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Abstract 

Remote sensing technologies, such as spectral imaging, have great potential for crop 

monitoring. Spectral systems measure the energy reflected and emitted by a surface, 

typically between the visible and near-infrared regions of the electromagnetic spectrum. This 

paper presents a spectral characterization of avocado (Persea americana Mill. cv. Hass) using 

spectrophotometry and spectral imaging. The study uses data from four avocado farms, which 

were collected in situ using spectrometers and GreenSeeker sensors and remotely using 

satellites such as Landsat 8 and Sentinel 2. The spectral signatures captured by the in situ 

and remote sensors were compared and subsequently related to vegetation indices. 

Spectrometry revealed differences between young and mature leaves, particularly in the 

480 nm to 650 nm region of the spectrum, which showed color changes in young avocado 

leaves. The analysis of satellite data highlighted significant differences between Sentinel 2 

and Landsat 8 spectral signatures. These differences are likely due to several factors, 

including collection date, preprocessing, and spatial resolution of the data. Finally, the 

vegetation indices derived from in situ and satellite measurements displayed different scales. 

For in situ data, the Normalized Difference Vegetation Index (NDVI) values were around 0.9 

for the spectrometers and 0.7 for the GreenSeeker sensors. However, the NDVI values 

derived from satellite data were around 0.4 for Sentinel 2 and 0.3 for Landsat 8. 

 

Keywords 
Avocado, spectrometry, multispectral imagery, vegetation indices, remote sensing. 

 

Resumen 

Las tecnologías de la percepción remota, como las imágenes espectrales, tienen un gran 

potencial para el monitoreo de los cultivos. Los sistemas espectrales miden la energía 

reflejada y emitida de una superficie, usualmente entre los rangos visible e infrarrojo cercano 

del espectro electromagnético. Este artículo tuvo como objetivo presentar una caracterización 

espectral del aguacate Persea americana Mill cv. Hass utilizando espectrofotometría e 

imágenes espectrales. El estudio usó datos in situ capturados con espectrómetros y 

GreenSeeker, y datos remotos capturados por sensores en satélites como Landsat 8 y Sentinel 

2. Lo anterior se hizo sobre cuatro unidades productivas de aguacate. En primer lugar, se 

compararon la forma de las firmas espectrales captadas por los sensores in situ y remotos, y 

después se relacionaron con los índices de vegetación. A partir de la espectrometría, se 

establecieron diferencias entre las hojas jóvenes y las hojas desarrolladas o maduras, 

principalmente entre 480 nm y 650 nm. Esta región del espectro muestra los cambios de color 

presentes en las hojas jóvenes del aguacate. A partir de los datos de satélite, la firma 

espectral presenta diferencias significativas entre Sentinel 2 y Landsat 8. Los resultados 

mostraron que estas diferencias se derivan de varios factores, como la fecha de adquisición, 

el preprocesamiento y la resolución espacial. Por último, los índices de vegetación procedentes 

de mediciones in situ y por satélite evidenciaron escalas diferentes. El índice de vegetación 

de diferencia normalizada (NDVI, por sus siglas en inglés) para los datos in situ tiene valores 

alrededor de 0.9 y 0.7 para el espectrómetro y el GreenSeeker, respectivamente. Sin embargo, 

el NDVI derivado de los datos satelitales está alrededor de 0.4 para Sentinel 2 y 0.3 para 

Landsat 8. 

 
Palabras clave 

Aguacate, espectrometría, imágenes multiespectrales, índices de vegetación, percepción 

remota. 
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1. INTRODUCTION 

 

Remote sensing involves the use of sensors, systems, and models to characterize the 

Earth’s surface. The growing interest in this field is driving the development of optical 

sensors and platforms with different spatial, spectral, and temporal resolutions [1]-[3]. 

Among these platforms, are NASA’s Landsat 8 and the European Special Agency’s Sentinel 

2, which include multispectral cameras that collect between 8 and 13 bands from the visible 

to the near-infrared spectral region [4]. The spectral response of a surface can be used to 

characterize materials and objects in the sensor’s field of view. Therefore, applications of 

multispectral remote sensing include cartography [5], meteorological studies [6], defense and 

security [7], mining [8], and agriculture [9]. Particularly, multispectral systems are relevant 

to precision agriculture because they can sense large crop fields; in addition, they provide 

information in several bands of the electromagnetic spectrum. Nevertheless, although the 

spectral response of the vegetation signature is one of the most studied, it is also one of the 

most complex to analyze [10]. 

Vegetation spectral signatures exhibit low reflectance in the visible region due to leaf 

pigments and chlorophyll absorption [10]. However, between 690 nm and 720 nm, vegetation 

spectra present a significant increase in reflectance, known as the red edge, which is the most 

discriminant feature in this region [10]. This increased reflectance is associated with the 

internal structure of leaves and water content. Moreover, in the near-infrared region, 

vegetation displays higher reflectance [10]. The shape of the spectral signature is influenced 

by the physiological and health conditions of the plants. Consequently, several methods have 

been used to relate the vegetation spectral response to environmental, geographic, and 

phenological conditions [11]- [13]. Said methods can be grouped into three approaches: 

vegetation indices (VIs), parametric models, and nonparametric models. 

VIs are band ratios derived from the discriminant features of the vegetation spectrum 

[12]. They are typically based on two or four spectral bands, which makes them 

computationally efficient. VIs are commonly used to estimate leaf area, chlorophyll content, 

biomass, yield, and other attributes. The most widely employed VI is the Normalized 

Difference Vegetation Index (NDVI), a function of reflectance in the near-infrared and red 

spectral bands, which ranges from -1 to 1 [12], [14]. Studies have shown that the NDVI for a 

healthy plant is greater than 0.66. While VIs are widely used in the literature due to their 

simplicity in calculation from spectrometry and imaging data, caution should be exercised in 

their interpretation because they rely on a limited number of spectral bands. 

An alternative to vegetation indices are parametric models, which explore the interaction 

of light with plants based on their biophysical characteristics [15]. These models describe 

spectral variation as a function of canopy, leaf, and soil properties [15]. Estimating 

biophysical characteristics involves an inversion process that minimizes the difference 

between real and simulated data. However, previous studies have shown that this inversion 

from remotely sensed data is computationally expensive and complex; in addition, it is 

limited by camera resolution [15]. Prominent examples of parametric or biophysical models 

include SAIL, which focuses on bidirectional canopy reflectance, and PROSPECT, which 

models the optical properties of leaves. 

Unlike parametric models, nonparametric models do not require the assumption of band 

ratios or knowledge of data distribution. Instead, they employ methods such as neural 

networks, random forests, and support vector machines to extract biophysical models. For 

example, the authors of [16] used techniques based on Gaussian processes to analyze both 

each band and the entire spectrum for estimating biophysical parameters such as chlorophyll 

content, leaf area index, and canopy fraction [16]. The estimation of biophysical parameters 
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from a set of relevant spectral bands reduces the computational costs associated with 

parametric methods while providing insights into the relationship of spectral signatures with 

the optical properties of plants. 

Although there are few studies on the spectral response of avocado, the authors of [17] 

demonstrated that healthy and diseased trees with phytophthora can be classified using 

bands ranging from 400 nm to 950 nm from data collected in the laboratory. However, these 

results lack validation from field studies. In addition, in [18], hyperspectral imaging was used 

to characterize avocado ripening. Similarly, the authors of [19] employed spectral signatures 

ranging from 350 nm to 1,000 nm and VIs to classify healthy, asymptomatic, and 

symptomatic leaves infected with laurel wilt. 

Despite the progress made in the study of the spectral response of vegetation, there is still 

a need for specific studies on its physiological, phenological, and health effects on signatures 

that consider the environmental conditions and the characteristics of the species. Thus, this 

paper aims to obtain a spectral characterization of avocado (Persea americana Mill. cv. Hass) 

using both spectrometry and multispectral imaging. The spectral characterization includes 

the comparison of some standard VIs and scale effects by using directly collected spectral 

signatures and satellite data. 

 

 

2. MATERIALS AND METHODS 

 

In this study, the spectral characterization of avocado (Persea americana Mill. cv. Hass) 

was performed at two scales. The first scale used spectral signatures directly collected from 

leaves in the visible to near-infrared region. This scale offers high spectral resolution but 

requires considering the differences between young and mature leaves. Signatures collected 

in farms were useful to understand the spectral response of avocado, identify relevant 

spectral bands, and analyze the behavior of VIs. The second scale analyzed multispectral 

satellite data with different spatial resolutions. Although this scale has lower spectral and 

spatial resolutions, it aims to provide a more general understanding of avocado’s spectral 

characteristics. This information can be used in future studies for estimation, detection, and 

monitoring of avocado crops. Figure 1 presents the methodology followed in this paper, which 

is described in detail in the following sections. 

 

 
Figure 1. Framework for establishing the spectral characterization of avocado (Persea americana Mill. cv. 

Hass) using spectral signatures and multispectral images in the visible and near-infrared region 

Source: Created by the authors. 
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2.1 Spectral data 

 

This study focused on the spectral response of Persea americana Mill. cv. Hass. This tree 

species is characterized by vigorous growth and lateral branching. The branches develop from 

axillary buds by internode elongation and enlargement and leaf expansion. The leaves of 

Persea americana Mill. cv. Hass exhibit different maturity stages distinguished by their color, 

size, and shape (Figure 2). The apical leaves of the branches are considered young leaves, 

emerging from breaking buds, stem nodes, or growing stem tips, with the petiole visible at 

the point of attachment to the stem. In contrast, mature leaves have achieved full size, darker 

green color, or tougher texture [20]. For this reason, both young and mature leaves were 

collected to study their spectral signature. 

Leaf samples were collected from avocado trees in four farms located in eastern Antioquia 

(Colombia), between Rionegro and El Retiro. Table 1 provides the geolocation of the farms 

used in this study. A total of 60 young and 60 mature leaves were collected in each farm. 

Figure 2 shows the variability between young and mature leaves observed in the dataset, 

with the youngest leaves on the left and the oldest leaves on the right. Spectral signatures 

were captured using an Ocean Insight Flame-S-VIS-NIR-ES spectrometer and aQP600-2-

VIS-BX fiber assembly. This device captures 2.048 spectral bands ranging from 339 nm to 

1.028 nm, with a resolution of 1.33 nm. To reduce noise, ten spectral signatures were 

captured and averaged for each leaf sample. 

For calibration, the spectral response of a white (𝑟𝑤ℎ𝑖𝑡𝑒) and a black pattern (𝑟𝑏𝑙𝑎𝑐𝑘) was 

captured before and after the collection. Finally, the reflectance (𝑅(𝜆)) for each leaf was 

obtained using (1), where 𝜆 represents the wavelength and 𝑟 is the measured radiance. 

 

𝑅(𝜆) =
𝑟(𝜆) − 𝑟𝑏𝑙𝑎𝑐𝑘(𝜆)

𝑟𝑤ℎ𝑖𝑡𝑒(𝜆) − 𝑟𝑏𝑙𝑎𝑐𝑘(𝜆)
 (1) 

 
Table 1. Geolocation of the farms. Source: Created by the authors. 

No. Polygon coordinates Area 
Young leaves 

Original/Cleaned 

Mature leaves 

Original/Cleaned 

1 

N 6.09618 W-75.46996 

N 6.09599 W-75.46973 

N 6.09585 W-75.46998 

N 6.09606 W-75.47036 

1,996 m2 60/60 60/60 

2 

N 6.1127 W-75.403761 

N 6.11177 W-75.40241 

N 6.11028 W-75.40343 

N 6.11081 W-75.40516 

48,351 m2 60/59 60/58 

3 

N 6.10909 W -75.393110 

N 6.109530 W-75.388717 

N 6.106598 W-75.386603 

N 6.106737 W-75.393000 

219,323 m2 60/56 60/58 

4 

N 6.03423 W-75.37977 

N 6.02930 W-75.37309 

N 6.02601 W-75.37972 

N 6.02923 W-75.38625 

N 6.03316 W-75.38629 

938,536 m2 60/60 60/60 

Total 240/235 240/236 
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Figure 2. Variability between young leaves (left side) and mature leaves (right side) 

 Source: Created by the authors. 
 

The spectral characterization of avocado (Persea americana Mill. cv. Hass) focused on 

spectral bands ranging from 480 nm to 900 nm due to the low signal-to-noise ratio observed 

in other spectral bands. The spectral signatures in this range were filtered using a uniform 

10-point sliding window to reduce the noise and preserve the shape. Subsequently, the mean 

and standard deviations were calculated to remove corrupted signals from the collection. The 

final number of samples per farm is also listed in Table 1. 

 
2.2 Multispectral imagery 

 

The spectral responses of avocado leaves collected in situ were compared with the spectral 

signatures captured by the multispectral satellite sensors Sentinel 2 and Landsat 8. 

Sentinel 2 is a mission of the European Space Agency (ESA) that comprises two polar-

orbiting satellites equipped with multispectral cameras. The multispectral imagery consists 

of 13 bands ranging from 443 nm to 2,190 nm. The spatial resolution depends on the spectral 

band: 10-meter spatial resolution images are collected in B2 (490 nm), B3 (560 nm), B4 

(665 nm), and B8 (842 nm); 30-meter imagery is collected in B5 (705 nm), B6 (740 nm), B7 

(783 nm), B8a (865 nm), B11 (1,610 nm), and B12 (2,190 nm); while 60-meter spatial 

resolution imagery is captured in B1 (443 nm), B9 (940 nm), and B10 (1,375 nm). The Level-

2A products of Sentinel 2 are freely available and include bottom reflectance with geometric 

and radiometric corrections. This study used the image captured on May 8, 2022. Figure 3a 

shows an RGB image composition using B4, B3, and B2 over the study area.  

For its part, Landsat 8, operated by NASA, features a multispectral system that measures 

from the visible to the shortwave infrared spectral range. Landsat 8 imagery comprises one 

panchromatic image with a spatial resolution of 15 meters (500 nm to 650 nm) and eight 

bands with a spatial resolution of 30 meters: B1 coastal aerosol (430 nm to 450 nm), B2 blue 

(450 nm to 510 nm), B3 green (530 nm to 590 nm), B4 red (650 nm to 670 nm), B5 near-

infrared (850 nm to 889 nm), B6 SWIR 1 (1,570 nm to 1,650 nm), B7 SWIR 2 (2,110 nm to 

2,290 nm), and B9 cirrus (1,350 nm to 1,380 nm). The data include the surface reflectance 

image obtained after atmospheric correction. This study used the image captured on January 

8, 2022. Figure 3b shows an RGB composition using bands B4, B3, and B2. No low cloud cover 

images were found closer to the date of spectral signature collection. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. RGB composition of (a) Sentinel 2 image captured on May 8, 2022, using B4 (665 nm), B3 (560 nm), 

and B2 (490 nm); (b) Landsat 8 image captured on January 8, 2022, using B4 red (650 nm to 670 nm), B3 green 

(530 nm to 590 nm), and B2 blue (450 nm to 510 nm). Image subset including the four farms from (c) Sentinel 2 

and (d) Landsat 8. Images downloaded from Earth Explorer (https://earthexplorer.usgs.gov/) 

 Source: Created by the authors. 

 
2.3 Processing and analysis of spectral signatures 

 

This study aims to perform a spectral characterization of avocado (Persea americana Mill. 

cv. Hass) in the visible to near-infrared region. The spectral signatures were collected from 

farms located in eastern Antioquia (Colombia) and subjected to three different analyses. The 

first analysis consisted of a statistical approach, where the spectra were separated by farm 

and the entire dataset was employed. The first and second-order statistics were then 

computed and the in situ spectral signatures were compared with the overall spectral 

response measured by Landsat 8 and Sentinel 2 systems. 

Next, discriminative spectral bands were identified using subset band selection (SSBS) 

algorithms. Similarly, an algorithm based on singular value decomposition (SVD) proposed 

in [21] was also implemented. This unsupervised algorithm requires the number of bands (p) 

to be specified. Given the set of spectral signatures (S) as the input parameter, the algorithm 

https://earthexplorer.usgs.gov/
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computes the SVD of the covariance matrix of S and selects the first p eigenvectors. Then, a 

QR factorization is applied, pivoting over the set of selected eigenvectors. The first p elements 

of the pivoting are used as the most relevant bands. 

Finally, the behavior of the spectral signatures of avocado (Persea americana Mill. cv. 

Hass) leaves was determined using several VIs. Table 2 summarizes the VIs used in this 

paper, which employ wavelengths within the collected range and are known to be related to 

plant health. The VI calculations used the red (R), green (G), blue (B), red edge (RE), and 

near-infrared (NIR) bands. Thanks to the high resolution of the collected spectral signatures, 

it was possible to obtain the mean reflectance for the Landsat 8 wavelength ranges. Thus, 

the mean reflectance values were determined for B (450 nm to 510 nm), G (530 nm to 

590 nm), R (630 nm to 670 nm), and NIR (850 nm to 880 nm). The range between 730 nm 

and 740 nm was used to calculate the reflectance of RE. A comparative analysis of the VIs 

obtained from in situ measurements and satellite data was carried out, focusing on the VI 

that could be calculated using Landsat 8 and Sentinel 2 imagery. 

 
Table 2. Selected vegetation indices for analyzing avocado’s spectral signatures 

Source: Created by the authors. 

VI Equation Reference Description 

Normalized Difference Vegetation Index 

(NDVI) 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 [14] 

Vegetation health 

and growth 

Normalized Difference Red Edge (NDRE) 
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 [22] Chlorophyll content 

Optimized Soil-Adjusted Vegetation Index 

(OSAVI) 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.16
 [23] 

Minimized effects of 

soil variation 

Modified Chlorophyll Absorption Ratio 

Index (MCARI) 

(𝑅𝐸 − 𝑅) − 0.2(𝑅𝐸 − 𝐺)

𝑅𝐸/𝑅
 [24] Chlorophyll content 

MERIS Terrestrial Chlorophyll Index 

(MTCI) 

𝑁𝐼𝑅 − 𝑅𝐸

𝑅𝐸 − 𝑅
 [25] Sensitive to nitrogen 

R: red band. G: green band. NIR: near-infrared band; RE: red edge band. 

 

 

3. RESULTS AND DISCUSSION 

 
3.1 Spectral characterization of avocado (Persea americana Mill. cv. Hass) 

 

The spectral behavior of the avocado leaves collected from each farm was analyzed to 

establish differences between young and mature specimens. Figure 4 shows the mean 

spectral signatures and standard deviations for young (left column) and mature (right 

column) leaves. In Farm 1, the reflectance peak, attributed to leaf pigments, occurred at 

550 nm for both young and mature leaves, while the red edge started before 700 nm and 

extended to 750 nm. For Farms 2, 3, and 4, Figure 4 shows differences between young and 

mature leaves. For instance, chlorophyll absorption increased from 600 nm for young leaves 

and from 550 nm for mature leaves. 

Moreover, Figure 4 shows a higher standard deviation for young leaves compared to 

mature leaves. Generally, at 550 nm, the spectral signature exhibits more significant 

qualitative variations between young and mature leaves. This is due to mature leaves 

displaying a deep dull green color, while young leaves show a wide range of colors, including 

brown, reddish, light green, yellow, or a combination of them in the same leaf. 
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Figure. 4. Spectral signatures of avocado (Persea americana Mill. cv. Hass) for each farm. Left column: young 

leaves. Right column: mature leaves. +SD: mean spectrum plus one standard deviation. -SD: mean spectrum 

minus one standard deviation. Source: Created by the authors. 

 

An analysis of the entire dataset was conducted independent of specific farms. Figure 5 

compares the mean spectral signatures obtained from both young and mature leaves. 
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Considering all wavelengths, the cosine distance similarity between these signatures was 

calculated to be 0.9974. Furthermore, Figure 6 displays the differences between three 

spectral regions: (I) 480 nm to 650 nm (Figure 6a), (II) 650 nm to 750 nm (Figure 6b), and 

(III) 750 nm to 900 nm (Figure 6c). 

 

 
Figure 5. Comparison of spectral signatures of young and mature leaves of avocado (Persea americana Mill. cv. 

Hass). Source: Created by the authors. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Detailed comparison of spectral signatures of young and mature leaves of avocado (Persea 

americana Mill. cv. Hass) in the different spectral ranges: (a) 480 nm to 650 nm, (b) 650 nm to 750 nm, and (c) 

750 nm to 900 nm. Source: Created by the authors. 
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Within the visible region, the main differences between young and mature leaves can be 

observed between 480 nm and 650 nm (similarity of 0.9160). In this region, associated with 

leaf pigments and chlorophyll absorption, young leaves exhibit higher reflectance near 

550 nm, while mature leaves show increased reflectance near 600 nm. In the red edge region 

(650 nm to 750 nm), a shift was observed at the beginning of the range (similarity of 0.9934). 

Finally, the near-infrared region (650 nm to 750 nm) displayed only differences in amplitude 

(similarity of 0.9999). Avocado trees are characterized by having different phenological stages 

in their crowns. For instance, in commercial plantations, a plant can simultaneously present 

development and fruiting stages. Consequently, the foliage of different colors can coexist 

within the same plant. 

 
3.2 Comparison of spectral signatures from in situ measurements and satellite data 

 

The spectral signatures were obtained from satellite imagery collected by Sentinel 2 and 

Landsat 8. Figure 7(a) presents the spectral signatures captured by Sentinel 2 for the four 

farms in the bands B2, B3, B4, and B8, which have a spatial resolution of 10 meters. 

Similarly, Figure 7(b) presents the signatures obtained with the five bands of Landsat 8 

(B1, B2, B3, B4, B5), whose spatial resolution is of 30 meters. At this analysis scale, 

differences between young and mature leaves cannot be observed. In addition, Figure 7(c) 

compares the mean spectra captured by Sentinel 2 and Landsat 8, considering all four farms. 

The signatures exhibit variations between the two sensors, which can be related to the 

collection date, atmospheric and radiometric corrections, and spatial resolution, among other 

factors. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Comparison of spectral signatures collected from the different farms using (a) Sentinel 2 and (b) 

Landsat 8. (c) Mean spectra for all farms collected by Sentinel 2 and Landsat 8. R_farmi refers to the mean 

reflectance obtained from farm 1. Source: Created by the authors. 
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3.3 Spectral band selection 

 

A comparison between the results obtained from satellite data and close-range 

spectrometry revealed differences at these two scales. While satellite sensors include bands 

for vegetation characterization, such as the NIR and red bands, their lower spatial and 

spectral resolutions limit plant analysis. Consequently, this study employed SSBS 

algorithms to identify relevant bands for avocado spectral signatures. The findings described 

in Section 3.1 suggest that the visible range is relevant for this plant. Likewise, the 

unsupervised SSBS algorithm based on SVD was used to validate these results. Table 3 

presents the ten most relevant bands selected by the SVD-based algorithm. Moreover, Figure 

8 shows the spectral signatures of young and mature avocado leaves, with the selected bands 

overlaid. It is worth noting that these ten bands are between the range of 480 nm and 

650 nm. Furthermore, Figure 8 identifies five regions of relevance: near 500 nm, 540 nm, 

560 nm, 610 nm, and 630 nm. 

 
Table 3. Ten most relevant bands selected by the SVD-based algorithm and spectral signatures of avocado 

(Persea americana Mill. cv. Hass). Source: Created by the authors. 

 Band Wavelength  Band Wavelength 

1 218 559.3983 6 348 605.5922 

2 434 635.7183 7 0 480.2063 

3 199 552.5817 8 159 538.1772 

4 209 556.1714 9 164 539.9818 

5 37 493.7973 10 46 497.0939 

 

 
Figure 8. Spectral signatures of young and mature leaves of avocado (Persea americana Mill. cv. Hass) ranging 

between 480 nm and 650 nm, with the relevant bands selected by the SVD-based algorithm 

Source: Created by the authors. 

 
3.4 Vegetation Indices 

 

Figure 9 compares the VIs obtained from young and mature avocado leaves using in situ 

measurements. Table 4 lists the mean, median, and standard deviation ( ) values of the 

calculated VIs. 
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Figure 9. Vegetation indices for young and mature leaves of avocado (Persea americana Mill. cv. Hass) 

Source: Created by the authors. 

 

Figure 9 shows that of the NDVI, OSAVI, and MCARI values exhibit a higher dispersion 

among young leaves compared to mature ones. For instance, the NDVI mean value for young 

leaves was 0.8866 with  = 0.2057, whereas for mature leaves it was 0.9369 with  = 0.0398. 

Conversely, the NDRE and MTCI values reached higher dispersions among mature leaves 

compared to younger ones. Specifically, the NDRE mean value for young leaves was 0.0645 

with  = 0.0358 and, for mature leaves, it was 0.1186 with  = 0.0426. The outliers shown in 

Figure 9 represent the wide range of colors observed in young leaves, with some exceptions 

in mature leaves, mainly due to the brightness of the deep green color. 
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Table 4. Mean, median, and standard deviation of vegetation indices for young and mature leaves of avocado 

(Persea americana Mill. cv. Hass). Source: Created by the authors. 

VI Mean Median SD 

 Young Mature Young Mature Young Mature 

NDVI 0.8866 0.9369 0.9287 0.9426 0.1057 0.0398 

NDRE 0.0645 0.1186 0.0588 0.1078 0.0358 0.0426 

OSAVI 0.6728 0.7164 0.7059 0.7196 0.0756 0.0292 

MCARI 0.0217 0.0132 0.0148 0.0120 0.0189 0.0086 

MTCI 0.1486 0.2856 0.1297 0.2563 0.0875 0.1154 

 
3.5 Comparison of vegetation indices derived from satellite data 

 

Table 5 presents the NDVI and OSAVI values obtained from spectral signatures derived 

from multispectral satellite imagery. In this case, the NDVI obtained for the avocado farms 

was around 0.4 using Sentinel 2 and around 0.3 using Landsat 8. These values are 

considerably lower than the value of 0.9 obtained for close-range signatures, which may be 

due to limitations in the spectral and spatial resolutions and to atmospheric effects. 

 
Table 5. Mean and standard deviation of vegetation indices of farms in the study area obtained from 

Sentinel 2 and Landsat 8 imagery. Source: Created by the authors. 

VI 
 Sentinel 2 Landsat 8 

 Mean SD Mean SD 

NDVI 

Farm 1 0.3642 0.0583 0.2981 0.0644 

Farm 2 0.4303 0.0859 0.3465 0.0876 

Farm 3 0.4193 0.0576 0.2830 0.0842 

Farm 4 0.4449 0.0772 0.3480 0.0759 

OSAVI 

Farm 1 0.2835 0.0442 0.2170 0.0476 

Farm 2 0.3414 0.0727 0.2570 0.0682 

Farm 3 0.3271 0.0500 0.2149 0.0586 

Farm 4 0.3527 0.0649 0.2535 0.0579 

 
3.6 Comparison of vegetation indices measured with GreenSeeker 

 

Table 6 presents the mean and standard deviation of the NDVI measurements recorded 

by the GreenSeeker sensor. Using this instrument, the mean for mature leaves was around 

0.7225 and, for young leaves, it was around 0.4550. These measurements are lower than 

those estimated from spectral signatures collected by the field spectrophotometer. However, 

differences in NDVI between young and mature leaves are evident, which demonstrates the 

sensitivity of the instrument. As explained in [26], the GreenSeeker sensor helps to 

determine differences in a simple numerical index such as NDVI, which reflects the 

physiological state of crops in the field.  

 
3.7 Discussion 

 

The present study makes significant contributions to the spectral characterization of 

avocado (Persea americana Mill. cv. Hass) in the visible to near-infrared range, the 

identification of discriminative wavelengths, and the quantification of VIs for this crop. To 
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our knowledge, no spectral characterization of avocado in the visible to near-infrared region 

has been published. 

 
Table 6. Mean and standard deviation of NDVI for young and mature leaves of avocado using a 

GreenSeeker sensor. Source: Created by the authors. 

VI Mean SD 

NDVI Young Mature Young Mature 

Farm 1 0.4500 0.7600 0.0724 0.0425 

Farm 2 0.5000 0.7200 0.0675 0.0435 

Farm 3 0.4300 0.7550 0.0350 0.0412 

Farm 4 0.4400 0.6750 0.0337 0.0408 

Mean 0.4550 0.7225 0.0591 0.0463 

 

Previous studies have used Sentinel 2 images of avocado crops [27], but they have not 

analyzed their spectral behavior. For example, the authors of [18] described the spectral 

response of avocado fruit in the near-infrared range. In contrast, we analyzed the spectral 

response of avocado trees both in the near-infrared range and from space-borne 

platforms. The results suggest a dependence between leaf maturity and signature shape in 

the visible range that should be considered in future analyses. 

Avocado plants can present different phenological stages simultaneously, including 

vegetative growth, flowering, and fruit production [28]. This condition causes natural 

changes in the spectral response of the plant, even without being subjected to biotic or abiotic 

stress. The spectral characterization conducted in this study may be useful for studying the 

linear relationship between biomass production and Leaf Area Index (LAI) in non-stressed 

crops, as suggested in [29]- [31]. Future studies could further explore this relationship. 

Regarding the spectral characterization from multispectral satellite imagery, there is 

little consistency between the data captured by Sentinel 2 and Landsat 8. Despite both 

selected images undergoing geometric, radiometric, and atmospheric corrections, differences 

in collection dates, preprocessing algorithms, and spatial and spectral resolutions can affect 

the obtained signatures. Thus, the close-range signatures obtained in this study can be used 

as a reference in studies of diseases, physiological states, and other phenomena in avocado 

crops. Nevertheless, caution must be exercised when conducting local analyses within crops 

using satellite data, considering the low spatial and spectral resolutions, as well as the 

dependence on preprocessing methods. Accurately discriminating on-field avocado plants 

from other crops or soil covers using remote sensors remains a challenge due to the lack of 

specific imagery libraries for each phenological stage, stress condition, or interaction. 

The results indicate that bands around 490 nm, 540 nm, 560 nm, 605 nm, and 635 nm 

play a major role in the spectral characterization of avocado. It is important to note that the 

band selection approach employed in this study was unsupervised, that is, it sought to reduce 

information redundancy by identifying discriminant bands. It is worth highlighting the 

coherence between the bands selected by the SVD algorithm and the results obtained 

analytically from the signatures, where the spectral difference between young and mature 

leaves in the visible region of the spectrum was established. These discriminant bands can 

be used in the future for the development of cost-effective monitoring systems that capture a 

limited number of bands while enabling the discrimination of different phenomena in plant 

leaves. In addition, it is crucial to identify bands associated with stress factors and phenology 

to improve the prediction of VIs, considering that the reflectance of stressed plants should be 

related to variables such as LAI, cover, optical properties of phyto-filaments, and soil 
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conditions [30], [31]. Consequently, this study lays the foundation for generating new VIs 

using discriminative spectral bands specific to avocado commercial plantations. 

NDVI is widely employed in agricultural systems to assess physical plant factors using 

correlation and regression analyses. However, this study revealed a significant variance in 

NDVI when applied to young avocado leaves, highlighting its sensitivity to the physiological 

stages of plants. The results also demonstrated that VIs, including NDVI and OSAVI, varied 

depending on the type of sensor used. The above underscores the need for new methods 

considering additional spectral information rather than only two to four bands. It is also 

important to note that, in crops other than avocado, VIs may offer more accurate results. For 

example, in the case of the common bean (Phaseolus vulgaris), which exhibits a homogeneous 

spectral signature across different phenological stages, VIs may provide reliable 

representations of field conditions [31]. However, in avocado, the presence of numerous 

structures at different phenological stages, such as flowers, fruits, leaves of varying ages, and 

other components, make spectral analysis difficult. 

 

 

4. CONCLUSIONS 

 

This paper presents a characterization of the spectral response of avocado (Persea 

americana Mill. cv. Hass) from signatures captured in the visible to near-infrared region. A 

total of 60 young and 60 mature leaves were collected for analysis from four farms located in 

Antioquia (Colombia). The spectral signatures were compared with data from multispectral 

images captured by Sentinel 2 and Landsat 8. In addition, the behavior of different VIs was 

analyzed.  

The close-range spectral signatures revealed a spectral difference between young and 

mature avocado leaves. This difference was predominant in the range from 450 nm to 

650 nm; moreover, a shift in the red edge was observed. The unsupervised band selection 

algorithm, based on singular value decomposition, classified the range from 480 nm to 

650 nm as the most discriminant for spectral characterization.  

Conversely, spectral characterization using satellite data posed some challenges. The 

signatures collected by Sentinel 2 and Landsat 8 displayed significant variations that can be 

related to collection dates, spatial resolutions, and radiometric and atmospheric corrections 

of each system. In the case of Sentinel 2, an image with low cloud cover (less than 30%) was 

captured on May 8, 2022. However, the closest Landsat 8 image with low cloud cover was 

obtained on January 8, 2022. In addition, the analysis was based on Sentinel 2 bands with a 

10-meter spatial resolution, whereas the Landsat 8 bands had a spatial resolution of 30 

meters. This implies that the pixels representing the characteristic spectral signatures 

exhibited a mixture of materials. Although both images had radiometric and geometric 

corrections, the signatures varied significantly.  

The analyzed VIs also highlighted the differences between young and mature leaves in 

the spectral characterization using close-range spectrometry. The NDVI values achieved 

were close to 0.9, but younger leaves showed significant deviations. Similar behaviors were 

observed in MCARI and OSAVI. However, regarding satellite data, we could compute only 

two VIs that used the available spectral bands. In this case, the NDVI values were around 

0.4 for Sentinel 2 and 0.3 for Landsat 8. It is worth mentioning that NDVI is today the most 

widely used index in vegetation studies because it can be calculated from signatures or 

satellite images; in addition, it can be measured using instruments such as GreenSeeker 

sensors. Nonetheless, the results of this study demonstrate the differences in scale that can 
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be obtained for this index according to the type of data (in situ or remote). This should be 

considered in future agronomic studies based on vegetation indices. 

The spectral characterization obtained in this study offers valuable insights for the 

detection of diseases and stresses in avocado (Persea americana Mill. cv. Hass) plants. The 

relevant spectral bands (around 490 nm, 540 nm, 560 nm, 605 nm, and 635 nm) identified in 

this study can be used to develop specialized devices for the analysis of avocado 

plants. Furthermore, vegetation indices provide reference values for different observation 

scales (close-range and satellite-based), facilitating further precision agriculture studies in 

the context of avocado cultivation. 

 

 

5. ACKNOWLEDGMENTS AND FUNDING 

 

This work was supported by the Instituto Tecnologico Metropolitano - ITM and the 

Corporacion Colombiana de Investigacion Agropecuaria - AGROSAVIA. This study is part of 

the project Study of capabilities of multispectral remote systems for monitoring Hass avocado 

crops (Code P20208). 

 

 

CONFLICTS OF INTEREST 

 

All the authors declare that they have no financial, professional, or personal interests 

that may influence the results obtained or the interpretations proposed. 

 

 

AUTHOR CONTRIBUTIONS 

 

Maria C. Torres-Madronero: Conceptualization, Methodology, Formal analysis, 

Investigation, Resources, Data Curation, Writing – Original Draft, Project administration, 

Funding acquisition; Tatiana Rondon: Conceptualization, Methodology, Formal analysis, 

Investigation, Resources, Writing – Review and editing; Ricardo Franco: Methodology, 

Formal analysis, Investigation, Writing – Review and editing; Maria Casamitjana: 

Conceptualization, Methodology, Formal analysis, Writing – Review and editing; Johana 

Trochez Gonzalez: Conceptualization, Methodology, Formal analysis, Writing – Review and 

editing. 

 

 

6. REFERENCES 

 
[1] V. C. F. Gomes, G. R. Queiroz, and K. R. Ferreira, “An overview of platforms for big earth observation data 

management and analysis,” Remote Sens., vol. 12, no. 8, p. 1253, Apr. 2020. 

https://doi.org/10.3390/rs12081253 

[2] M. Rast and T. H. Painter, “Earth Observation Imaging Spectroscopy for Terrestrial Systems: An Overview 

of Its History, Techniques, and Applications of Its Missions,” Surv Geophys, vol. 40, pp. 303–331, Mar. 

2019. https://doi.org/10.1007/s10712-019-09517-z 

[3] P. C. Pandey, N. Koutsias, G. P. Petropoulos, P. K. Srivastava, and E. Ben Dor, “Land use/land cover in 

view of earth observation: data sources, input dimensions, and classifiers—a review of the state of the art,” 

Geocarto Int., vol. 36, no. 9, pp. 957-988, Jun. 2019. https://doi.org/10.1080/10106049.2019.1629647 

[4] M. E. D. Chaves, M. C. A. Picoli, and I. D. Sanches, “Recent applications of Landsat 8/OLI and Sentinel-

2/MSI for land use and land cover mapping: A systematic review,” Remote Sens., vol. 12, no. 18, p. 3062, 

Sep. 2020. https://doi.org/10.3390/rs12183062 

https://doi.org/10.3390/rs12081253
https://doi.org/10.1007/s10712-019-09517-z
https://doi.org/10.1080/10106049.2019.1629647
https://doi.org/10.3390/rs12183062


M. C. Torres-Madronero et al.  TecnoLógicas, Vol. 26, nro. 56, e2567, 2023 

Página 18 | 19 

[5] G. L. Spadoni, A. Cavalli, L. Congedo, and M. Munafò, “Analysis of Normalized Difference Vegetation Index 

(NDVI) multi-temporal series for the production of forest cartography,” Remote Sens. Appl.: Soc. Environ., 

vol. 20, p. 100419, Nov. 2020. https://doi.org/10.1016/j.rsase.2020.100419  

[6] X. Zhang, J. Zhou, S. Liang, and D. Wang, “A practical reanalysis data and thermal infrared remote sensing 

data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature,” Remote 

Sens. Environ., vol. 260, p. 112437, Jul. 2021. https://doi.org/10.1016/j.rse.2021.112437  

[7] M. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral imaging for military and security applications: 

Combining myriad processing and sensing techniques,” IEEE Geosci. Remote Sens. Magazine, vol. 7, no. 2, 

pp. 101-117, Jun. 2019. https://doi.org/10.1109/MGRS.2019.2902525  

[8] H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of UAV monitoring in mining areas: Current status and 

future perspectives,” Int. J. Coal. Sci. Technol., vol. 6, pp. 320-333, Aug. 2019. 

https://doi.org/10.1007/s40789-019-00264-5  

[9] R. P. Sishodia, R. L., Ray, and S. K. Singh, “Applications of remote sensing in precision agriculture: A 

review,” Remote Sens., vol. 12, no. 19, p. 3136, Sep. 2020. https://doi.org/10.3390/rs12193136  

[10] L. Kumar, K. Schmidt, S. Dury, and A. Skidmore, A. “Imaging spectrometry and vegetation science,” 

Imaging Spectrometry, pp. 111-155, 2002. https://doi.org/10.1007/978-0-306-47578-8_5  

[11] S. L. Ustin et al, “Retrieval of foliar information about plant pigment systems from high resolution 

spectroscopy,” Remote Sens. Environ., vol. 113, supplement 1, pp. S67-S77, Sep. 2009. 

https://doi.org/10.1016/j.rse.2008.10.019  

[12] J. Xue, and B. Su, “Significant remote sensing vegetation indices: A review of developments and 

applications,” Journal of Sensors, vol. 2017, p. 1353691, May. 2017. https://doi.org/10.1155/2017/1353691  

[13] K. R. Thorp et al, “Proximal hyperspectral sensing and data analysis approaches for field-based plant 

phenomics,” Comput. Electron. Agric., vol. 118, pp. 225-236, Oct. 2015. 

https://doi.org/10.1016/j.compag.2015.09.005 

[14] S. Huang, L. Tang, J. P. Hupy, Y. Wang, and G. Shao, “A commentary review on the use of normalized 

difference vegetation index (NDVI) in the era of popular remote sensing,” J. For. Res., vol. 32, pp. 1-6, May. 

2020. https://doi.org/10.1007/s11676-020-01155-1  

[15] S. Jacquemoud et al., “PROSPECT+ SAIL models: A review of use for vegetation characterization,” Remote 

Sens. Environ., vol. 113, supplement 1, pp. S56-S66, Sep. 2009. https://doi.org/10.1016/j.rse.2008.01.026  

[16] J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno, “Retrieval of vegetation biophysical 

parameters using Gaussian process techniques,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1832-

1843, May. 2012. https://doi.org/10.1109/TGRS.2011.2168962 

[17] J. Abdulridha, R. Ehsani, and A. De Castro, “Detection and differentiation between laurel wilt disease, 

phytophthora disease, and salinity damage using a hyperspectral sensing technique,” Agriculture, vol. 6, 

no. 4, p. 56, Oct. 2016. https://doi.org/10.3390/agriculture6040056  

[18] J.J. Vega Diaz, A. P. Sandoval Aldana, and D. V. Reina Zuluaga, “Prediction of dry matter content of 

recently harvested ‘Hass’ avocado fruits using hyperspectral imaging,” J. Sci. Food Agric., vol. 101, no. 3, 

pp. 897-906, Feb. 2021. https://doi.org/10.1002/jsfa.10697  

[19] S. Sankaran, R. Ehsani, S. A. Inch, and R. C. Ploetz, “Evaluation of visible-near infrared reflectance spectra 

of avocado leaves as a non-destructive sensing tool for detection of laurel wilt,” Plant disease, vol. 96, no. 

11, pp. 1683-1689, Nov. 2012. https://doi.org/10.1094/PDIS-01-12-0030-RE  

[20] M. L. Alcaraz, T. G. Thorp, and J. I. Hormaza, “Phenological growth stages of avocado (Persea americana) 

according to the BBCH scale,” Scientia Horticulturae, vol. 164, pp 434-439, Dec. 2013. 

https://doi.org/10.1016/j.scienta.2013.09.051  

[21] M. Velez-Reyes and L. O. Jimenez, “Subset selection analysis for the reduction of hyperspectral imagery,” 

in IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote 

Sensing. Symposium Proceedings, Seattle, WA, USA, 1998, vol. 3, pp. 1577-1581. 

https://doi.org/10.1109/IGARSS.1998.691622  

[22] E. M. Barnes et al, “Coincident detection of crop water stress, nitrogen status and canopy density using 

ground based multispectral data,” In Proceedings of the Fifth International Conference on Precision 

Agriculture, Bloomington, MN, 2000. https://www.tucson.ars.ag.gov/unit/Publications/PDFfiles/1356.pdf  

[23] M. D. Steven, “The sensitivity of the OSAVI vegetation index to observational parameters,” Remote Sens. 

Environ., vol. 63, no. 1, pp. 49-60, Jan. 1998. https://doi.org/10.1016/S0034-4257(97)00114-4  

[24] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. De Colstoun, and J. E McMurtrey III, “Estimating corn 

leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 

229-239, Nov. 2000. https://doi.org/10.1016/S0034-4257(00)00113-9  

[25] J. Dash, A. Mathur, G. M. Foody, P. J. Curran, J. W. Chipman, and T. M. Lillesand, “Land cover 

classification using multi‐temporal MERIS vegetation indices,” Int. J. Remote Sens., vol. 28, no. 6, pp. 1137-

1159, Mar. 2007. https://doi.org/10.1080/01431160600784259  

https://doi.org/10.1016/j.rsase.2020.100419
https://doi.org/10.1016/j.rse.2021.112437
https://doi.org/10.1109/MGRS.2019.2902525
https://doi.org/10.1007/s40789-019-00264-5
https://doi.org/10.3390/rs12193136
https://doi.org/10.1007/978-0-306-47578-8_5
https://doi.org/10.1016/j.rse.2008.10.019
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1016/j.compag.2015.09.005
https://doi.org/10.1007/s11676-020-01155-1
https://doi.org/10.1016/j.rse.2008.01.026
https://doi.org/10.1109/TGRS.2011.2168962
https://doi.org/10.3390/agriculture6040056
https://doi.org/10.1002/jsfa.10697
https://doi.org/10.1094/PDIS-01-12-0030-RE
https://doi.org/10.1016/j.scienta.2013.09.051
https://doi.org/10.1109/IGARSS.1998.691622
https://www.tucson.ars.ag.gov/unit/Publications/PDFfiles/1356.pdf
https://doi.org/10.1016/S0034-4257(97)00114-4
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1080/01431160600784259


M. C. Torres-Madronero et al.  TecnoLógicas, Vol. 26, nro. 56, e2567, 2023 
 

Página 19 | 19 

[26] M. V. Gutiérrez-Soto, E. Cadet-Piedra, W. Rodríguez-Montero, and J. M. Araya-Alfaro. “El GreenSeeker™ 

y el diagnóstico del estado de salud de los cultivos,” Agronomía Mesoamericana, vol. 22, no. 2, pp. 397-403, 

Dec. 2011. https://www.scielo.sa.cr/scielo.php?pid=S1659-13212011000200016&script=sci_arttext  

[27] M. L. Pérez-Bueno et al. “Detection of white root rot in avocado trees by remote sensing,” Plant disease, 

vol. 103, no. 6, pp. 1119-1125, Apr. 2019. https://doi.org/10.1094/PDIS-10-18-1778-RE  

[28] J. S. Arias Garcia, D. Pereira da Silva, A. Hurtado Salazar, R. A. Iturrieta Espinoza, and N. Ceballos-

Aguirre. “Phenology of hass avocado in the Andean tropics of Caldas, Colombia,” Revista Brasileira de 

Fruticultura, vol. 44, no. 5, pp. 1-16, Sep. 2022. https://dx.doi.org/10.1590/0100-29452022252  

[29] J. Goudriaan and J. L. Monteith. “A mathematical function for crop growth based on light interception and 

leaf area expansion,” Ann. Bot. vol. 66, no. 6, pp. 695–701. Dec. 1990. 

https://doi.org/10.1093/oxfordjournals.aob.a088084  

[30] F. Paz-Pellat et al., “Diseño de un índice espectral de la vegetación: NDVIcp,” Agrociencia, vol. 41, no. 5, 

pp. 539–554. Jul. 2007. 

https://www.scielo.org.mx/scielo.php?pid=S1405-31952007000500539&script=sci_arttext  

[31] M. Reyes, F. Paz, M. Casiano, F. Pascual, M. I. Marín, and E. Rubiños. “Caracterización del efecto de estrés 

usando índices espectrales de la vegetación para la estimación de variables relacionadas con la biomasa del 

área,” Agrociencia vol. 45, no. 2, pp. 221-233. 2011. 

 https://www.scielo.org.mx/scielo.php?pid=S1405-31952011000200007&script=sci_abstract&tlng=pt  

https://www.scielo.sa.cr/scielo.php?pid=S1659-13212011000200016&script=sci_arttext
https://doi.org/10.1094/PDIS-10-18-1778-RE
https://dx.doi.org/10.1590/0100-29452022252
https://doi.org/10.1093/oxfordjournals.aob.a088084
https://www.scielo.org.mx/scielo.php?pid=S1405-31952007000500539&script=sci_arttext
https://www.scielo.org.mx/scielo.php?pid=S1405-31952011000200007&script=sci_abstract&tlng=pt

