(t) + Fy

2(t) + Fz
2(t)          (11) 

 

 

3. EXPERIMENTAL DESIGN AND SETUP 

 
3.1 Experimental data and software 

 

This study measures the cutting forces of the coated carbide GC4225-P25 and uncoated 

cermet CT5015-P10 inserts during the dry high-speed turning of AISI 1045 steel at different 

cutting speeds and machining times. 

The cutting depth (asp = 0.5 mm) and the feed (f = 0.1 mm/r) were kept constant during 

all tests. The experiment was conducted using two cutting tool materials (CT5015-P10 and 

GC4225-P25), three cutting speeds (vc = 400 m/min, vc = 500 m/min, vc = 600 m/min), and 

five test durations (T1, T2, T3, T4, and T5). A full factorial design with two replications was 

implemented to obtain the data [38]. 

The cutting forces were measured using a piezoelectric dynamometer (manufactured by 

Kistler) with a data acquisition card PC16024. National Instruments LabVIEW software 

was employed to analyze the data. Through an interface board, the analog signals obtained 

with the dynamometer were converted into digital signals. 

The software used for data processing was MATLAB 2017b [39], as it offers the 

possibility to implement specific algorithms and carry out complex designed operations.  

From the experimental test during the turning of AISI 1045 steel, data on cutting speed 

(vc), test duration (T), machining (observation) time (t), number of passes (np), and position 

of the cutting tool on the workpiece (pc) were recorded for each insert. These data were 

entered into MATLAB as vectors consisting of five independent variables (vc, T, t, np, and pc) 

and three dependent variables that denote the cutting forces (Fx, Fy, and Fz). 
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Table 1 shows the experimental design matrix used in this study and from which the 

cutting forces were measured. 

 

Table 1. Experimental design matrix. Source: Authors’ own work. 

Insert vc (m/min) T (min) Number of records 

CT5015-P10 

400 

2 1136 

4 2442 

6 2520 

8 1224 

10 1234 

500 

1 727 

2 1265 

3 1266 

4 640 

5 656 

600 

0.6 384 

1.2 737 

2 812 

3 648 

4 666 

GC4225-P25 

400 

2 1226 

4 2451 

6 2658 

8 1267 

10 1249 

500 

1 644 

2 1249 

3 1250 

4 655 

5 646 

600 

0.6 442 

1.2 772 

2 765 

3 633 

4 512 

 

3.2 Cutting force patterns 

 

Measuring cutting forces in machining operations makes it possible to identify behavior 

patterns across the different stages of the process (i.e., start, cutting, return, cutting, return, 

cutting, and so on) until the test duration is completed. Figure 1 shows the cutting force 

values per record. 

Given the need to predict behavior patterns in machining operations, tools that can 

extract complex linear and non-linear relationships from a data set, without prior 

knowledge of the phenomenon being modeled, are required. In this regard, regression 
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techniques have proven to be effective in index estimation given their potential for function 

fitting. In this study, multiple regression and ANN methods were used to model the 

relationships between cutting parameters and cutting forces. 

 

 

Figure 1. Example of a cutting force pattern. Source: Authors’ own work. 

 
3.3 Multiple linear regression analysis 

 

Due to the regularities in the distribution of the shear force values, their complexity may 

prevent one from obtaining a predictive model through multiple regression. This is mainly 

due to the density of records in each cutting regime and the variability between 

measurements given uncontrolled process vibrations and other external effects. 

However, different models were obtained considering polynomials whose degrees ranged 

from one to five. In all the cases, the estimation accuracy was found to be insufficient 

according to the standardized values in the field of study for the two performance metrics 

employed: coefficient of determination (R2) and Root Mean Squared Error (RMSE). 

 
3.4 Neural network configuration 

 

When considering several designs of Function Fitting Neural Networks (FFNN) (shown 

in Table 2), the best results in terms of their performance in the processing of the datasets 

of both inserts were obtained when similar topologies were used. 

When designing the model, a manageable number of topologies were considered, and the 

rest were discarded because of poor performance. From each topology, the 10 best models 

obtained with the same initial conditions were identified. Finally, a FFNN topology 

consisting of an input layer with 5 neurons, an output layer with 3 neurons, and a hidden 

layer with 25 neurons (Figure 2). Here, Ii (1 ≤ i ≤ 5) denotes the neurons of the input layer; 

Hh (1 ≤ h ≤ 25), the neurons of the hidden layer, where bh represents its bias and wih are the 

weights of the connections between the input and hidden layers; and Oo (1 ≤ o ≤ 3), the 
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neurons of the output layer, where Bo represents its bias and Who are the weights of the 

connections between the hidden and output layers. 

 

 
Table 2. Design of the function fitting neural network topologies. Source: Authors’ own work. 

Components Values 

Number of neurons in the hidden layer 10–25 

Transfer functions of neurons in the hidden layer 
Hyperbolic tangent sigmoid and logarithmic 

sigmoid 

Transfer functions of neurons in the output layer Poslin and purelin 

Performance function Mean squared error and mean absolute error 

Distribution of the dataset for training, validation, and 

testing 
{0.6; 0.2; 0.2}, {0.7; 0.15; 0.15}, {0.8; 0.1; 0.1} 

Selection of records for training, selection, and testing Random and uniform 

Training algorithm 

Levenberg–Marquardt backpropagation, scaled 

conjugated gradient backpropagation, and 

resilient backpropagation 

 

 

Figure 2. Topology 5-25-3 of FFNN. Source: Authors’ own work. 
 

The combination of the best results considered, as activation functions, the hyperbolic 

tangent sigmoid and the linear in the hidden and output layers, respectively, as well as the 

Levenberg–Marquardt backpropagation training algorithm. 

The 16 357 records for the CT5015-P10 insert were distributed as follows: 60 % for 

training, 20 % for validation, and 20 % for testing, as such distribution provided the least 

error. Similarly, records were uniformly selected: for subsets of five consecutive records, 

three records, one record, and one record were randomly chosen for training, validation, and 

testing, respectively. 

In the case of the 16 419 records for the GC4225-P25 insert, the distribution that turned 

out to be the best was 70 %, 15 %, and 15 %. For every 20 consecutive records, 14 records, 3 
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records, and 3 records were randomly chosen for training, validation, and testing, 

respectively. 

4. RESULTS AND DISCUSSION 
 

After conducting an extensive experimentation to obtain the predictive models, which 

exhibited the best performances in both supervised learning approaches, the superiority of 

the model developed with FFNN was confirmed. The complexity present in the relationship 

between the analyzed variables was not even 90 % described by the polynomial regression 

models. According to Table 3, such models are a poor fit to the experimental data and are 

also characterized by high RMSE values. 

On the contrary, the FFNN models were found to better fit the behavior patterns of the 

cutting forces based on the parameters considered, since their support structure is designed 

to describe the complex variability in the variables under study, as is the case of this 

research. 

 

Table 3. Performance of the polynomial regression models. Source: Authors’ own work. 

Insert Target Polynomial degree R2 RMSE (N) 

CT5015-P10 

Fx 

1 0.0695 35.7 

2 0.3750 29.3 

3 0.4530 27.4 

4 0.6110 23.1 

5 0.6240 22.8 

Fy 

1 0.0332 24.3 

2 0.3060 20.6 

3 0.3540 19.9 

4 0.5110 17.3 

5 0.5290 17.0 

Fz 

1 0.0686 73.2 

2 0.4540 56.1 

3 0.5450 51.2 

4 0.6850 42.7 

5 0.6970 41.9 

GC4225-P25 

Fx 

1 0.1050 43.2 

2 0.3570 36.7 

3 0.4270 34.7 

4 0.6350 27.7 

5 0.6700 26.4 

Fy 

1 0.2180 44.8 

2 0.5490 34.0 

3 0.6320 30.8 

4 0.7560 25.1 

5 0.7730 24.2 

Fz 

1 0.0752 66.5 

2 0.3170 57.2 

3 0.4440 51.6 

4 0.6730 39.6 

5 0.6960 38.2 
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For the designed FFNN models, Figures 3 and 4 show the fitting level of the components 

of the estimated cutting forces (y-axis) to the components of the experimental cutting forces 

(x-axis). For each insert, the point cloud is over the equality line, which is confirmed by the 

fact that the value of the regression coefficient (R) is close to 1. 

 

 

Figure 3. Regression of FFNN model representing the cutting forces for P10 insert 

Source: Authors’ own work. 
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Figure 4. Regression of FFNN model representing the cutting forces for P25 insert 

Source: Authors’ own work. 

 

Figures 5 and 6 illustrate the accuracy of the efficiency indexes (i.e., error value or R-

adjustment) based on the values of the resultant cutting force. The blue point cloud 

represents the experimental values; and the red line, the values estimated by the model in 

each cutting regime under analysis. The cutting speed levels and test duration levels are 

displayed in columns and rows, respectively. 
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Figure 5. Model fitting of the resultant cutting force per cutting regime for the CT5015-P10 insert 

Source: Authors’ own work. 

 

 

Figure 6. Model fitting of the resultant cutting force per cutting regime for the GC4225-P25 insert 

Source: Authors’ own work. 

The observed proximity between the resultant cutting forces led to the SEC values 

presented in Table 4. According to this table, there is a small difference between the mean 

values of the experimental and estimated SEC in all the experiment combinations. In 
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addition, in most cases, the values of the deviations induced by the error are smaller for the 

estimated results. Therefore, the range of values for the estimated SEC constitutes a subset 

of the range of values for the experimental SEC. 
 

Table 4. Experimental specific energy consumption vs. estimated specific energy consumption 

Source: Authors’ own work. 

Insert vc (m/min) T (min) 
Experimental SEC 

(J/cm3) 

Estimated SEC 

(J/cm3) 

CT5015-P10 

400 

2 12 731 ± 741 12 698 ± 615 

4 14 650 ± 312 14 650 ± 269 

6 13 878 ± 272 13 841 ± 244 

8 11 630 ± 139 11 592 ± 98 

10 13 675 ± 166 13 627 ± 119 

500 

1 12 305 ± 1 827 12 388 ± 1 381 

2 11 929 ± 408 11 842 ± 434 

3 12 340 ± 430 12 275 ± 436 

4 11 738 ± 286 11 641 ± 246 

5 11 412 ± 150 11 318 ± 141 

600 

0.6 11 784 ± 2 796 11 718 ± 2 315 

1.2 13 695 ± 1 267 13 671 ± 1 152 

2 12 703 ± 812 12 677 ± 671 

3 13 124 ± 504 13 081 ± 473 

4 13 297 ± 389 13 286 ± 367 

GC4225-P25 

400 

2 12 996 ± 627 12 916 ± 528 

4 12 916 ± 226 12 864 ± 270 

6 13 374 ± 309 13 411 ± 281 

8 13 797 ± 194 13 783 ± 177 

10 13 791 ± 132 13 719 ± 126 

500 

1 12 939 ± 1 574 13 031 ± 1 381 

2 13 337 ± 646 13 350 ± 683 

3 13 631 ± 519 13 528 ± 460 

4 13 798 ± 459 13 671 ± 380 

5 13 860 ± 324 13 952 ± 294 

600 

0.6 13 988 ± 3 919 13 633 ± 3 111 

1.2 13 367 ± 1 233 13 466 ± 1 370 

2 13 981 ± 892 14 161 ± 693 

3 15 295 ± 736 14 998 ± 606 

4 18 577 ± 910 18 653 ± 627 

 

The highest SEC for the CT5015-P10 insert occurred at a cutting speed of 400 m/min 

with a test duration of 4 min; and for the GC4225-P25 insert, at a cutting speed of 600 

m/min with a test duration of 4 min. The lowest SEC for the CT5015-P10 insert occurred at 

a cutting speed of 500 m/min with a test duration of 5 min; and for the GC4225-P25 insert, 

at a cutting % higher than that for the CT5015-P10 insert. These results show the 

complexity of the machining process, which depends on a considerable number of factors. 

The coefficients of determination and the root mean squared error of the polynomial 

models did not exceed 80 % in the representation of the variability of the data. Those of the 
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models developed with neural networks, however, exceeded 90 %, which represents an 

acceptable performance in the functional fitting of the shear forces. These findings reveal 

the good level of reliability of the FFNN models in predicting SEC under various machining 

conditions to further adopt the necessary energy-saving strategies. 

These models could support engineers' decision-making by providing them with 

knowledge-based assistance. As auxiliary tools, they could be used to explore the behavior of 

different cutting regimes in terms of adopting resource-saving measures. 

 

 

5.  CONCLUSIONS 

 

In this paper, the cutting forces, and the Specific Energy Consumption (SEC) during the 

dry high-speed turning of AISI 1045 steel were modeled using a function fitting neural 

network topology. For this purpose, we described the experiments and data sets derived 

from them, which formed the knowledge base learned by the model developed in MATLAB. 

The estimation of the SEC under the different cutting conditions proved to be highly 

accurate, which was corroborated by the values of the performance metrics and the 

graphical representations. 

The cutting forces were experimentally measured and compared with the estimates of 

the predictive models developed using polynomial regression and artificial neural networks. 

The resulting models were evaluated based on two performance metrics (coefficient of 

determination and root mean squared error). The polynomial models were found not to 

exceed 80 % in the representation of the variability of the data, while the models developed 

with neural networks exceeded 90 %, which is an acceptable accuracy in terms of the 

functional fitting of the cutting forces. These results are consistent with those reported in 

[28], [30], [32], [33]. 

These findings show the good level of reliability of the FFNN models in predicting SEC 

under various machining conditions to further adopt the necessary energy-saving strategies. 

The highest SEC for the CT5015-P10 insert occurred at a cutting speed of 400 m/min 

with a test duration of 4 min; and for the GC4225-P25 insert, at a cutting speed of 600 

m/min with a test duration of 4 min. The lowest SEC for the CT5015 insert occurred at a 

cutting speed of 500 m/min with a test duration of 5 min; for the GC4225 insert, at a cutting 

speed of 400 m/min with a test duration of 4 min. Likewise, the intermediate cutting speed 

(vc = 500 m/min) produced the lowest SEC values for both inserts. Moreover, the SEC for the 

GC4225 insert was 8.943 % higher than that for the CT5015 insert. 

These results confirm the complexity of the machining process, which depends on a 

considerable number of factors. Therefore, further work needs to be done with a higher 

number of replicates and a greater range of cutting speeds, as well as with other cutting tool 

materials. 
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