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Abstract 
Power systems are evolving towards smart grids to improve their efficiency and reliability through 

demand response and management strategies. This study presents the Multi-User Model of 
Controllable Electric Loads (MUMCEL), an optimization model developed to collectively manage the 
residential demand of multiple users, through Controllable Electric Load Scheduling (CELS). The 
objective of the model was to minimize the cost of energy and achieve a more uniform distribution of the 
electric load, taking into account dynamic pricing rates and specific constraints. The methodology was 
based on classical optimization techniques in two stages. The first stage focused on the single user level 
using the exhaustive search method to select solutions that minimize the cost of each user's bill. The 
second stage employed the local search method for multi-user optimization to find a flatter demand 
curve. For this purpose, an algorithm was designed in MATLAB® that simulated a scenario with 60 
users for 24 hours, scheduling the most appropriate on/off periods of controllable loads. Two scenarios 
were compared: one where users manage their loads at their convenience and the other where the 
proposed model was applied. The results indicated a decrease in peak demand, with an average savings 
of 4.94 % on the electricity bill for all users and up to 12.34 % individually. The simulation achieved this 
optimal solution in 25 minutes, despite the computational complexity involved in managing the demand 
of 60 users. Therefore, the model used simple methods to optimize multiple variables, providing better 
performance compared to processing that would require a more complex algorithm. 
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Resumen 

Los sistemas eléctricos están evolucionando hacia redes inteligentes para mejorar su 
eficiencia y confiabilidad mediante estrategias de gestión y respuesta a la demanda. Este estudio 
presenta el Modelo Multiusuario de Cargas Eléctricas Controlables (MMCEC), un modelo de 
optimización desarrollado para gestionar colectivamente la demanda residencial de múltiples 
usuarios mediante la Programación de Cargas Eléctricas Controlables (PCEC). El objetivo del 
modelo fue minimizar el costo de la energía y lograr una distribución más uniforme de la carga 
eléctrica, teniendo en cuenta tarifas dinámicas de precios y restricciones específicas. La 
metodología se basó en técnicas clásicas de optimización en dos etapas. La primera se enfocó a 
nivel de único usuario utilizando el método de búsqueda exhaustiva para seleccionar soluciones 
que minimicen el costo de la factura de cada usuario. La segunda etapa empleó el método de 
búsqueda local para la optimización multiusuario, para encontrar una curva de demanda más 
plana. Para ello, se diseñó un algoritmo en MATLAB® que simuló un escenario con 60 usuarios 
durante 24 horas, programando los periodos más adecuados de encendido/apagado de las cargas 
controlables. Se compararon dos escenarios: uno donde los usuarios administran sus cargas a su 
conveniencia y otro donde se aplicó el modelo propuesto. Los resultados indicaron una 
disminución de los picos de demanda, con un ahorro promedio del 4.94 % en la factura eléctrica 
para el conjunto de usuarios y hasta el 12.34 % individualmente. La simulación logró esta solución 
óptima en 25 minutos a pesar de la complejidad computacional que implica gestionar la demanda 
de 60 usuarios. Por tal motivo, el modelo planteado utilizó métodos simples para optimizar 
múltiples variables, proporcionando un mejor rendimiento en comparación con el procesamiento 
requerido por algoritmos más complejos. 

 
Palabras clave 

Gestión de la demanda, respuesta a la demanda energética, programación de cargas eléctricas, 
perfil de consumo energético, métodos de optimización matemática.  
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1. INTRODUCTION 
 

In recent decades, electrical systems have increasingly struggled with overexertion due 
to factors such as the continuous rise in energy demand, frequent line interruptions during 
peak hours, aging infrastructure, and the integration of distributed generation resources. 
These challenges have led to significant reliability issues, decreased efficiency, energy losses, 
and escalating electrical costs [1]-[5]. Moreover, the heavy reliance on fossil fuels has 
exacerbated environmental concerns, particularly due to the substantial greenhouse gas 
emissions associated with their use [6], [7]. 

To address these challenges, power grids are being transformed into smart grids [8], [9]. 
This evolution entails technological, financial, and social changes aimed at enhancing the 
quality, sustainability, safety, and reliability of electricity supply. Smart grids facilitate a 
bidirectional flow of electricity and data between distributors and end users by integrating 
information and communication technologies with automation techniques for the control, 
monitoring, and maintenance of electrical systems [10]-[12]. The transition toward smart 
grids, nonetheless, requires adopting Home Energy Management Systems (HEMSs), 
especially since residential installations account for more than one-third of total electricity 
consumption [2], [9], [11], [13], [14]. 

Smart grids encompass several fundamental concepts, including Demand Side 
Management (DSM) and Demand Response (DR). DSM involves planning and implementing 
strategies to modify electricity consumption patterns, with the primary objectives of reducing 
peak demand and CO2 emissions [15]-[17]. This is achieved through the automatic switching 
on/off of loads in residential settings using home automation technologies and optimization 
models [18]. The primary goal is to minimize electricity costs and stabilize the demand curve 
[11], [19]. DR, another critical aspect of smart grids, refers to the use of dynamic pricing to 
incentivize users to reduce electricity consumption during specific tariff periods [6], [8], [9], 
[17]. Prices are adjusted based on demand, with higher rates applied during peak hours and 
lower rates during off-peak periods. 

In the 1980s and 1990s, various DSM methods, such as peak shaving, strategic 
conservation, valley filling, strategic load growth, load shifting, and load flexibilization, were 
developed. However, it was not until the 2000s that distributed generation technologies were 
implemented, focusing on the control, monitoring, and metering of electrical systems using 
intelligent electronic devices [20]. DSM strategies are typically categorized into two 
approaches: indirect and direct control. Indirect control leverages price incentives and social 
interactions to influence consumption behavior through the use of optimization algorithms. 
Common tariff schemes under this approach include time-of-use, critical peak pricing, peak 
load pricing, and dynamic or real-time pricing [5]. Conversely, direct control implies 
marketers directly managing loads, thereby imposing stricter restrictions on users’ ability to 
independently control their electricity usage [21]. 

End users often face challenges in manually programming the on/off schedules of 
electrical appliances due to limited technical knowledge, time constraints, and a lack of 
motivation to engage in DR activities at home [1], [22]. As a result, Controllable Electrical 
Load Scheduling (CELS) emerges as a crucial component of HEMSs. CELS is responsible for 
monitoring and controlling loads according to user preferences and specifications [23]. 
Furthermore, external variables, including electricity prices, environmental concerns, 
personal well-being, energy efficiency education, and users’ sense of responsibility as active 
participants in DSM, influence the habits and behaviors of residential consumers when using 
their appliances. These factors, in turn, play a key role in developing HEMSs [9]. 
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Importantly, scheduling household appliances at times convenient for users does not 
necessarily lead to a flattened load curve in distribution grids. The key challenge lies in 
effectively coordinating the timing of appliance use across different households. By 
staggering these loads throughout the day, it becomes possible to achieve a more balanced 
and optimized electricity consumption. In light of this, this study aims to develop a CELS 
strategy in the context of collective demand management in distribution grids. Specifically, 
it proposes a mathematical model to flatten the consumption curve and reduce electricity 
costs. 

Several optimization algorithms have been developed to address challenges associated 
with demand management. These algorithms serve as critical mathematical tools for 
efficiently solving complex engineering and scientific problems within reduced processing 
times [24]. The techniques employed include heuristic and metaheuristic approaches, 
alongside exact methods based on gradient and interior point strategies. Additionally, when 
combined with branching and probing techniques, these algorithms are capable of addressing 
a wide variety of problems, ranging from linear programming to Mixed-Integer Nonlinear 
Programming (MINLP) models [22]. 

In the field of CELS, numerous algorithms have been designed and are well-documented 
in the literature. These solutions employ linear, nonlinear, heuristic, and metaheuristic 
methods, which consider parameters like user requirements, comfort constraints, and 
environmental and social factors. For instance, the authors of [1] presented an algorithm that 
focuses on home energy management by ensuring that household consumption remains 
below a specified demand limit while also taking into account user preferences and enhancing 
load flexibility. Similarly, in [10], a cooperative control scheme for a smart grid of residential 
buildings was proposed. This scheme utilizes a predictive control model to coordinate energy 
usage among buildings, optimizing the use of renewable resources and leveraging the 
flexibility of thermal loads. 

In [23], a heuristic approach using the Greedy Randomized Adaptive Search Procedure 
(GRASP) was applied to maximize energy utilization from distributed resources in a smart 
home while minimizing reliance on the distribution grid. The authors highlighted that the 
primary advantage of this approach is its simplified model for CELS. However, they also 
acknowledged a drawback: the increased computation time required. 

In [18] and [22], a mathematical model for CELS in smart buildings and homes, referred 
to as the Model for Controllable Electrical Load Scheduling (MCELS), was introduced. This 
model employs a classical linear optimization method, and its simplicity allows for better 
performance compared to the heuristic approach presented in [23], as it achieves greater cost 
reductions and lower dependence on the power grid. Furthermore, in the case of smart 
buildings, MCELS not only reduces electricity costs for individual users but also facilitates 
fair payment calculations among different users. 

Other approaches include Mixed-Integer Nonlinear Programming (MINLP) and Mixed 
Integer Linear Programming (MILP). In [8], for example, the authors developed a multi-
objective MINLP model that considers both electricity costs and user comfort. The results 
indicate that although improvements in user comfort can be achieved, they often result in 
higher electricity costs. In [25], a HEMS was evaluated under three different scenarios: 
normal, economic, and smart. This model, which uses a multi-objective MINLP framework, 
considers energy costs, user comfort, and the Peak to Average Ratio (PAR). According to the 
findings, in the smart scenario, the model significantly reduced energy costs with only 
minimal effects on user comfort and PAR. However, it requires users to manually adjust 
multiple parameters and lacks real-time adaptability to external changes. 
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Studies such as [2], [3], [6], and [7] emphasize the use of MILP. In particular, [3] and [6] 
employed a MILP model to reduce peak load and flatten the load curve in electrical grids. 
Nonetheless, the authors of [3] note that while increasing constraints can prevent new peaks 
after load adjustments, the model tends to prioritize cost-effectiveness, which is identified as 
a drawback. The authors of [2] also used MILP to minimize total production costs and reduce 
individual electricity costs. Nevertheless, unlike [3] and [6], this study takes into account the 
preferences of participating households, reaching a conclusion similar to that of [8]. Finally, 
the authors of [7] combined MILP with an exact solution method to lower electricity costs in 
a smart home and found that the exact method is more efficient than MILP. 

Stochastic algorithms, such as those discussed in [9], [26], and [27], have also gained 
increasing attention. In [9], a prototype system was introduced that enables comprehensive 
energy measurement and management at homes, facilitating supervision, monitoring, and 
control through decision-making algorithms. Furthermore, the authors of [26] proposed an 
algorithm aimed at reducing the cost of each charging cycle for residential electric vehicle 
chargers while also flattening users’ charging curve. To validate the model, the algorithm 
was embedded on a charger hardware. In [27], a bi-objective stochastic optimization approach 
was presented for scheduling controllable appliances in smart homes. This model, formulated 
as a mixed-integer programming problem, aims to minimize electricity costs while 
maximizing user satisfaction. To achieve these objectives, the authors employed both a 
simulation-optimization approach and a greedy heuristic. The findings suggest that although 
the simulation-optimization method produces better solutions, the heuristic technique is 
faster. Additionally, it is noted that scenarios involving multiple users are more difficult to 
solve than single-user cases. This is because of the increased complexity of coordinating 
appliance usage among different users, which ultimately results in longer processing times. 

In the specialized literature, there are also software tools that incorporate optimization 
algorithms to improve demand management. For example, in [28], a mathematical model 
was developed for scheduling flexible loads and energy storage systems, specifically 
considering the changes in demand curves due to the COVID-19 pandemic. This model has 
been implemented in Python using the Gurobi optimizer. 

Moreover, genetic and evolutionary algorithms are commonly used in the scientific 
community for demand management. These programming techniques, inspired by biological 
evolution, are employed to solve complex optimization problems. Table 1 provides an 
overview of several studies that have applied these algorithms for effective demand 
management. 

Particle Swarm Optimization (PSO) is another widely recognized heuristic algorithm 
designed to find global minima or maxima. This method is inspired by the behavior of animals 
that move in groups, such as flocks or herds. Table 2 highlights several studies that have 
employed this optimization technique. Notably, references [15], [19], and [29] report superior 
performance results when compared to [13]. 

Bi-level optimization algorithms, for their part, are used to solve optimization problems 
that involve two hierarchical levels: a leader and N followers. In these problems, the decisions 
made at one level directly impact those at the other, and vice versa [36]. Table 3 provides an 
overview of various studies that have employed these algorithms. 
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Table 1. Studies that have employed genetic and evolutionary algorithms for demand management. 
Source: own elaboration. 

Ref. Description 

[5] 

This study explores the use of a genetic algorithm in two two-level optimization methods (suppliers and 
retailers). The first level focuses on technical requirements, such as flattening the load curve, while the second 
addresses economic factors like retailer profit. Although both approaches were found to improve the demand 
profile and increase retailer profit, the study concludes that the technical approach is preferable, as it ensures 
uniform load distribution without negatively affecting electricity cost reductions. 

[11] 
This paper designs an evolutionary algorithm for three types of customers: residential, commercial, and 
industrial. The proposed algorithm aims to optimize energy costs by exchanging load use schedules planned 
for the next day. 

[17] 
This article develops a hybrid (Genetic–Taguchi) algorithm for a HEMS that includes batteries and 
photovoltaic generators. This proposed algorithm shows greater efficiency than traditional genetic algorithms, 
as it achieves optimal results with fewer generations. 

[21] 
This study utilizes a genetic algorithm because of its inherent randomness, which helps prevent load 
concentration and allows the distributor to achieve optimization through indirect control without 
compromising user comfort. 

[30] 
This paper employs a genetic algorithm to minimize total electricity costs within a dynamic tariff structure 
while adhering to various constraints. The results indicate that the proposed method achieved approximately 
48 % savings in electricity costs compared to a scenario with no optimized scheduling over a simulated day. 

[31] 
This article implements a genetic algorithm to manually complement demand control, a procedure commonly 
referred to as load shifting. This approach effectively reduces consumption during peak hours, thereby 
lowering peak demand and ensuring the continuity of the load profile. 

[32] 
This study uses a genetic algorithm combined with load-shifting techniques for DSM in residential settings. 
This algorithm calculates the average hourly load profile of consumer devices to reduce electricity costs and 
peak demand. 

[33] This paper proposes an evolutionary algorithm for DR between aggregators and consumers using renewable 
energy sources. This approach aims to maximize user comfort and minimize the peak-to-average demand ratio. 

[34] 

This article presents a HEMS that integrates renewable energy sources (including wind and photovoltaic 
systems), along with energy storage devices and both electrical and thermal loads. The proposed system 
employs a genetic algorithm enhanced with the Pareto front technique, taking into account renewable energy 
availability and user activity, to minimize energy costs and consumption. The results show a 25 % reduction 
in energy costs and increased utilization of renewable sources. 

 
Table 2. Studies that have employed particle swarm optimization for demand management. 

Source: own elaboration. 
Ref. Description 

[13] 
PSO is particularly valued for its swarm intelligence, which offers a distinct advantage over other methods, 
as it only requires the objective function values for each possible solution. This allows it to generate 
progressively better alternatives through an iterative process. However, the authors of this paper note that 
the execution time for simulations is less than ideal, often exceeding 20 minutes. 

[15] 
This study applies PSO to a set of loads with varying operating characteristics across three sectors (residential, 
commercial, and industrial), which adds complexity to the model. The most significant results were observed 
in the residential sector, with a peak demand reduction of approximately 23 %, while the commercial and 
industrial sectors saw reductions of around 17 %. 

[19] 
This article introduces an improved version of PSO that is capable of scheduling smart devices under discrete 
power levels within a quadratic pricing model. The findings indicate a 4.6 % reduction in total costs and a 
94.5 % decrease in execution time compared to traditional dynamic scheduling methods. 

[29] 
This paper uses PSO to schedule portable appliances, aiming to reduce peak demand among 200 residential 
users and lower daily electricity costs. The results show a reduction of approximately 20 % in both peak 
demand and daily electricity costs. 

[35] 

This study proposes an economic dispatch approach for power systems that incorporates probability 
distributions to model renewable energy sources and electric vehicles. Additionally, criteria are established 
for considering consumption centers as controllable loads. Such dispatch is optimized using an evolutionary 
differential PSO algorithm, which demonstrates that managing controllable loads can smooth demand 
profiles, reduce losses, and lower overall generation costs. 
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Table 3. Studies that have employed bi-level optimization algorithms for demand management. 
Source: own elaboration. 

Ref. Description 

[37] 
This article explains the bi-level optimization model and examines its application in several areas, including 
DR using Time-of-Use (ToU) tariffs, the integration of electric vehicles into the power scheme, microgrid 
operations, and the expansion of power grids and generation systems. 

[38] 

This paper introduces two hybrid population-based methods: a bi-level evolutionary algorithm and a bi-level 
PSO algorithm. At the upper level, the objective is to maximize distributors’ profit, while at the lower level, 
the goal is to minimize users’ electricity costs. The results indicate that the bi-level PSO method produced 
superior solutions in most of the simulated scenarios. The study also highlights that load scheduling is 
influenced by retailer pricing and user comfort requirements. 

[39] 
This study proposes a real-time pricing scheme for DR management. In this scheme, the retailer sets the price 
and informs customers, who then adjust their loads accordingly. The proposed approach uses a Stackelberg 
game with a leader and N followers to optimize both retailer profit and customer satisfaction. 

[40] This article presents a two-level hybrid approach, which incorporates Karush–Kuhn–Tucker (KKT) conditions 
to optimize retailer profit and customer satisfaction. 

[41] This paper develops a multi-objective optimization model for energy management in buildings with ToU 
tariffs. This model integrates photovoltaic generation and user comfort to optimize the economy of a building. 

 
Building on the above literature review, this study aims to optimize electricity 

consumption in households by developing a mathematical model that manages collective 
demand among multiple residential users. The primary goals are to reduce electricity costs 
and flatten the energy demand curve, as compared to a baseline scenario where customers 
do not optimize the switching on/off of their loads. To achieve these goals, two 
methodologies—exhaustive search and local search—are employed. These two approaches 
produce models that are simpler than those typically found in the literature, which often 
involve complex techniques and focus on optimizing a single household. The proposed 
mathematical model will be simulated and tested using MATLAB® and considering a group 
of users, allowing the effectiveness of the algorithm to be validated in a practical and realistic 
setting. 

The rest of this paper is organized as follows: Section 2 outlines the mathematical models 
for both single- and multi-user optimization, detailing the relevant sets, parameters, and 
variables. Section 3 describes the solution methodology employed in the simulations. Section 
4 presents and discusses the results. Finally, Section 5 provides the main conclusions of the 
study and suggests potential directions for future work to develop more efficient and effective 
models. 

 
 

2. MATHEMATICAL MODEL 
 

The primary purpose of this study is to reduce the collective cost of electricity for multiple 
households while minimizing consumption peaks during specific hours, all without 
significantly impacting user comfort. To achieve this, CELS is used to enable automatic 
switching on/off of loads based on schedules set by both end users and the grid operator and 
thus efficiently manage demand across households. The proposed Multi-User Model of 
Controllable Electrical Loads (MUMCEL) is implemented in two stages: the first stage 
focuses on the single-user (individual) level, while the second stage addresses the multi-user 
(collective) level. Table 4 presents the nomenclature employed in the mathematical model, 
and Tables 5, 6, and 7 provide details on the sets, parameters, and variables included in the 
model. 
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Table 4. Nomenclature used in the mathematical model. Source: own elaboration. 
Abbreviation Description 

CEL Controllable electrical load. 
NCEL Non-controllable electrical load. 
UFEL Uninterruptible flexible electrical load. 
IFEL Interruptible flexible electrical load. 
SEL Subsequent electrical load. 

 
Table 5. Sets included in the mathematical. Source: own elaboration.  

Set Description 
𝑈𝑈𝑛𝑛 ={𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑛𝑛}   Set of users, each representing an evaluated household. 
𝑇𝑇𝑘𝑘 ={𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑘𝑘}   Set of times for the analyzed period. 
𝐶𝐶𝐶𝐶𝐶𝐶={𝐶𝐶𝐶𝐶𝐶𝐶1,𝐶𝐶𝐶𝐶𝐶𝐶2, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛}   Set of CELs. 

 
Table 6. Parameters included in the mathematical model. Source: own elaboration. 
Parameter Description 
𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 Start time of CEL 𝑗𝑗. 
𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶  End time of CEL 𝑗𝑗. 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 Required time for the appliance to complete its operation. 
𝑇𝑇𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 Start time of SEL. 
𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 Operating time of SEL. 
𝑇𝑇𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 End time of SEL. 
𝑝𝑝1�𝑥𝑥𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆� Start time of SEL activity. 
𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑥𝑥𝑗𝑗𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈� Final time of UFEL activity. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 Power of NCELs. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗  Power of CEL 𝑗𝑗. 
𝑃𝑃𝑡𝑡 Energy price during period 𝑡𝑡. 
𝐼𝐼𝐼𝐼𝐼𝐼 Installed capacity factor. 
IC𝑛𝑛 Installed capacity of each evaluated household. 
𝜑𝜑𝑡𝑡 Demand factor of the loads per hour. 
𝜃𝜃𝑡𝑡 Factor of CELs operating per hour. 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Total number of controllable electrical loads. 

 
Table 7. Variables included in the mathematical model. Source: own elaboration. 

Variable Description 

𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖  
State of load 𝑗𝑗 at time 𝑡𝑡. If 𝑥𝑥𝑗𝑗𝑗𝑗 = 1, CEL 𝑗𝑗 is on at time 𝑡𝑡 ; if 𝑥𝑥𝑗𝑗𝑗𝑗 = 0, CEL 𝑗𝑗 is off. Superscript 𝑖𝑖 
denotes the alternative options for CEL optimization for user n. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡  
Total power, including the power of the NCELs and the sum of the powers of CELs 𝑗𝑗 evaluated 
during period 𝑡𝑡. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Constraint on the number of loads allowed during period t. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Constraint on the power allowed during period t. 

𝑏𝑏𝑘𝑘 Possible combinations of the different solutions obtained in the single-user optimization for 
each user. 

𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡 
Total power consumed by each user based on combination b, optimal option i, and time 
horizon t. 

𝐶̅𝐶 Mean of the data stored in 𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡. 
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 Standard deviation of the possible combinations b in the multi-user optimization. 
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2.1 Single-user optimization model 
 
At the single-user level, the MUMCEL aims to determine an optimal schedule for 

switching on/off loads to minimize each user’s total daily electricity costs. This model, 
detailed in (1) to (21), provides a comprehensive framework for optimizing load scheduling. 

Equation (4) defines the total power consumption during each period 𝑡𝑡 as the sum of the 
powers of the NCELs and the CELs for each optimal alternative 𝑖𝑖 of the CELS, represented 
by 𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖. Building on this, (1) y (2) outline the objective function of the model. Specifically, (2) 
calculates the total electricity cost for option 𝑖𝑖, where 𝑖𝑖 denotes each alternative available to 
user 𝑛𝑛 for CEL optimization. Such cost is computed as the sum of the product of the energy 
price (𝑃𝑃𝑡𝑡) and the total power consumed in each period 𝑡𝑡. Finally, (1) aims to minimize 
function 𝑓𝑓𝑓𝑓(𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖), selecting the alternative(s) that yield the lowest cost for user 𝑛𝑛, considering 
all possible CELs for that user. 

 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = min {𝑓𝑓1�𝑋𝑋𝑗𝑗𝑗𝑗1�, 𝑓𝑓2�𝑋𝑋𝑗𝑗𝑗𝑗2�, … , 𝑓𝑓𝑓𝑓(𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖)} (1) 

𝑓𝑓𝑓𝑓(𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖) = � 
𝑡𝑡∈𝑇𝑇

𝑃𝑃𝑡𝑡 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡(𝑋𝑋𝑗𝑗𝑗𝑗
𝑖𝑖)  (2) 

𝑃𝑃𝑡𝑡 = [𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑇𝑇] (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡(𝑋𝑋𝑗𝑗𝑗𝑗
𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 + �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 ∗ 𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖

𝑡𝑡∈𝑇𝑇

 (4) 

 
To ensure the proper functioning of the model, several constraints are imposed, including 

constraints on installed capacity, allowable power, number of loads, time of use, and load 
operation. 

 
2.2 Constraint on installed capacity 

 
To prevent overloads and potential electrical safety risks, (5) ensures that the total power 

consumption, as determined by load scheduling decisions, does not exceed the maximum 
capacity of the household’s electrical installation. To maintain a safety margin and prevent 
potential electrical issues, a Consumption Factor (CF), expressed as a percentage of the 
Installed Capacity (IC), should be established.  

 
0 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖� ≤ CF ∗ IC (5) 
 

2.3 Constraint on allowable power during period t 
 
Following an approach similar to that outlined in [18] and [22], a strategy is implemented 

to mitigate the impact of demand peaks occurring at specific times of the day. To this end, a 
constraint is imposed to limit the total power consumption for each hour, represented by 
variable 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and detailed in (6). This variable contains vector 𝜑𝜑𝑡𝑡, whose elements 
represent the demand factor of the loads per hour, which are then multiplied by the daily 
demand of user 𝑛𝑛. The proposed constraint takes into account both the power of NCELs and 
that of CELs, offering a comprehensive view of the household’s total energy demand and 
enabling more precise and efficient energy management. 
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Equation (7), for its part, ensures that the total power calculated for each alternative 𝑖𝑖 
remains below 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 across all periods 𝑡𝑡. This regulation is crucial for managing energy 
consumption and optimizing load distribution in residential settings. 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑇𝑇� ∗ �� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗
+ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡

𝑇𝑇

𝑡𝑡=1

� (6) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�𝑋𝑋𝑗𝑗𝑗𝑗
𝑖𝑖� < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ∀𝑡𝑡 (7) 

 
2.4 Constraint on the number of loads allowed during period t 

 
To reduce demand peaks when multiple CELs are operating simultaneously, variable 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is introduced to represent the maximum number of loads that can be active during 
period 𝑡𝑡. This is formulated in (8), where vector 𝜃𝜃𝑡𝑡 accounts for the factor of CELs operating 
per hour, which is used to limit the total number of controllable electrical loads (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
for user 𝑛𝑛. 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑇𝑇] ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (8) 

 
Equation (9) further restricts the total number of CELs that can be active during period 

𝑡𝑡 to the value determined by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
 

� 𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖

𝑗𝑗 𝜖𝜖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

< 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   ∀𝑡𝑡 (9) 

 
2.5 Constraint on time-of-use 
 

This constraint requires that the sum of the powers of the CELs be greater than zero 
during the interval between 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶, while outside this interval, the sum must be 
zero. As expressed in (10), this ensures that CELs operate exclusively within the specified 
time frame. 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 ∗ 𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗  

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 0,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ [𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶]
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∉ [𝑇𝑇𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶] 

(10) 

 
2.6 Type of loads and their constraints 

 
This subsection presents the CELS model, a system developed to optimize the switching 

on/off of CELs to minimize total electricity costs and mitigate demand peaks. The constraints 
established in this model enable the effective configuration and management of loads within 
the HEMS using mathematical modeling, as discussed in [5], [18], and [22]. In this study, 
loads are classified into two categories based on their consumption characteristics: 
controllable loads and non-controllable loads. 
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2.6.1 Controllable electrical loads 
 
The CEL model aims to determine the optimal timing for switching appliances on/off in a 

smart home, considering both demand management and user comfort requirements. This 
entails finding a balance between direct and indirect control within DSM objectives. The 
proposed MUMCEL introduces a decision variable 𝑥𝑥 for each CEL at time 𝑡𝑡. Specifically, 𝑥𝑥𝑗𝑗𝑗𝑗 
indicates the state of load 𝑗𝑗 at time 𝑡𝑡: if 𝑥𝑥𝑗𝑗𝑗𝑗 = 1, CEL 𝑗𝑗 is on; if 𝑥𝑥𝑗𝑗𝑗𝑗 = 0, load 𝑗𝑗 is off. Using 
binary data, a result matrix 𝑋𝑋𝑗𝑗𝑗𝑗—detailed in (11)—is constructed to represent the states of 
all loads 𝑗𝑗 across different time intervals 𝑡𝑡 for user 𝑛𝑛. 

 

𝑋𝑋𝑗𝑗𝑗𝑗 = �

𝑥𝑥11 𝑥𝑥12 …  𝑥𝑥1𝑡𝑡
𝑥𝑥21 𝑥𝑥22 …  𝑥𝑥2𝑡𝑡
⋮
𝑥𝑥𝑗𝑗1

⋮
𝑥𝑥𝑗𝑗2

⋱
…

⋮
𝑥𝑥𝑗𝑗𝑗𝑗

� = �
0 1 … 0
1 1 … 1
⋮
0

⋮
0

⋱
…

⋮
1

� (11) 

 
Equations (12) through (15) outline the constraints for CELs. Equations (12) and (13) 

ensure that the operational intervals of the loads fall within the scheduling horizon and that 
the operating time (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) of each appliance does not exceed its usage interval. Equation (14) 
stipulates that the sum of the binary states for the CEL must equal the number of hours the 
load is in operation. Equation (15), for its part, guarantees that the value of the state variable 
is zero outside the scheduled interval (𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶to 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶). Thus, if 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶, variable 𝑥𝑥𝑗𝑗𝑗𝑗 
can be either 0 or 1; otherwise, it is 0. The application of (14) and (15) is analogous to that of 
(10), ensuring that CELS remains consistent, efficient, and optimal within the allowed time 
limits. 

 
𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 𝑇𝑇 (12) 

𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (13) 

�  
𝑡𝑡=𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶

𝑡𝑡=𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶

𝑥𝑥𝑗𝑗𝑗𝑗 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,    ∀𝑗𝑗 (14) 

� 𝑥𝑥𝑗𝑗𝑗𝑗
𝑡𝑡<𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 o 𝑡𝑡>𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶

= 0 ,    ∀𝑗𝑗 (15) 

 
CELs are categorized into three main types: Uninterruptible Flexible Electrical Loads 

(UFELs), Interruptible Flexible Electrical Loads (IFELs), and Subsequent Electrical Loads 
(SELs). UFELs must operate continuously without interruption until their operating cycle is 
complete. The model for this type of loads is provided in (12) to (15) along with (16), which 
ensures that the load remains uninterrupted during the scheduled hours. Equation (16) 
considers both the previous and current states of 𝑥𝑥 to verify uninterrupted operation. A load 
that operates continuously is classified as a UFEL; otherwise, it is categorized differently. 
 

� 𝑥𝑥𝑗𝑗𝑗𝑗 ∗ 𝑥𝑥𝑗𝑗(𝑡𝑡−1)

𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶

𝑡𝑡=𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶

≥ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 1 (16) 
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IFELs, for their part, can be controlled and may be temporarily switched off during their 
operating cycle, allowing them to operate intermittently within the predefined time interval. 
The model for this type of loads is given by (17), which specifies that within the interval 
between 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶and 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶, variable 𝑥𝑥𝑗𝑗𝑗𝑗 can be 0 or 1. This equation, in conjunction with the 
constraints outlined in (12) through (15), ensures proper management of IFELs throughout 
the entire time range. 
 

𝑥𝑥𝑗𝑗𝑗𝑗(𝑡𝑡) = {0,1}, 𝑡𝑡 ∈ [𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶] (17) 
 

Finally, SELs are activated only after certain UFELs have completed their operation. For 
instance, a clothes dryer may start only after a washing machine has finished its cycle. SELs 
must operate as uninterruptible appliances. Their start times are dependent on the 
completion of UFELs’ cycles, either immediately or later, and their end times are constrained 
by their operating time (𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆), with the last possible switch-off occurring at the end of the 
day. Equations (18) and (19) define the start (𝑇𝑇𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆) and end (𝑇𝑇𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆) times of SELs. Moreover, 
(20) guarantees that the operating cycle of a SEL aligns with its start and end times. 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≤ 𝑇𝑇𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑇𝑇 − 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 (18) 

𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑇𝑇𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑇𝑇 (19) 

𝑇𝑇𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 (20) 
 

Importantly, the number of loads of any type cannot be negative, as this would contradict 
the principles of the mathematical model (21). 
 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≥  0 ∀ 𝑗𝑗 (21) 
 
2.6.2 Non-controllable electrical loads  

 
NCELs operate based on pre-defined usage patterns and cannot be adjusted or managed 

during the optimization process. These loads are crucial, as they represent essential services 
that must be provided immediately upon user request to ensure the residents’ well-being [8]. 
Refrigerators, for example, fall under this category, as do low-power devices such as 
household lighting. In the proposed mathematical model, no specific equations are 
formulated for NCELs; instead, hourly consumption data for these loads are obtained from 
established theoretical frameworks found in the literature. 

 
2.7 Multi-user optimization model 

 
At the multi-user level, the proposed MUMCEL evaluates the set of solutions generated 

in the single-user optimization, assessing various combinations to identify the optimal 
configuration. The goal is to achieve a flatter consumption curve, ensuring a more stable load 
distribution and reduced electricity costs for all users. Ideally, energy consumption across 
multiple users would produce a completely flat demand curve, thereby avoiding periods of 
over-demand or underutilization of the electrical system at specific times of the day. 
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To approximate this ideal scenario, the first step is to calculate the average power 
consumption of the households over a given time interval. The standard deviation is then 
used as a metric to evaluate how closely the actual consumption curve aligns with this 
average. This approach makes it possible to find a solution that is both optimal for individual 
users and stable and consistent across multiple users. Finally, the combination of 
alternatives that yields the lowest standard deviation is selected, resulting in a consumption 
curve that is closer to the ideal average and a more balanced load distribution for all 
customers. 

Equations (22) through (26) below define the MUMCEL at the multi-user level. Equation 
(22) introduces variable 𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡, which represents the total power consumed by each user as a 
function of combination 𝑏𝑏 in optimal option 𝑖𝑖. Here, 𝑏𝑏 denotes the various possible 
combinations in the model. Importantly, if multiple optimal solutions exist for a user, 
𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡  will have multiple values corresponding to these different combinations. 

Equation (23) calculates the average of the data stored in variable 𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡, taking into 
account both the number of users and the time horizon. Equation (24) then determines the 
standard deviation of users’ consumption for each possible combination 𝑏𝑏. Following this, (25) 
aggregates all the standard deviations from these combinations. Finally, (26) defines the 
objective function: to minimize the standard deviation across all possible combinations, 
thereby identifying the combination 𝑏𝑏 with the lowest variability in power consumption. This 
ultimately results in the flattest demand curve for the group of users. 
 

𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡
1�𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖�;𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡

2�𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖�; … ;𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡
𝑛𝑛�𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖��, 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1,2, … ,𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (22) 

𝐶𝐶̅ =
1
𝑇𝑇
��𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=1

 (23) 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶𝑏𝑏) = � 1
𝑇𝑇 − 1

���𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1

− 𝐶𝐶̅�

2𝑇𝑇

𝑡𝑡=1

   (24) 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶) = [𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶𝑏𝑏1), 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶𝑏𝑏2), … . , 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶𝑏𝑏𝑏𝑏)] (25) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐶𝐶)) (26) 
 
 
3. SOLUTION METHODOLOGY 
 

This section details the implementation of the proposed MUMCEL, which focuses on 
CELS in smart homes to efficiently manage the energy demand of multiple residential users 
under a dynamic hourly pricing scheme. The model will be executed in MATLAB®, and 
additional procedures and considerations beyond those outlined in Section 2 will be 
incorporated to achieve optimal load management across multiple users. Additionally, 
Subsection 3.3 will provide further details on the initial simulation parameters, including 
load behavior, hourly energy prices, household installed capacity, the number of users, and 
the types of loads. 

The methodology employed in this study involves two interconnected stages: single-user 
optimization and multi-user optimization. Single-user optimization employs exhaustive 
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search, while multi-user optimization utilizes local search. The exhaustive search method, a 
brute-force approach, systematically evaluates all possible solutions within a defined search 
space to find the optimal global solution. The local search method, for its part, is an iterative 
heuristic technique that starts with an initial solution and then explores and compares 
alternatives within a local environment. If an improved solution is identified, it replaces the 
current one, and the search continues until no further improvement is found [18], [36], [42]. 

 
3.1 Single-user optimization 

 
To implement the proposed MUMCEL at the single-user level, the exhaustive search 

method is here used, which systematically explores all potential solutions for each user to 
find the optimal configuration. This process is divided into two distinct phases to effectively 
minimize electricity costs for the evaluated user. 

In the first phase, the method examines all possible scenarios for switching loads on/off 
within the search space. Binary matrices are employed to represent the state (on or off) of 
each load per hour. Then, the method verifies that each load is in operation within its 
specified time intervals (𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶  to 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶) and adheres to its total operating time (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻). 
Subsequently, all feasible schedule combinations are generated and assessed based on the 
types of CELs, discarding those failing to meet the constraints outlined in Subsection 2.6.1. 

In the second phase, the simulation code evaluates all viable schedule combinations 
identified in the first phase against the constraints detailed in Subsections 2.2 to 2.5. 
Combinations that do not satisfy these criteria are discarded. The remaining combinations 
are then validated, and those that successfully minimize electricity costs for the evaluated 
user are selected. 

 
3.1.1 Considerations for the first phase of exhaustive search 

 
In this phase, the scheduling horizon (𝑇𝑇) is set to 24 hours and divided into one-hour 

periods (each denoted as t), where 𝑡𝑡 ∈ 𝑇𝑇. In addition, parameters 𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 , and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 are 
defined for each user based on their preferred schedule for switching loads on/off, allowing 
for some comfort. Then, as outlined in Subsection 2.6.1, decision variable 𝑥𝑥 is employed to 
generate various combinations of load states (on or off) using binary matrices. Once the input 
variables and matrices are initialized, these combinations are processed to determine 
possible load states and organize the state matrices according to the constraints defined in 
(12) through (15). Importantly, these equations are applied to all types of CELs to make sure 
that loads are not switched on outside the schedule defined by users. 

Next, combinations that do not satisfy constraints (16) to (21)—which correspond to the 
criteria for UFELs, IFELs, and SELs—are discarded. During the simulations of switching 
IFELs on/off, it is crucial to exclude options that show uninterruptible behaviors. Similarly, 
SELs require special considerations: last switch-off must occur precisely at 23:59, and switch-
on schedules may occur before or overlap with IFELs’ operation. Equations (27) through (29) 
are used to address this and eliminate invalid options. 

To validate SELs’ switch-on times, the start time of the SEL (𝑝𝑝1) is compared with the 
last activity time of the corresponding UFEL (𝑝𝑝last). If 𝑝𝑝1 minus 𝑝𝑝last is positive, the switch-on 
time is considered valid; otherwise, it is deemed invalid (see (29)). 
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𝑝𝑝1�𝑥𝑥𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑖𝑖�𝑥𝑥𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 1� (27) 

𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈� = max�𝑖𝑖�𝑥𝑥𝑗𝑗𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 = 1� (28) 

�
𝐼𝐼𝐼𝐼 𝑝𝑝1 −  𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 0,            𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜;

       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,                                    𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (29) 

 
Finally, valid state options that meet the scheduling criteria for switch-on and switch-off 

are selected for the evaluated user. The resulting state matrices are then forwarded to the 
next scheduling phase. 

 
3.1.2 Considerations for the second phase of exhaustive search 

 
In the second phase, the exhaustive search method is employed to find the optimal 

configuration that minimizes electricity costs across multiple options. The process begins by 
determining the number of CELs (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) to be evaluated for a given user, which 
establishes the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 limit for each time period. The total daily demand of the household is 
then calculated by summing the power of both CELs and NCELs, as will be detailed in 
Subsection 3.3. This calculation defines the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 matrix for the hourly power limits (see 
(6)). To ensure a safety margin and prevent potential electrical issues, the consumption limit 
at any given time 𝑡𝑡 must not exceed 90 % of the Installed Capacity (IC). 

The next step involves incorporating all state matrices of the CELs (𝑋𝑋𝑗𝑗𝑗𝑗) from the previous 
phase into the search space for user 𝑛𝑛, as described in (30). 
 

𝑋𝑋𝑗𝑗𝑗𝑗𝑛𝑛 =�𝑋𝑋𝑗𝑗𝑗𝑗1,𝑋𝑋𝑗𝑗𝑗𝑗2, … ,𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1,2, … , 𝑘𝑘  (30) 
 

In this equation, superscript 𝑖𝑖 denotes each individual alternative of 𝑋𝑋𝑗𝑗𝑗𝑗, and 𝑘𝑘 represents 
the total number of alternatives for user 𝑛𝑛. For each alternative 𝑘𝑘 of 𝑋𝑋𝑗𝑗𝑗𝑗𝑛𝑛 for the CELs, the 
hourly energy consumption is calculated by summing the power of the CELs and NCELs, as 
outlined in (4) of the proposed MUMCEL. 

The exhaustive search then evaluates each alternative 𝑘𝑘 for user 𝑛𝑛 using constraints (5), 
(7), (9), and (10). Alternatives that do not meet these constraints are discarded. The goal is 
to find the optimal configuration(s) that minimize electricity costs by applying (1) through 
(3). 

Finally, the configuration(s) that minimize daily electricity costs are selected, ensuring 
that the final solution aligns with the system’s capabilities and constraints. The 
implementation of (1) through (21) and (27) through (30), combined with the exhaustive 
search method, defines the behavior of the proposed MUMCEL at the single-user level. This 
process yields one or more optimal solutions that effectively reduce electricity costs. The 
simulation results in MATLAB® include the total power for each period 𝑡𝑡 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖�) 
and the scheduling of controllable loads (𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖) of each valid solution, which are then used as 
inputs for the multi-user optimization model. 

 
3.2 Multi-user optimization 

 
At the multi-user level, the MUMCEL employs the local search method, building on the 

options selected in the single-user optimization, while adhering to the design criteria and 
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simulation specifications. This heuristic approach sequentially combines the potential 
solutions for each user, following a local path to identify the most favorable configuration. 

The simulation process starts by selecting and combining the demand curves of the first 
two users (Users 1 and 2). Importantly, each user may have multiple alternatives with low 
electricity costs, which may result in various possible combinations. The best combination is 
determined by calculating the standard deviation (which serves as an evaluation metric), 
while the remaining options are discarded. Subsequently, the demand curve(s) for User 3 are 
added to the optimal combination of Users 1 and 2, and the standard deviation is recalculated 
to identify the best configuration for all three users. This iterative process continues, adding 
users one at a time and always selecting the combination with the lowest standard deviation 
until the final user is incorporated. 

The model identifies a local solution by processing users sequentially, rather than 
exploring all possible combinations across the entire search space of 𝑛𝑛 users to find a global 
optimum. As a result, the final outcome depends on the starting point, and varying the order 
in which user solutions are combined may lead to different local solutions. Although this 
approach does not guarantee a globally optimal solution, it provides satisfactory results, as 
will be discussed in Section 4. This methodology was chosen taking into account the 
processing time required to solve the problem, as well as the number of variables and 
combinations that would arise from considering all possible user solutions. 

Given these considerations, the implementation of the MUMCEL at the multi-user level 
is structured into three distinct phases. In Phase 1, variables such as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖�, 𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖 , 
and the electricity costs for the first user, obtained in the single-user optimization, are stored. 
The same variables are then selected and stored for the second user. In Phase 2, an 
independent vector 𝑎𝑎 is created for each user to represent the number of solutions. Possible 
combinations are then determined using this vector and stored in variable 𝑏𝑏𝑘𝑘. Subsequently, 
variable 𝐶𝐶𝑏𝑏,𝑛𝑛,𝑡𝑡 is defined, which contains the hourly consumption behavior of each option 
according to 𝑏𝑏𝑖𝑖. In Phase 3, during the cycle of 𝑏𝑏𝑖𝑖  and the creation of 𝐶𝐶𝑛𝑛,𝑡𝑡, the standard 
deviation across iterations is calculated, and the smallest value is selected as the metric for 
choosing the best combination. Following this, variables 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡�𝑋𝑋𝑗𝑗𝑗𝑗

𝑖𝑖�, 𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖, and the 
electricity costs for the two users in the selected combination are stored. This process is then 
repeated by combining the variables generated in the previous phase with the solutions for 
the third user. The three-phase process is executed again for each additional user until the 
final result is achieved. 

In (31), the third phase is defined as the search for the optimal combination 𝑏𝑏𝑖𝑖 that 
minimizes the standard deviation. This is accomplished by iterating over neighboring options 
and evaluating a combination where the current standard deviation (𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is lower 
than the minimum standard deviation (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) per cycle, as outlined in (24) through (26). 
 

𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (31) 
 

In summary, the consumption behavior of residential users often leads to demand peaks 
at certain times of the day due to their load usage decisions and preferences. The proposed 
MUMCEL addresses this by coordinating and scheduling the switching on/off of appliances 
for multiple users, resulting in a flatter load profile and reduced daily electricity costs. The 
standard deviation serves as a key metric for evaluating the quality of power consumption 
combinations, enabling a stable and uniform distribution in the scheduling of loads within a 
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defined time interval. This, in turn, promotes more efficient resource management and 
contributes to enhanced stability in the power supply. 

 
3.3 Initial parameters 

 
This subsection outlines the input parameters necessary for simulating the proposed 

MUMCEL, which include energy prices, load characteristics, the number of users, and 
household installed capacity. Importantly, the simulation is scheduled to run over a full 24-
hour period, i.e., from 00:00 to 23:59. 

 
3.3.1 Energy prices across different periods (𝑷𝑷𝒕𝒕) 

 
In residential electricity markets like those in Colombia, a flat-rate pricing system is 

commonly used. Under this system, a uniform energy cost is applied throughout the day, 
regardless of the time. Although straightforward, this tariff structure does not encourage 
users to adjust or optimize their energy consumption, thereby limiting the potential benefits 
of effective demand management [16]. In contrast, countries such as Spain, Brazil, and 
Uruguay have adopted dynamic pricing schemes, where energy costs vary according to peak, 
flat, and off-peak hours. The effectiveness of these tariff systems, however, depends on each 
country’s specific conditions and energy infrastructure [43]. 

In Colombia, the electricity market is gradually evolving, facing key challenges such as 
adapting the tariff structure for regulated users, integrating new market participants, and 
progressively incorporating smart grid infrastructure [16]. To address these challenges, 
strategies have been proposed for implementing dynamic pricing schemes for end users in 
the country [16]. Based on these strategies, tariffs will be here determined for each time 
interval considered in the simulation of the proposed mathematical model (see Table 8). 
Furthermore, (3) introduces the dynamic tariff system by defining vector Pt, which contains 
energy prices for specific time intervals. 

 
Table 8. Hourly rates. Source: data obtained from the analysis of tariffs for end users in demand response 

programs in Colombia [43]. COP: Colombian peso (2020). 
Intervalo de tiempo (h) 0-3 4-8 9-11 12-17 18-20 21-22 23 

Precio (COP $) 381.34 563.75 646.60 563.75 646.60 563.75 381.34 
 

3.3.2 Parameters for controllable electrical loads 
 
Tables 9 and 10 present the parameters that users can configure for the proposed 

MUMCEL, such as the operation intervals of the CELs (𝑇𝑇𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶  to 𝑇𝑇𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶) and the characteristics 
of the loads (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗, 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗). The set of appliances includes 14 UFELs, 2 SELs, and 
4 IFELs, each offering multiple options for switching on/off based on user preferences. In the 
developed model, these appliances are considered to have various operational configurations. 
Consequently, the programmable devices provide a total of 67 possible configurations, 
including 41 UFELs, 15 IFELs, and 11 SELs.  

 
  



N. M. Bejarano et al.  TecnoLógicas, Vol. 27, no. 60, e3014, 2024 

Página 18 | 33 

Table 9. Parameters for UFELs and IFELs. Source: own elaboration. Note: Data presented in this table were 
taken from different sources, including [44]–[50], and were organized by the authors. 

# Load 𝑻𝑻𝒊𝒊𝑪𝑪𝑪𝑪 (h) 𝑻𝑻𝑻𝑻𝑪𝑪𝑪𝑪 (h) H_load (h) Nominal power 
(kW) Power (kW) Type of 

load 
1 

Dishwasher 
(intensive mode) 

6 13 2 1.80 1.630 

UFEL 

2 18 24 2 1.80 1.630 
3 8 12 2 1.80 1.630 
4 

Dishwasher: 
(normal mode) 

0 5 2 1.80 1.020 
5 19 23 2 1.80 1.020 
6 13 18 2 1.80 1.020 
7 

Dishwasher (eco 
mode) 

4 10 3 1.80 0.840 
8 14 19 3 1.80 0.840 
9 18 23 3 1.80 0.840 

10 20 24 3 1.80 0.840 
11 

Dishwasher 
(quick wash) 

5 7 1 1.80 0.640 
12 13 16 1 1.80 0.640 
13 20 23 1 1.80 0.640 
14 9 12 1 1.80 0.640 
15 

Washing 
machine 

(automatic) 

0 6 2 1.70 0.182 
16 7 11 2 1.70 0.182 
17 17 21 1 1.70 0.182 
18 20 24 1 1.70 0.182 
19 

Washing 
machine (auto. 

w/ heating) 

0 6 2 1.70 0.882 
20 7 11 2 1.70 0.882 
21 15 20 2 1.70 0.882 
22 17 22 1 1.70 0.882 
23 20 24 1 1.70 0.882 
24 

Oven 
16 20 1 1.20 1.000 

25 11 13 1 1.20 1.000 
26 

Water heater 
4 7 2 1.50 1.500 

27 6 10 2 1.50 1.500 
28 19 24 1 1.50 1.500 
29 

Vacuum cleaner 
8 15 2 0.75 0.675 

30 11 18 3 0.75 0.675 
31 

Iron 
19 23 2 1.00 0.600 

32 18 22 1 1.00 0.600 
33 

Rice cooker 
11 14 1 0.70 0.700 

34 10 13 1 0.70 0.700 
35 

Stove 
11 14 2 1.50 1.200 

36 18 21 2 1.50 1.200 
37 

Electric shower 
4 7 1 1.20 1.200 

38 7 10 1 1.20 1.200 
39 20 23 1 1.20 1.200 
40 

Fryer 
12 15 1 1.00 1.000 

41 19 21 1 1.00 1.000 
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# Load 𝑻𝑻𝒊𝒊𝑪𝑪𝑪𝑪 (h) 𝑻𝑻𝑻𝑻𝑪𝑪𝑪𝑪 (h) H_load (h) Nominal power 
(kW) Power (kW) Type of 

load 
42 

Air conditioner 

12 24 8 1.35 1.013 

IFEL 

43 8 18 8 1.35 1.013 
44 0 3 1 1.35 1.013 
45 8 11 2 1.35 1.013 
46 13 16 2 1.35 1.013 
47 

Fan 
9 18 7 0.09 0.090 

48 8 15 6 0.09 0.090 
49 19 24 4 0.09 0.090 
50 

Coffee maker 
7 10 1 0.90 0.720 

51 13 16 1 0.90 0.720 
52 19 22 1 0.90 0.720 
53 

Heater 

7 11 3 1.50 1.500 
54 6 9 2 1.50 1.500 
55 13 16 2 1.50 1.500 
56 18 22 3 1.50 1.500 

 
As observed, Tables 9 and 10 also present the nominal power values, which include both 

the power indicated on the appliance nameplates and the average effective power consumed 
during real-world operation [44]–[51]. The latter value will be used for load scheduling. 

 
Table 10. Parameters for SELs. Source: own work. Note: Data presented in this table were taken from different 

sources, including [44]–[51], and were organized by the authors. 

# Load H_load (h) Nominal power 
(kW) Power (kW) 

# of 
preceding 

load 
Preceding load 

1 

Dryer 

2 2.2 0.874 15 
Washing 
machine 

(automatic) 

2 2 2.2 0.874 16 
3 1 2.2 0.874 17 
4 1 2.2 0.874 18 
5 2 2.2 0.874 19 

Washing 
machine (auto. 

w/heating) 

6 2 2.2 0.874 20 
7 2 2.2 0.874 21 
8 1 2.2 0.874 22 
9 1 2.2 0.874 23 

10 
Polisher 

2 0.5 0.500 29 Vacuum 
cleaner 11 2 0.5 0.500 30 

 
3.3.3 Consumption of non-controllable loads (Power_CELs) 

 
As previously discussed, NCELs exhibit a fixed consumption pattern throughout the day. 

For the proposed scenario, the studies reported in [20], [51], and [52] serve as reference 
points, providing load profile curves for five residential users (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑡𝑡). These curves offer 
a realistic approximation of consumption patterns for the mathematical model. Moreover, 
the consumption profiles for all users are constructed based on these curves, with the 
relevant parameters presented in Table 11. 
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Table 11. Power of the NCELS. Source: own elaboration. 
User U1 (kW) U2 (kW) U3 (kW) U4 (kW) U5 (kW) 

Hour 0 0.066 0.085 0.168 0.156 0.119 
Hour 1 0.058 0.040 0.173 0.130 0.100 
Hour 2 0.054 0.045 0.167 0.118 0.096 
Hour 3 0.091 0.050 0.169 0.127 0.109 
Hour 4 0.214 0.107 0.217 0.165 0.176 
Hour 5 0.272 0.130 0.278 0.261 0.235 
Hour 6 0.329 0.170 0.293 0.276 0.267 
Hour 7 0.301 0.220 0.283 0.316 0.280 
Hour 8 0.290 0.175 0.276 0.270 0.253 
Hour 9 0.230 0.162 0.190 0.265 0.212 

Hour 10 0.228 0.150 0.198 0.275 0.213 
Hour 11 0.256 0.157 0.198 0.226 0.209 
Hour 12 0.212 0.190 0.171 0.249 0.206 
Hour 13 0.173 0.175 0.182 0.227 0.190 
Hour 14 0.173 0.155 0.183 0.219 0.182 
Hour 15 0.202 0.151 0.169 0.216 0.185 
Hour 16 0.208 0.178 0.174 0.216 0.194 
Hour 17 0.190 0.182 0.189 0.240 0.200 
Hour 18 0.198 0.225 0.364 0.311 0.274 
Hour 19 0.301 0.213 0.385 0.330 0.307 
Hour 20 0.348 0.217 0.389 0.305 0.315 
Hour 21 0.246 0.212 0.306 0.298 0.265 
Hour 22 0.137 0.200 0.240 0.246 0.206 
Hour 23 0.074 0.140 0.225 0.181 0.155 
Hour 24 0.066 0.085 0.168 0.156 0.119 

 
3.3.4 Installed capacity 

 
The next parameter to consider is the installed capacity (𝐼𝐼𝐼𝐼) per user. For this study, 

values were selected within the average range for single-family and two-family dwellings in 
Colombia [53], establishing an interval between 6 kW and 12 kW. 

 
3.3.5 Number of users 

 
Finally, it is essential to define the number of end users participating in the simulation 

process (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁). In this study, the simulation includes a total of 60 residential users.  
The choice of initial parameters and optimization strategies can significantly influence 

the simulation results. Therefore, sensitivity analyses should be performed to assess how 
changes in these parameters affect the outcomes. The computational methodology provides 
valuable insights for enhancing the efficiency and sustainability of energy demand 
management, particularly in the context of developing electricity markets that incorporate 
dynamic tariff schemes, such as those in Colombia. 
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3.4 Flow diagram of the proposed multi-user model of controllable electrical loads 
 
The proposed MUMCEL aims to optimize both the demand curve and electricity costs for 

60 residential users, while also considering their comfort levels. To achieve this, CELS will 
be applied using a series of initial parameters (see Section 3.3), in which each user has a 
specific behavior for various types of loads (see section 3.3.2), adjusted to a dynamic tariff, 
and considering a base power per user (non-controllable power). 

The employed methodology, as outlined in Sections 3.1 and 3.2, involves a computational 
simulation carried out in MATLAB®, version R2022b. This software is widely recognized by 
the scientific community for its ability to handle and calculate matrix operations. The 
simulation was run on a computer equipped with an Intel(R) Core (TM) i5-8250U CPU @ 
1.60 GHz - 1.80 GHz processor and 12 GB of RAM. The simulation algorithm comprises four 
stages, each of which is described in detail in Table 12. 

 
Table 12. Stages of the MUMCEL simulation. Source: own elaboration. 

Stage Description 

1. Definition of initial 
parameters 

The input parameters for the case study are established, including energy 
prices, characteristics of the loads used in the algorithm, number of users, 
and installed capacity (see Section 3.3). 

2. Implementation of the 
single-user 
optimization model 

The exhaustive search method is employed to find the optimal solutions that 
minimize electricity costs for each user (see Section 3.1). Each solution for 
user 𝑛𝑛 is identified by index 𝑖𝑖. In these matrices (𝑋𝑋𝑗𝑗𝑗𝑗𝑖𝑖), the rows represent the 
scheduling of the controllable load (𝑗𝑗), while the columns represent the time 
periods (𝑡𝑡) within the scheduling horizon. 

3. Implementation of the 
multi-user 
optimization model 

The multi-user optimization model is implemented, incorporating features of 
the local search method. The algorithm identifies the optimal combinations 
from the individual solutions of each user (see section 3.2). These 
combinations are evaluated based on the standard deviation of the users’ 
total power consumption and electricity costs. Different combinations of 
multi-user solutions are compared to identify the one that achieves the lowest 
variability and the most uniform energy consumption over time. 

4. Model output and 
visualization 

A document is generated containing the simulation results, including tables 
with load profile data, electricity costs, and matrices that facilitate the proper 
scheduling of controllable loads. 

 
Figure 1 shows the flow diagram of the implemented optimization algorithm, providing a 

visual representation of the key stages and decisions. The diagram begins with importing the 
number of users and initializing the iteration variable, n. For each user, the corresponding 
parameters are imported, state matrices for the loads are created, and the exhaustive search 
process is initiated. During this process, options that do not meet the specified constraints 
are eliminated, and the next option is evaluated. The optimal solutions identified at the 
single-user level are then stored, and an initial combination is generated to perform the local 
search, which iteratively evaluates different combinations. The standard deviation of power 
is subsequently calculated, and the best combinations are updated accordingly. This process 
is repeated by incrementing n until all users have been evaluated. Finally, the results are 
exported, including the optimal solution and its details. 
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Figure 1. Flow diagram of the proposed optimization process. Source: own elaboration. 

 
 

4. RESULTS AND DISCUSSION 
 
This section presents a comparative analysis between two case studies: one without 

optimization, where each of the 60 users has a set of appliances with a fixed daily electricity 
consumption pattern, and another where demand is optimized using a CELS model. 

Figure 2 illustrates this comparison for one of the 60 users, referred to as User (a). The 
bar chart depicts the operation times of the CELs and NCELs over the time horizon T, 
highlighting the loads activated during each time period t when optimization is applied. In 
addition, the green line graph represents the unoptimized load profile for this user. 
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Figure 2. Unoptimized load profile and CEL schedule for User (a). Source: own work. 

 
To analyze the specific consumption patterns following the implementation of the CELS 

model, the demand curves for four additional users are presented in Figure 3. The base 
scenario, depicted by a blue line graph, shows when the user operates the CELs at their 
discretion, while the optimized scenario is illustrated by an orange-filled area graph. 

 

Usuario (b) Usuario (c) 

 
Usuario (d) Usuario (e) 

Figure 3. Unoptimized load profile vs. optimized load profile for four users. Source: own work. 
 
Before discussing the results further, it is important to define the concept of Peak-to-

Average Ratio (PAR), which is the ratio between the maximum (peak) value of a curve and 
its average value. For the four users analyzed, a reduction in peak demand during periods of 
higher energy prices is observed when implementing the CELS model. Table 13 presents the 
results for the peak power and PAR for both the optimized and unoptimized scenarios. 
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Table 13. Peak active power analysis results for five users. Source: own elaboration. 

User 
Peak power 

(KW) without 
optimization 

Peak power 
(KW) with 

optimization 
PAR without 
optimization 

PAR with 
optimization 

% of peak 
power reduction 

(a) 3.01 2.07 3.78 2.60 31.08 
(b) 3.43 1.95 4.09 2.33 42.90 
(c) 2.38 1.85 3.37 2.63 22.10 
(d) 1.84 1.44 2.76 2.17 21.53 
(e) 2.55 3.16 2.32 2.87 -23.90 

 
Figures 2 and 3 show that the five users employ different strategies to manage their 

demand. Additionally, Table 14 provides the electricity costs for each user, revealing savings 
ranging between 1 % and 8 % for the day evaluated in the simulation. A common strategy 
employed by all five users is load shifting, where consumption is shifted to periods with lower 
energy costs. 

Particularly, the optimization algorithm for User (b) implements a peak shaving strategy 
with slight valley filling at certain times of the day. Similarly, User (a) adopts a combined 
approach that includes peak shaving and strategic conservation, allowing them to maintain 
peak demand periods while adjusting the magnitude of these peaks as necessary. Although 
Users (a) and (b) achieve significant reductions in peak demand, their bill savings are lower 
than those of other users. This outcome is likely due to their focus on reducing consumption 
peaks rather than shifting loads to lower-cost periods. 

In the case of User (c), the algorithm shifts one demand peak to a lower-cost period while 
shaving the other two peaks and filling the valleys. For User (d), consumption is more evenly 
distributed throughout the day compared to the base case, where peaks are concentrated 
during expensive energy periods. Users (c) and (d), for their part, achieve better savings, with 
reductions of 5.74 % and 8.12 %, respectively. 

However, while the peak values for Users (a), (b), (c), and (d) decrease by 21 % to 42 %, 
User (e) experiences a 23 % increase in peak demand after optimization. This increase results 
from the model accumulating loads during lower-cost periods and allowing user autonomy in 
load scheduling, which could be disadvantageous if there are no power limits or caps on the 
number of loads in operation. Despite this, User (e) still achieves a 3.01 % reduction in their 
electricity bill. 

The strategies or actions described above can be observed in the optimization applied to 
the load profiles of all 60 users, leading to a reduction in their electricity bills. It is also 
important to note that the model performs cost optimization at the individual level and then 
coordinates a group of users to flatten the overall demand curve. This is done while ensuring 
user comfort and providing flexibility in scheduling loads. 

 
Table 14. Electricity costs for the five users. Source: own work. 

User Cost without 
optimization (COP) 

Cost with 
optimization (COP) Savings 

(a) 11314.26 11007.60 2.71 % 
(b) 11765.58 11584.16 1.54 % 
(c) 10169.90 9586.11 5.74 % 
(d) 9493.78 8722.53 8.12 % 
(e) 15550.05 15081.64 3.01 % 
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In the preceding paragraphs, an individual analysis was provided to show how the model 
optimizes various aspects for each user. From this point onward, the results will be presented 
collectively for all evaluated users. 

Figure 4 illustrates the load profile for the 60 users, with the green dotted line 
representing the proposed price in COP/kWh (see Table 8), and the orange and blue bars 
indicating the cases with and without optimization, respectively. The figure reveals that, in 
the optimized scenario, loads are shifted from the peak hours of the unoptimized scenario to 
periods with lower prices. In the base scenario, energy consumption occurs without any 
constraints or specific load scheduling, preventing users from benefiting from dynamic 
pricing and leading them to operate appliances during periods of highest energy prices. 
Conversely, the optimized scenario exhibits a load profile that takes advantage of the lowest 
prices while ensuring user comfort and avoiding significant demand peaks during other time 
intervals. 

To prevent excessively high peaks during any period, constraints are applied to the 
mathematical models. Particularly, this study considers constraints associated with active 
power, such as installed capacity, to prevent overloads and potential electrical safety risks, 
as well as hourly power limits to minimize the impact of demand peaks at other times of the 
day. These two constraints depend on the household’s electrical characteristics and 
consumption habits (see Section 2). However, adding more constraints, such as setting a low 
demand limit, could compromise user comfort and cause new demand peaks during off-peak 
periods, which could damage the household’s electrical infrastructure or the grid. Therefore, 
the implemented model also includes a sensitivity analysis for these two constraints, 
prioritizing user preferences and flexibility in load scheduling. 

An example of this approach is when users set the TiCEL and TfCEL times, granting them 
a degree of autonomy through indirect control over energy consumption, thus reducing costs. 
Conversely, if users aim for more significant cost reductions, they may need to sacrifice some 
level of comfort. 

 

 
Figure 4. Load profile of the 60 users. Source: own work. 

 
The analysis of peak demand yielded the following results: 35 users exhibited higher peak 

demand in the optimized scenario, 6 users experienced no change in peak demand between 
the two scenarios, and 19 users had lower peak demand in the optimized scenario. These 
outcomes were evaluated over the time horizon T and were based on the level of flexibility 
available to each user. As is typical in real households, not all users share the same 
consumption habits. Moreover, to avoid negatively impacting user comfort, there are days 
when the optimized scenario displays higher demand peaks, as seen with User (e), who shifts 
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loads to lower-cost periods, causing them to cluster within a specific time frame. However, 
appropriate constraints are also imposed to prevent significant demand peaks from being 
generated and causing problems at the multi-user level. 

As illustrated in Figure 4, the involvement of the 60 users in CELS results in a 11.49 % 
reduction in maximum power, lowering peak power to 88.11 kW and the PAR to 1.63, 
compared to the 99.55 kW peak power and 1.84 PAR observed in the unoptimized scenario. 
These results demonstrate that CELS enables a more uniform load distribution among users 
and reduces peak consumption during high-price periods. This improvement is achieved 
using (24) through (26), where the standard deviation serves as a metric to evaluate data 
dispersion. The outcome is a solution characterized by less variability in each user’s load 
scheduling, ultimately producing a flatter demand curve (PAR) compared to the unoptimized 
scenario. 

Another objective of the implemented optimization model is to minimize electricity costs 
for a certain number of users. Figure 5 compares electricity costs between the unoptimized 
(blue bars) and optimized (orange bars) scenarios for the 60 users. The graph indicates that 
electricity costs are lower for all users when the methodology designed in this study is 
applied. This is because the demand profile flattens the curve during peak hours, when 
energy prices are at their highest. However, the extent of cost reduction varies depending on 
the characteristics of each user’s loads, their consumption habits, and their individual needs. 
Consequently, some users may realize substantial savings, while others may experience more 
modest reductions. Figure 6 illustrates this variation, showing the highest reduction at 
12.34 % and the lowest at 0.54 %. On average, the group of users achieves approximately 
4.94 % savings on their electricity bills for the simulation day. 

 
Figure 5. Comparison of electricity costs per user. Source: own work. 

 
Table 15 presents the results for maximum power, PAR, and electricity costs, comparing 

the base case with the proposed optimized model. The optimized model shows a 11.49 % 
reduction in maximum active power, a decrease in PAR from 1.84 to 1.63 (flattening of the 
curve), and average savings of 4.94 % for the 60 users. In addition to the benefits for end 
users, demand management through curve flattening leads to significant savings in the costs 
associated with constructing new generation and transmission infrastructure to meet 
demand peaks. It also reduces the cost of purchasing electricity in the market during peak 
demand periods, thereby easing the burden on grid operators by enhancing system reliability 
and efficiency. This improvement is achieved by avoiding high consumption peaks, which in 
turn reduces the likelihood of forced generation outages and failures in transmission and 
distribution infrastructure. Furthermore, this approach mitigates the risk of blackouts due 
to sudden demand fluctuations, allowing more time for the integration of new plants to 
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respond to natural demand growth. Additionally, the carbon footprint can be reduced by 
avoiding the construction and use of fossil fuel-fired power plants, which typically serve as 
reserves when demand exceeds current generation capacity. 

 

 
Figure 6. Percentage of electricity cost savings for the 60 users. Source: own elaboration. 

 
Just as end users may face challenges in scheduling their loads—either due to a lack of 

proactive participation in demand management or technical ignorance—distributors must 
take on the challenge of implementing technologies that support DSM programs. These 
technologies can monitor energy consumption more effectively, provide real-time 
information, and automate consumption processes, thereby contributing to a robust smart 
grid infrastructure. Consequently, DSM requires strategic planning and operation of 
electricity systems, as well as programs that encourage users to manage their demand at 
home and use infrastructure such as smart meters, HEMS, and distributed generation 
resources. 

 
Table 15. General results for the evaluated users. Source: own elaboration. 

Scenario Maximum power (kW) PAR Cost (COP) 
Without optimization 99.55 1.84 757695.88 

With optimization 88.11 1.63 720095.80 
 
Considering the results from other studies, the authors of [6] proposed an optimization 

strategy for a single residential user with two CELs and an Electric Vehicle (EV) charging 
point. This strategy achieved a 43 % reduction in peak demand and a 6 % decrease in 
electricity costs. In comparison, the best case in this study achieved a 42 % decrease in peak 
demand and a 1.55 % reduction in electricity costs. This difference is attributed to the EV 
load shifting implemented in [6], which optimized the consumption schedule for lower energy 
prices, leading to a more substantial overall cost reduction. 

Similarly, in [7] and [18], higher savings were achieved through load scheduling—36 % 
and 16.98 %, respectively—thanks to the integration of renewable energies and energy 
storage batteries. Although the present study did not focus on such technologies, significant 



N. M. Bejarano et al.  TecnoLógicas, Vol. 27, no. 60, e3014, 2024 

Página 28 | 33 

benefits were still realized, including maximum savings of 12.34 % by considering multiple 
users and CELs, despite the complexity of managing numerous variables in the 
implementation of the proposed MUMCEL. 

In the multi-user scenario described in [5], which simulates ten users with three CELs 
each, a peak reduction of 16 % and savings of 17.68 % were achieved through a so-called 
technical approach, which included optimization of distributor prices. In contrast, the present 
study involves a greater number of loads per user, resulting in a peak reduction of 11.49 % 
and average savings of 4.94 % among all users. The difference in these results can be 
attributed to the model addressed in this study considering energy price as a fixed parameter 
rather than a variable for optimization. 

Moreover, in [21], two residential users with a single CEL each achieved savings of 1.51 %. 
This figure is lower than that obtained in this study, where the model optimized between 
nine and twelve CELs per user. This highlights the complexity of this model and its realistic 
consideration of consumer habits.  

Furthermore, the study in [22] reported savings ranging from 18.53 % to 26 % for seven 
residential users, employing renewable energy sources, energy storage devices, and EVs. 
While the present model does not incorporate these technologies, it does manage a larger 
number of CELs per user.  

Finally, the authors of [34] proposed an optimization for 200 users, with the number of 
CELs ranging from one to fourteen based on customer preference. They reported savings of 
up to 20 % and a peak reduction of 22.23 %. In a sample of five users, they reported savings 
between 9 % and 14 %, whereas the present model achieves individual savings of up to 12 % 
and an overall peak reduction of 11.94 %. This underlines the importance of using a robust 
algorithm, like that in [34], for managing multiple users, which could serve as a reference for 
future work, taking into account the characteristics of the present study and the 
contributions of the studies mentioned above. 

The implementation of the model developed in this study has yielded positive results in 
terms of both cost reduction and demand curve management for all users. However, it is 
important to acknowledge the limitations of the proposed methodology. One limitation is the 
data processing requirement inherent in the exhaustive search approach, which arises from 
using a considerable number of IFELs over an extensive time range and the need to evaluate 
a large number of possibilities to reach the optimal solution. To address this, it is key that 
the number of CELs per user in the simulation does not exceed the specified limit. Despite 
this, satisfactory performance is achieved by assigning between nine and twelve CELs, 
considering the UFELs, SELs, and IFELs per user.  

Another limitation lies in the variation of the local search approach implemented, which 
does not guarantee a global solution to the problem but instead focuses on finding a local 
optimal solution. However, for multi-user modeling, this methodology is usually more 
efficient in terms of time and computational resources compared to exhaustive search. 

Finally, the use of straightforward methods or techniques has demonstrated greater 
efficiency in solving problems with multiple constraints. This is reflected in this study, where 
the simulation was conducted on a computer with an Intel(R) Core (TM) i5-8250U CPU @ 
1.60 GHz - 1.80 GHz processor, 12GB of RAM, and the Microsoft Windows 11 Home Single 
Language operating system. The problem was solved for 60 users in approximately 25 
minutes, despite the large number of variables, achieving adequate solutions for the defined 
objectives. It is worth noting that the time required to solve the problem may vary depending 
on the capacity of the computer used. 
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5. CONCLUSIONS 
 
This study focused on modeling high-consumption residential loads, specifically CELs, 

which encompass UFELs, IFELs, and SELs. The model introduced here assigned a 
significantly higher number of CEL types compared to the studies referenced in Section 1. It 
also considered a wide variety of time intervals for each CEL, as shown in Tables 9 and 10. 
The methodology developed in this paper is based on classical optimization techniques and 
is divided into two stages. In the first stage, the exhaustive search method was implemented 
to select the most cost-efficient load scheduling options for each user. In the second stage, the 
local search method was employed to combine the solutions obtained in the first stage and 
find a joint solution with a flatter consumption curve and the lowest electricity cost. 

Two scenarios were evaluated: the base case, where users manage their loads at their 
convenience without considering dynamic energy prices, and the optimized case, which uses 
an algorithm to reduce both peak demand and costs for users. By comparing the demand 
curves of the two scenarios, several response strategies were identified, such as peak shaving, 
valley filling, strategic conservation, and load shifting from higher-priced to lower-priced 
hours. It was also observed that, due to the autonomy given to users in selecting hourly 
ranges for their daily load schedules and the shifting of these loads to lower-priced hours, 
peak demand increased for 58.33 % of users in the optimized case compared to the base case. 
However, the model’s constraints ensured that this increase did not cause issues at either 
the individual or collective level, leading to a moderate flattening of the load curve according 
to the PAR indicator, all without exceeding the established limits. 

In addition, the proposed MUMCEL demonstrated optimal results, effectively reducing 
electricity costs and peak demand during higher-priced periods both at the individual and 
collective levels, which translates into a positive overall impact. The model successfully found 
a solution within 25 minutes, considering nine to twelve CELs for 60 users—a significantly 
large number of variables that has not been addressed in other studies. This performance 
underscores the importance of using a straightforward model like the one developed in this 
study, as it effectively manages multiple users and variables with lower computational effort 
compared to more complex algorithms. 

It is also noteworthy that if users seek further cost minimization or if the implemented 
model exceeds the specified constraints, this could require a higher level of sacrifice in terms 
of customer comfort or potentially damage the home’s electrical infrastructure. However, as 
emphasized in this paper, the model is designed to avoid negatively impacting these aspects, 
instead aiming to provide flexibility in load scheduling, allowing users to adjust their 
preferences according to their needs and comfort levels. 

Nevertheless, some limitations were identified in the model, such as the restricted 
number of CELs per household and the selection of IFELs with extended usage times. These 
factors lead to an excess of data in the exhaustive search, which in turn reduces the speed of 
information processing during simulation. Consequently, in the multi-user stage, the local 
search method is employed instead of the exhaustive search, as it is more efficient, albeit at 
the expense of finding only local solutions.  

In conclusion, this study demonstrated that the proposed MUMCEL, through CELS, can 
optimally manage power demand in smart homes. It successfully flattened the demand curve, 
reduced peak power by 11.49 %, and achieved average savings of 4.94 %, all without 
significantly affecting customers’ habits. These results pave the way for further research in 
the field of residential energy management and highlight the importance of engaging users 
as active participants in demand optimization. 
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For future work in this field, the following considerations are suggested: (i) Incorporating 
a larger number of users (e.g., a neighborhood) while maintaining a balance between 
reducing electricity costs, flattening the load curve, and preserving customer comfort. This 
also includes adding other types of loads with different characteristics and variables and 
exploring the possibility of including industrial and commercial sectors in the CELS model. 
(ii) Integrating EV charging points, energy storage devices, and non-conventional energy 
sources into the algorithm. (iii) Investigating the application of other optimization algorithms 
for CELS in a multi-user context. (iv) Extending load scheduling to longer time periods (e.g., 
weeks, months) while taking the above considerations into account. Additionally, it is 
recommended to explore the Colombian regulatory framework related to the use of non-
conventional energy sources, the benefits of selling surplus energy, and the adoption of smart 
grid technologies. 
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