
Reconstruction of periodic signals using neural networks
JOSÉ DANILO RAIRÁN ANTOLINES

investigación

47

Towards automatic recognition of irregular,
short-open answers in Fill-in-the-blank tests
Método para el reconocimiento automático de respuestas abiertas,
cortas e irregulares en cuestionarios de completar espacios

SERGIO A. ROJAS
Systems Engineer, Ph.D. in Computer Science, Assistant Professor at the Univer-
sidad Distrital Francisco José de Caldas. Bogotá, Colombia.
Contact: srojas@udistrital.edu.co

Received: August 21, 2012 Classification: Research)

Accepted: May 21, 2013 Funding: Universidad Distrital Francisco José de Caldas

Tecnura Vol. 18 No. 39 pp. 47 - 61 enero - marzo de 2014

ABSTRACT

 Assessment of student knowledge in Learning
Management Systems such as Moodle is mostly
conducted using close-ended questions (e.g. mul-
tiple-choice) whose answers are straightforward
to grade without human intervention. FILL-IN-
THE-BLANK tests are usually more challenging
since they require test-takers to recall concepts
and associations not available in the statement of
the question itself (no choices or hints are given).
Automatic assessment of the latter currently re-
quires the test-taker to give a verbatim answer,
that is, free of spelling or typographical mistakes.
In this paper, we consider an adapted version of
a classical text-matching algorithm that may pre-
vent wrong grading in automatic assessment of
FILL-IN-THE-BLANK questions whenever ir-

regular (similar but not exact) answers occur due
to such types of error. The technique was tested
in two scenarios. In the fi rst scenario, misspelled
single-word answers to an Internet security ques-
tionnaire were correctly recognized within a two
letter editing tolerance (achieving 99 % accu-
racy). The second scenario involved short-open
answers to computer programming quizzes (i.e.
small blocks of code) requiring a structure that
conforms to the syntactic rules of the program-
ming language. Twenty-one real-world answers
written up by students, taking a computer pro-
gramming course, were assessed by the method.
This assessment addressed the lack of precision
in terms of programmer-style artifacts (such as
unfamiliar variable or function nomenclature)
and uses an admissible tolerance of up to 20 %
letter-level typos. These scores were satisfactory

Keywords: automatic learning assessment, pattern recognition, text analysis.

Palabras clave: evaluación automática de aprendizaje, reconocimiento de patrones,
análisis de texto.

38.indd 4738.indd 47 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

investigación

4848 Tecnura Vol. 18 No. 39 enero - marzo de 2014

corroborated by a human expert. Additional fi nd-
ings and potential enhancements to the technique
are also discussed.

RESUMEN

La evaluación de estudiantes en ambientes educa-
tivos virtuales como Moodle, se realiza median-
te preguntas cerradas (por ejemplo, de selección
múltiple) cuyas respuestas pueden ser califi cadas
automáticamente sin necesidad de intervención
humana. Los cuestionarios de preguntas abiertas
con espacios para rellenar permiten al estudian-
te escribir variantes que pueden diferir de la res-
puesta esperada debido a errores de ortografía o
tipográfi cos, siendo inviable califi carlas automá-
ticamente mediante comparación exacta. En este
artículo se propone una técnica que utiliza una
versión adaptada de un algoritmo de comparación
de cadenas de caracteres, y que podría realizar la
evaluación automática de este tipo de preguntas.

Se presentan resultados en 2 escenarios. En el
primero, se califi caron respuestas irregulares de
una sola palabra en un cuestionario de seguridad
en internet; las variantes fueron reconocidas co-
rrectamente con un 99 % de exactitud y nivel de
tolerancia de corrección de máximo dos letras.
En el segundo, se evaluaron respuestas abiertas
cortas a cuestionarios de programación de com-
putadores, es decir, pequeños bloques de código
de lenguaje de computador. Se califi caron 21 res-
puestas escritas por estudiantes de un curso real
de programación, sin considerar particularidades
como nomenclatura para variables o funciones, y
utilizando una tolerancia de corrección de hasta
20 % de la longitud de la respuesta libre. El méto-
do reconoció 12 respuestas como probablemente
correctas con expresiones mal formadas o incom-
pletas pero fácilmente subsanables. Esta califi ca-
ción fue satisfactoriamente corroborada por un
experto humano. También se discuten otros re-
sultados, así como posibles mejoras de la técnica
propuesta.

1. INTRODUCTION

Learning Management Systems (LMS) are wi-
dely-used nowadays to support students during
their learning process in medium and high edu-
cation, e.g. the Moodle platform (http://moodle.
org, last visit: Aug 13, 2012). One the key com-
ponents of LMS for course instructors and men-
tors are supporting tools for assessment of student
knowledge. Such examination can be conducted
either by means of close- or open-ended ques-
tions. Close-ended questions provide the test-
taker with a problem formulation and a list of
options where just one has to be selected (mul-
tiple choice, yes/no, true/false, matching terms)
[1]. This type of questions is aimed at obtaining
facts, usually by exercising the recollection skills
of the respondent; these are the lower levels in
the knowledge taxonomy [2]. Automatic grading

of the test is straightforward to perform, and most
LMS allow executing this task effi ciently: the
test-maker provides the correct set of options be-
forehand and the system records and verifi es the
answers chosen by the test-taker.

One of the disadvantages of close-ended ques-
tions is that in order to be effective, they require a
careful design of the statement/options confi gura-
tion so as to truthfully evaluate the level of com-
prehension that is expected from the respondent.
Otherwise this type of test might be assessing the
ability of the student to discard and select a de-
fault answer rather than their analytical and asso-
ciative thinking skills. Another common criticism
of this category of questions is that it is not clear
if the student would have been able to come up
with the answer had this answer not have been
given in advance within the list of options.



38.indd 4838.indd 48 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

49

In the opposite corner tests based on open-ended
questions are found. These are questions where
the examiner provides only a statement that the
test-taker must respond freely. They are useful
to obtain a more elaborated answer refl ecting the
views, feelings and opinions of the respondent,
that is, the higher levels of the knowledge taxo-
nomy [2]. The inquirer should worry in this case
to propose incisive questions that challenge the
creativity of the test-taker. Automatic grading in
this type of question is more diffi cult, since the
answers cannot be anticipated in advance, and
hence a grammatical, syntactic and semantic
analysis must be applied over the entered res-
ponse. Usually their assessment requires some
level of human intervention. This is nevertheless
a hot topic of research, and a lot of effort has been
made from the Natural Language Processing and
Information Retrieval community (see [3] and re-
ferences within).

In this paper we consider fi ll-in-the-blank ques-
tions, a sort of middle point between those two
extremes of the testing spectrum. Here the exa-
miner defi nes a question statement where several
tokens or elements are missing and no choices are
given (e.g. “Artifi cial ___________ is the branch
of ____________ science that studies how inte-
lligence may be created in ____________”). The
test-taker must fi ll-in the gaps exercising his/her
analytical, associative and recalling skills in or-
der to solve correctly the questions or to complete
the sentence to make sense. One may label this
type of question semi-open since there are multi-
ple combinations of words that can be used freely
by the respondent. An automatic scoring system
will take the fi lled-in-blank text and compare it to
the correct solution given in advance by the exa-
miner, i.e. a list of feasible words for each blank
space. Notice that the expected text in each gap
may comprise not only one, but a few number of
words which is why they can also be regarded as
short-free answers.

The relative freedom given to the respondent in
this category of questions makes room for the oc-
currence of orthographical or typographical mis-
takes making them hard to recognize with simple
text-matching procedures. Irregular answers ari-
sing due to substitution, insertion or elimination
of characters would miss the correct credit becau-
se it would be unfeasible to match them against
an exhaustive list of all possible erratic variants
of the expected answer.

On the other hand, orthographic or typographic
conformity is not usually the main goal of student
assessment. To illustrate this point, automatic
text-matching assessment of the last gap of the
above question will give correct grade to answers
reading exactly the word “computers”, “machi-
nes”, “robots” or “automata”, but will miss credit
for erratic answers such as “compters”, “mas-
hines”, “robotz”, “uatomata” or “automatons”
which nonetheless might have been given correct
or partial credit by a human examiner.

The challenge of automatic assessment of fi ll-in-
the-blanks or short free-text responses has been
approached with a number of techniques related
to Latent Semantic Analysis [4] - [5] and Natural
Language Preprocessing [6], including stemming
(fi nding the linguistic root of a word), punctua-
tion removal, dictionary spelling correction and
statistical analysis of text corpuses. Our contribu-
tion in this paper is a much simpler yet effective
method to compute a degree of mismatch of irre-
gular answers to their exact expected versions. In
this way an automatic examiner would be able to
assign total or partial credit instead of a crisp ac-
cept/reject outcome for a given answer.

The method uses a variation of a classical string-
to-string approximate matching algorithm that is
able to recognize similar variants of an expected
text due to edit operations. Preliminary results of
this method have been previously reported [7].
In this paper we extend the study to give further

38.indd 4938.indd 49 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

investigación

5050 Tecnura Vol. 18 No. 39 enero - marzo de 2014

details of its operation, elaborate on its potential
applications in LMS platforms and courseware
testing systems, and account on new empirical
fi ndings on automatic scoring of tests conducted
over internet security and computer programming
domains.

2. METHOD

The inspiration of the method is illustrated by the
following arbitrary question from a hypothetical
telecommunication networks test, concerning a
software tool commonly used by network admi-
nistrators:

“Wireshark is a well-known __________ tool
suited for traffi c analysis in LAN and WAN net-
works”.

The correct answer would be “sniffer”, a compu-
ter program that enables the administrator to run
such analysis. A few variants of this word due to
orthographical and typographical mistakes are
listed below, some of which are particularly more
likely to occur if the respondent is not a native
English speaker:

Sniffer esnniffer

sNiFfEr S.N.I.F.F.E.R

Snifer smiffer

Snnifer zniffer

Asniffer snlffer

It would have been unfeasible for a test-maker to
foresee this list of variations in order to supply
them to an exact-match algorithm that automati-
cally grades correctly all-possible misspelled an-
swers, among other things because the number of
variants can increase exponentially in size. The
goal of our method is to recognize as much as
possible variants produced by admissible substi-
tutions, insertions or eliminations of characters in
a given expected correct answer (a string of cha-

racters representing a word or a term or a short
sentence). The output of the method ought to be a
score for the student answer indicating a perfect
match or a degree of similarity expressed as the
number of corrections required to transform an
erratic variation into a correct answer.

The core of the method is the classic string-to-
string matching algorithm due to Wagner and
Fischer [8] widely-used originally in text proces-
sing, computational linguistics, and afterwards in
computational biology for genome sequence alig-
nment. The purpose of the algorithm is to compu-
te the number of edits (corrections) necessary to
transform the fi rst string into the second. The edit
operations allowed to convey such transforma-
tion are insertion, elimination and substitution.
This algorithm (see fi gure 1) is explained below.

The two input strings s and v, are n and m cha-
racters in length respectively. The algorithm re-
quires also the defi nition of an edit cost function,
editcost(si, vj), that defi nes the (dis)similarity
between the characters si and vj., that is, the cost
of editing the fi rst character to convert it into the
second character. We will discuss the details of
such function later on in the text. The algorithm
maintains a distance matrix D such that any entry
D(i+1,j+1) holds the number of edits needed to
transform the prefi x substring s1:i into the prefi x
substring v1:j. For example, the loop tagged as the
fi rst step in Figure 1, computes the edits required
to blank-out the substrings of the input string s,
starting from its fi rst character (that is, it counts
the number of eliminations). The loop on the se-
cond step similarly, computes the number of in-
sertions required to obtain all the substrings of
the input string v out of the empty string Ø.

The nested loops of the third step are the core of
Wagner and Fischer’s idea. They progressively
fi ll the remainder entries of the D with a dyna-
mic programming procedure that reuses pre-
viously calculated shorter substring distances,

38.indd 5038.indd 50 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

51

up to the full extent of the original input strings.
Such entries are obtained as the minimum bet-
ween three distances, namely the distance bet-
ween s1:i-1 and v1:j plus the cost of deletion of let-
ter si from s, the distance between s1:i and v1:j-1
plus the cost of insertion of symbol vj into s, and
lastly, the distance between s1:i-1 and v1:j-1 plus the
cost of substitution of si by vj in s. As a result, the
value computed in D(n+1,m+1) holds the edit
distance (i.e. number of corrections) required to
transform s into v. A zero or low value in this
output would indicate that the two strings can be
regarded as equivalent.

From the description of the algorithm, it is clear
that the function editcost(si, vj) is pivotal in the
correct matching of the two strings. Thus we have
carefully defi ned this function as it is shown in fi -
gure 2. The function was designed with two aims.
On the one hand, the function ignores (assign
zero cost to) replacement of a normal character
with a comparable non-alphabetical symbol (for
example, an ‘s’ can be substituted by an ‘z’, an ‘a’
with an ‘á’. an ‘n’ with an ‘ñ’ and so on); likewise
the insertion of a punctuation character is ignored
(symbols such as commas, semi-colons, question

marks). That is to say, no corrections are accoun-
ted in these cases. On the other hand, substitu-
tions with non-comparable characters, insertions
of characters other than punctuation marks as
well as deletions are treated as modifi cations in-
curring a cost of one correction.

Algorithm 1. stringdist(s, v)

Input: canonical string s=(s1,…, sn), variant string v=(v1,…, vm)

0. Initialize D: a zeroed matrix with (n+1) rows and (m+1) columns

1. Repeat for i=1,…,n

D(i+1,1)=D(i,1)+editcost(si, Ø)

2. Repeat for j=1,…,m

D(1,j+1)=D(1,j)+editcost(Ø, vj)

3. Repeat for i=1,…,n

Repeat for j=1,…,m

D(i+1,j+1)=min(D(i,j+1)+editcost(si, Ø), D(i+1,j)+editcost(Ø, vj), D(i,j)+editcost(si, vj))

Output: edit distance in D(n+1,m+1)

Figure 1. String-to-String distance algorithm to compute the edit distance between character strings s and v using
the functions editcost() which returns the cost of editing one character into another, and min() which
chooses the minimum between three distances

Note: The null (empty) character is denoted Ø.

Source: Adapted from [8].

Algorithm 2. editcost(si, vj)

0. Set d to zero

1. If vj is empty

d=1 /* Cost of elimination */

2. Else if si is empty and vj is not a punctuation symbol

d=1 /* Cost of insertion */

3. Else if si is empty and vj is a punctuation symbol

d=0 /* Cost of insertion of separators */

4. Else if vj is interchangeable with si

d=0 /* Cost of admissible substitution */

5. Else

d=1 /* Cost of other substitutions */

Output: edit cost in d

Figure 2. The proposed edit cost function

Source: own work.

38.indd 5138.indd 51 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

investigación

5252 Tecnura Vol. 18 No. 39 enero - marzo de 2014

Now that the technique has been described, we
shall proceed reporting on two experiments con-
ducted to validate its feasibility.

3. EXPERIMENTS AND RESULTS

We carried out two experiments in order to exem-
plify the potential application of the proposed
method. The fi rst experiment was aimed at asses-
sing a simple question from an internet security
questionnaire. The second experiment was de-
signed with a broader scope of assessing skills
for writing small pieces of code in a computer
programming language. All algorithms and ex-
perimental test-bed were implemented in Octave
3.2.4. Datasets are available on request.

3.1 Assessing irregular answers in a fi ll-in-
the-gap questionnaire

This experiment embraced testing the feasibility
of the method to grade hypothetical answers to
the following single-question questionnaire rela-
ted to email security and privacy:

“Most emails with the word ____________ in its
subject line are spam targeted to potential users
of the pharmaceutical drug commercialised by
Pfi zer”.

We collected a synthetic list of 186 possible va-
riants of the correct answer “Viagra” gathered
from internet forums. The distribution of edit dis-
tances from the variants in the list to the correct
answer is showed in fi gure 3. It can be seen in the-
se results that the method recognised 80 % of the
answers with a perfect match, that is, 150 variants
were considered equivalent to the original term
(no corrections were accounted). The remainder
36 irregular answers scoring a distance greater
than zero contain heavy misspelling mistakes
or bogus insertion of letters, some of them very

unlikely to occur in real-life (e.g. “Viagorea”,
“Viargvra”, “ViaTagra”, “ViagDrHa”, “ViaVEr-
ga”, “V?l?a?g?r?aÿ”). An excerpt of the synthetic
answer list with the scores computed for each va-
riant is shown in table 1.

In order to extend the ability to recognise erratic
but semantically well-intended answers, the auto-
matic evaluation may assign full credit not only
on a perfect-match basis, but also on compliance
with a specifi ed distance threshold. For example,
in this experiment a distance threshold of 2 would
have accepted as correct 99 % of these simulated
answers. Such a threshold would establish a re-
laxed margin on irregularities or misspellings for
correctness approval. In the previous example the
irregularity margin of 2 corrections imply an edi-
ting rate of less than 33 % of total length of the co-
rrect answer. The possibility of assigning correct
(or partial) credit to irregular answers with low
corruption levels stands up as the main advantage
of this technique, compared to a naïve exact-mat-
ching automatic scoring taking crisp accept/reject
decisions on a rigorous matching basis only.

Figure 3. Edit cost distribution of irregular answers to
the “Viagra” test

Source: own work.

38.indd 5238.indd 52 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

53

3.2 Assessing writing of blocks of code in a
computer programming language

In this second experiment we intended to broaden
the application of the method to automatic gra-
ding of larger semi open-ended questions within
language domains were strict syntax defi nes a
rigid structure for the possible answers. A clear
example of this kind of domain is computer pro-
gramming languages. Syntax in these languages
is extremely stringent as its purpose is to com-
municate commands to a computer in a precise
way. If a sentence fails to comply with the syntax
it would be rejected by the compiler that transcri-
bes into machine code the piece of code written in
programming language.

Within this context a short-free answer (i.e. a
small block of code) ought to exhibit an explicit
structure that is anticipated to conform to both the
syntactic rules of the language and the algorithmic
patterns given by the course instructor. From this
point of view, the proposed automatic assessment

Table 1. An excerpt of 80 answers from the “Viagra” dataset (edit cost in brackets)

ViaVErga (3) Vi$agra (1) V&iagra (1) vi-@gr@ (0) viag*ra (0)

Viagorea (2) Viag&ra (1) via-gra (0) via---gra (0) viagr*a (0)

Viargvra (2) ViagrYa (1) V-I-A-G-R-A (0) via_gra (0) viagra* (0)

ViaTagra (2) VIA7GRA (1) Vi/agra (0) vi(@)gr@ (0) *v*iagra (0)

ViagDrHa (2) Viag&ra (1) V?1?@?G’?Ra (0) via.gra (0) *vi*agra (0)

ViaJ1gra (2) Viag%ra (1) Vi-ag.ra (0) Viaggra (0) *via*gra (0)

V?l?a?g?r?aÿ (2) Viagzra (1) vi**agra (0) V1@grA (0) *viag*ra (0)

Viarga (2) Vigra (1) Vii-agra (0) Viag)ra (0) *viagr*a (0)

VIxAGRAÿ (2) Viag$ra (1) V/i/a/g/r/a (0) V?iagr?a (0) *viagra* (0)

Vi gr (2) VyAGRA (1) Viagr(a (0) v-ii-a=g-ra (0) v*i*agra (0)

viagrgaÿ (2) viagdra (1) vi@g*r@ (0) vi@gr|@| (0) v*ia*gra (0)

ViaZUgra (2) ViagWra (1) vi@gr*@ (0) vi@|g|r@ (0) v*iag*ra (0)

ViaaPrga (2) Vkiagra (1) Viagr^a (0) *viagra (0) v*iagr*a (0)

Viaoygra (2) Vi.ag.raÿ (1) V-i.a-g*r-a (0) v*iagra (0) v*iagra* (0)

V?l?A?G?R?A (1) Viagvra (1) via---gra (0) vi*agra (0) vi*a*gra (0)

Viag@ra (1) Viagara (1) V|i|a|g|r|a (0) via*gra (0) vi*ag*ra (0)

Source: own work.

method can be used to compare the fragments of
code authored by the student and the expected/
template solution devised by the instructor. The
idea in this regard is to obtain a similarity score
of these two strings indicating a correction rate
for the code written by the student. This score
can be used as a hint to accept/reject the answer
or as an indication of the degree of correctness
of the block of code. Although this would be by
no means an absolute measure of correctness, it
might suggest which answers deserve or not fur-
ther visual inspection in order to assign a defi nite
marking.

More to the point one may argue that the main goal
of assessing computer programming knowledge
is not perfect compliance to the language syntax
but rather to corroborate the achievement of te-
chnical and analytical skills such as abstraction,
implementation of algorithmic structures and
allocation of responsibilities, among others. On
the other hand, being able to recall keywords and
adhering strictly to the syntactic constructs of the

38.indd 5338.indd 53 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

investigación

5454 Tecnura Vol. 18 No. 39 enero - marzo de 2014

language is a secondary goal that can always be
validated with the error report generated by the
compiler on the fragments of code. However,
in a programming course with a large number of
students, compiling each of the many fragments
of code submitted in an LMS quiz may prove
cumbersome and sometimes misleading since for
example, a lack of a semicolon in a sentence (the
character ‘;’) would generate a failed compilation
report, even if the rest of the code is correct. The
motivation of using the method described earlier
instead of a compiler to score a block of code is
to account for the possibility of assigning partial
(or full) credit to the student even if incomplete or
malformed but still easily correctable expressions
were written in his/her code. The latter will be
closer to the verdict that a human evaluator would
attain by common sense.

The experiment was conducted as follows. A quiz
requiring the solution of two questions in the Java
language (Java is a registered trademark of Ora-
cle Corporation) was devised and uploaded on-
line in a test management system (googledocs
in the following address: http://tinyurl.com/Ja-
vaQuiz2). The fragments of code given as an-
swers were collected from twenty-one students of
an Object Oriented Programming (OOP) course
offered at the School of Engineering of Univer-
sidad Distrital in the fi rst term of 2012. The au-
tomatic assessment of each answer was carried
out by running Algorithm 1 and 2 over two input
strings: a canonical block of code representing a
template solution provided by the instructor and
each of the answers collected from the students.

We remark that no changes were made in the al-
gorithms comprising the automatic assessment
method; we keep them as tested in the previous
experiment. Thus, because of the mechanics dis-
cussed earlier, characters such as whitespaces and
line feed are ignored as separators. Furthermore,
in relation to punctuation characters, the method
ignores correctable mistakes such as replacing

a comma for a semicolon (‘,’ ↔ ‘;’) or duplica-
tion of a semicolon (‘;;;’). In the same way, the
method does not validate the lack of closing brac-
kets or substitution of brackets by parenthesis or
vice-versa. Of course, adjustments to the algo-
rithms, in particular the editcost() function, with
respect to the lists of admissible substitutions and
punctuation marks can be made if a more rigorous
compile-style evaluation is required.

Arguably a solution to a programming problem
can be written correctly in multiple ways due to
the usage of different but equivalent commands,
algorithmic structures or operators. As a result,
fragments of code of longer or shorter length can
be conceived as correct answers. For this reason,
in order to account for variability in the answers
given by the students, the instructor was asked to
provide up to six possible template solutions for
each question (see table 2). The automatic sco-
ring was carried out by matching each answer
with every template solution using the proposed
method and then recording the smallest similarity
score (the minimum edit cost obtained across all
template solutions).

Assuming that each student may come up with
different solutions varying in length (number of
characters) we proceeded to normalize the raw
scores to obtain a length-independent score as
the ratio of the edit distance with respect to the
total length of the answer. This normalized score
can also be regarded as a correction rate, or in
other words, the proportion of changes needed to
transform the student answer to its best-matching
template solution. Thus the smaller this score, the
closer the block of code refl ects one of the ins-
tructor expected solutions. Such proportion may
suggest an examiner a hint of which answers can
be automatically accepted, and which should be
rejected, or deserve further human inspection. If
the examiner sets a threshold on the correction
rate, say a percentage τ, hence answers scoring d̃̃
≤ τ would be accepted as correct, with d̃ being the

38.indd 5438.indd 54 18/12/2013 09:18:32 p.m.18/12/2013 09:18:32 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

55

said normalized score. We will refer to d̃ simply
as the “score” in the following.

We turn now to the results of the experiment that
are summarised in table 3. Here answers submit-
ted by students S1…S21 to questions 1 and 2 (Q1
and Q2 from table 2) are organized as one row
per student. Scores computed as described abo-
ve are shown in front of each answer. Firstly let

us examine the results obtained for Q1 and con-
front them to the judgment made by a human ex-
pert. Let us assume that a correctness threshold
τ =20 % was defi ned. Therefore 8 out of 21 an-
swers would have been marked as “correct” by
the method (S1Q1, S2Q1, S5Q1, S8Q1, S15Q1,
S16Q1, S17Q1 and S19Q1). Visual inspection by
the human expert confi rmed the correctness of
these answers. Now we examine the remainder

Table 2. Questions and template solutions for the OOP quiz experiment

Quiz
questions

Q1. Declare a class of objects to represent a 3D
point with integer coordinates (named x, y, z).
Add a parametric constructor (with parameters
x, y, z).

Q2. Write a method (called “compare()”) with a string
input parameter (named “text”) that verifies if it mat-
ches the word “Java”, and outputs true or false as a
result.

Template
answer
(Version 1)

public class Punto3D{
 private int x;
 private int y;
 private int z;
 public Punto3D(int x,int y,int z)
 { this.x=x; this.y=y; this.z=z; } }

public boolean comparar(String texto){
 if(texto.equals(“Java”))
 return true;
 else
 return false; }

Template
answer
(Version 2)

public class Punto3D{
 int x; int y; int z;
 public Punto3D(int x,int y,int z)
 { this.x=x; this.y=y; this.z=z; } }

public boolean comparar(String texto){
 return texto.equals(“Java”); }

Template
answer
(Version 3)

class Punto3D{
 private int x;
 private int y;
 private int z;
 public Punto3D(int xp,int yp,int zp)
 { x=xp; y=yp; z=zp; } }

public boolean comparar(String texto){
 boolean respuesta;
 if(texto.equals(“Java”))
 respuesta=true;
 else
 respuesta=false;
 return respuesta; }

Template
answer
(Version 4)

class Punto3D{
 int x; int y; int z;
 public Punto3D(int xp,int yp,int zp)
 { x=xp; y=yp; z=zp; } }

public boolean comparar(String texto){
 boolean respuesta=false;
 if(texto.equals(“Java”))
 respuesta=true;
 return respuesta; }

Template
answer
(Version 5)

class Punto3D{
 private int x,y,z;
 public Punto3D(int xp,int yp,int zp)
 { x=xp; y=yp; z=zp; } }

N/A

Template
answer
(Version 6)

class Punto3D{
 private int x,y,z;
 public Punto3D(int x, int y, int z)
 { this.x=x; this.y=y; this.z=z; } }

N/A

Source: own work.

38.indd 5538.indd 55 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

investigación

5656 Tecnura Vol. 18 No. 39 enero - marzo de 2014

answers which are thus candidates to be rejec-
ted. Two answers on the verge of this threshold
(S13Q1, S18Q1) were actually judged as correct
by the expert, diverging from the template solu-
tions only in the names used for class variables
and parameter (‘a’ instead of ‘x’, ‘b’ for ‘y’,
etc.). In contrast, answers with scores ranging
from 30 % to 40 % exhibit fundamental fl aws.
Take for example answer S4Q1 with incoherent
commands in the constructor block; S7Q1 simi-

larly declares an inappropriate command in the
constructor; S20Q1 defi nes a “default” construc-
tor not the “parametric” constructor that was as-
ked. Lastly, answers scoring higher than ≥45 %
(S10Q1, S11Q1, S12Q1 and S14Q1) did not
comply at all with the algorithmic structure that
was inquired in the question. As for the expert’s
opinion the last two sets of answers have to be
clearly rejected as incorrect.

Table 3. Results of the automatic assessment of the OOP quiz. Scores are proportions of dissimilarity to best-
matching template solution. The rightmost column displays scores of answers to Q2 with a rectifi ed
nomenclature (not shown)

Student
ID

Answers to question 1 (Q1) Score Answers to question 2 (Q2) Score
Score
(mod.)

S1

public class Punto3D {
private int x;private inty;private int z;
public punto3D(int x, int y, int z) {this.
x=x;this.y=y;this.z=z; } }

1 %

public boolean cadena(String texto){
if(texto == ‘Java’)
{return true; }
else {return false; } }

14 % 8 %

S2

public class 3D{
int x=0, y=0, z=0;
public class 3D(int x, int y, int z)
{ this.x=x; this.y=y; this.z=z; } }

17 %

public boolean verifi cacion (String pa-
labra){
boolean encontro=false;
if(palabra==“Java”){encontro=true;}
return encontro; }

45 % 7 %

S3

public punto(){
pirvate x:pirvate y;private z;
public punto3D(int nue-
vaX, int nuevaY, int nuevaZ)
{nuevoX=x;nuevoY=y;nuevoZ=z;}

41 %
public boolean verifi car(String palabra){
if(palabra.equals(“JAVA”))
{return true;}

39 % 21 %

S4

public class Punto {
private double x;private double y;private
double z;
public void darPunto(){ x = new “”””;
y= new “”””; z= new””””;} }

39 %
public boolean verifi car(String palabra){
if (palabra==“Java”){ return true;}
else{return false;} }

23 % 8 %

S5

public class Punto(){
int x;int y;int z;
public Punto(int x1,int y1, int z1)
{x=x1;y=y1;z=z1;} }

19 %
public boolean texto(String frase){
try {if frase == “Java” return try;}
elsereturn false;}

29 % 15 %

S6

public class 3d{
int x, y z;
public 3d (int a. int b, int c)
{ x=a; y=b; z=c;}

42 %
public boolean palabraJava(String p){
if (p.equals (‘Java’) ? true: false)return
p }

38 % 15 %

S7

Public class Punto(){
int x; int y int z;
public Punto(){}
JoptionPane.showMessageDialog(“”el
punto esta ubicado en la cordenadas: “”
+ “”(“” + x+ “”,”” + y + “”,”” + z + “”)””);}

33 %
public boolean java(String palabra){
if (palabra.equals(“Java”){ return true;}
else return false: }

18 % 1 %

38.indd 5638.indd 56 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

57

Student
ID

Answers to question 1 (Q1) Score Answers to question 2 (Q2) Score
Score
(mod.)

S8

public class Punto3D{
private int x;private inr y;private int z;
public Punto3D(int elX, int elY, int elZ)
{x=elX;y=elY;z=elZ;} }

19 %

public Boolean darjava(String texto){
boolean a=false;
if(texto.equalsignorecase(“java”))
{ a= true; return a} }

33 % 27 %

S9

public class 3D{
private int x;private int y;private int z;
public 3D(int puntox,int puntoy,int pun-
toz)
{x=puntox;y=puntoy;z=puntoz;}

31 %
public boolean cadena(String cadena){
if.equals(Java)return true; }

40 % 30 %

S10
private int x,y,z;
public void 3D() {x= x;y=y;z=z;}
public

68 %
public boolean cadena(String palabra){
if (palabra.equals(“Java”))
{ return true; } }

37 % 19 %

S11
public void objeto (int x, int y, int z)
{this.x=x;this.y =y;this. z=z;}

44 %

public boolean comparacion (String fra-
se){
boolean p = false;
String palabra = “java”;
if (frase.equals (palabra){return true;}
return p; {

38 % 29 %

S12
public int 3d (int a, int b, int c)
{int x= a,int y= b;int z = c;

54 %

import javax.swing.JOptionPane;
public class mundo {
public static void main(String[] args) {
boolean Comprobacion = false;
String x;
x=JOptionPane.
showInputDialog(“Texto”);
if(“Java”.equals(x)){
Comprobacion = true;
System.out.println(“Es Java”);} } }

53 % 53 %

S13

public class Punto3D{
private int a,b,c;
public Punto3D(int x,int y,int z)
{a=x;b=y;c=z;} }

22 %

public boolean comprobar(String pala-
bra){
if(palabra=“Java”)return true;
elsereturn false; }

21 % 12 %

S14
public void 3d(int x, int y, int z)
{this.x=x;this.y=y;this.z=z;}

47 %

public boolean revisar (String cadena){
String c1=“Java”;
boolean resultado=false;
if(c1.equals(cadena)){resultado=true;}
return resultado; }

42 % 28 %

S15

public class Punto3D{
private int x; private int y;private int z;
public Punto3D(int a, int b, int c)
{ x=a; y=b; z=c; } }

16 %
public boolean esJava(String palabra){
return palabra.equals(“Java”) ?
true:false; }

29 % 12 %

S16

public class Punto3D{
private int X; private int Y;private int Z;
public Punto3D(int x, int y, int z){
this.X = x; this.X = y; this.X = z;} }

3 %

public boolean verifi carPalabra(String
palabra){
return (palabra == “Java”) ? true : fal-
se; }

35 % 13 %

S17

public class Punto{
private int X;private int Y;private int Z;
public Punto(int x, int y, int z)
{ X = x; Y = y; Z = z;} }

15 %
public boolean verifi car(String palabra){
if(palabra.equals(“Java”)) return true;
else return false; }

18 % 1 %

38.indd 5738.indd 57 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

investigación

5858 Tecnura Vol. 18 No. 39 enero - marzo de 2014

It is interesting to note that the expert credited
as correct answer S9Q1 that would have been
rejected by the method since it obtained a sco-
re of 31 %. The reason the method scored badly
in this question is related to nomenclature: the
student used different longer or shorter notation
for class and variable names compared to those
used in the template solutions (‘3d’ instead of
‘Punto3D’, ‘puntox’ instead of ‘x’, etc.). Thus
the method added a number of edit operations
(deletions when a shorter name was defi ned, and
insertions for a longer name). Those alterations
have actually no relation with the correct struc-
ture of the answer, but still infl uenced the co-
rrection rate. The same can be said about answer
S3Q1 (41 %) which scored slightly higher be-
cause it additionally incurred in inversion errors
(‘pirvate’ instead of ‘private’).

Let us move forward now to examination of re-
sults for Q2. Using the same threshold τ=20 %

only three questions would have been accepted
as correct (S1Q2, S7Q2, S17Q2). Rising the
threshold to τ=30 % the accepted list is increa-
sed to 8 questions (S1Q2, S4Q2, S5Q2, S7Q2,
S13Q2, S15Q2, S17Q2 and S18Q2). From the-
se, only questions S7Q2, S15Q2, S17Q2 and
S18Q2 were reckoned as correct by the expert;
the remainder failed primarily because the com-
parison command ‘text==“Java”’ (which is in-
valid in the syntax of the language) should have
been written as ‘text.equals(“Java”)’ .

It is worth to observe that the scores of Q2 are
predominately higher than those of Q1 (that is,
they scored worse). We found that compared to
the answers provided to Q1, in Q2 the wrong use
of nomenclature is a matter of concern: the test-
maker asked to name the block ‘compare()’ but
students used multiple variations including ‘ca-
dena()’, ‘verifi cacion()’, ‘verifi car()’, ‘texto()’,
‘palabraJava()’, ‘java()’, ‘comparacion()’,

Student
ID

Answers to question 1 (Q1) Score Answers to question 2 (Q2) Score
Score
(mod.)

S18

public class punto3D(){
private int x,y,z;
public punto3D(int a, int b, int c)
{x=a;y=b;z=c;} }

21 %

public boolean verifi cacion(String n){
boolean a = fl ase;
if (n.equals(“Java”)) a=true;
else a=false;
return a; }

26 % 24 %

S19

public class Puntos{
private int x;private int y;private int z;
public Puntos(int cx,int cy,int cz)
{x=cx;y=cy;z= cz;} }

20 %

public boolean verifi car(String palabra){
boolean respuesta=false;
i f (p a l a b r a . e q u a l s (“ j a v a ”))
{respuesta=true;}
return respuesta; }

42 % 1 %

S20
public class Punto{
private int x;private int y;private int z;
public Punto(){x =0;y=0;z=0;} }

36 %
public boolean verifi carPalabra(String
palabra){
if(palabra.equals(“Java”))return true;}

41 % 21 %

S21

public class Punto3D {
private int X;private int Y;private int Z;
public Punto3D(){X=0;Y=0;Z=0;}
public Punto3D(int x, int y, int z){this.X =
x;this.Y = y;this.Z = z;}
public static void main(String[] args)
{Punto3D p1 = new Punto3D();Punto3D
p2 = new Punto3D(2, 3, 4);} }

34 %

public boolean stringIsJava(String ca-
dena){
boolean resultado = false;
if (cadena.equals(“Java”))
{resultado=true;}
return resultado; }

38 % 1 %

Source: own work.

38.indd 5838.indd 58 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

59

‘comprobar()’, ‘revisar()’, ‘verifi carPala-
bra()’, ‘stringIsJava()’. Similarly the function
parameter was named ‘palabra’, ‘frase’, ‘p’,
‘cadena’, ‘n’ whereas the name requested by
the text-maker was ‘text’. Moreover given that
the expected solution to Q2 is shorter compared
to Q1, these alterations in nomenclature actua-
lly represent a big number of insertion/deletion
operations accounting to a large overall edit dis-
tance, and therefore, a large correction rate.

With the intention of validating the latter intui-
tion, a third experiment was conducted where
the nomenclature of the raw answers to Q2 was
altered to mirror those of the expected template
solutions and then were re-scored with the pro-
posed method. Results are shown in the right-
most column of table 3. A quick view reveals
that the scores are drastically lower (that is,
better). Using again the threshold τ=20 % now
13 answers would have been accepted as co-
rrect (S1Q2, S2Q2, S4Q2, S5Q2, S6Q2, S7Q2,
S10Q2, S13Q2, S15Q2, S16Q2, S17Q2, S19Q2,
S21Q2), that is 62 % of the given answers.
Among these however, several answers appear
using the wrong comparison command mentio-
ned before, which effectively renders them inco-
rrect in the opinion of the expert. This suggests
that a more stringent threshold can be used now
given that the nomenclature has been rectifi ed.
Using τ=1 % for example, the only four answers
using the proper ‘.equals()’ command and ac-
ceptable algorithmic structure will be accepted
as correct. Notice also that some answers using
the proper ‘.equals()’ command are nonetheless
written using a bad algorithmic structure (e.g.
S9Q2, S10Q2) and consequently they obtained
bad scores compared to the new threshold. We
additionally observe that answers including re-
dundant temporal variables that obviously were
not contemplated in the expert’s solutions scored
badly as well (S11Q2, S14Q2) in spite of being
correctly constructed. In summary we remark
that should students have used the requested no-

menclature and avoided unnecessary redundan-
cies then the method would have been able to
perform a more detailed assessment even to the
level of a precise comparison command.

4. DISCUSSION AND CONCLUSION

The method described in this paper is intended
to conduct automatic assessment of fi ll-in-the-
blank questions tolerating irregular versions
of a canonical answer due to orthographical or
typographical mistakes. This feature is desira-
ble within an open-ended short-free evaluation
framework where a complete record of such
variants is unfeasible to be anticipated in ad-
vance. The similarity score computed with the
method allows for recognising an irregular an-
swer which otherwise a naïve exact-matching
comparison will miss. Besides, the similarity
score could also being used to give partial credit
which again is diffi cult to do with the naïve mat-
ching technique. Furthermore, when the irregu-
lar answer is recognised the expected (rectifi ed)
answer can be given pari passu as formative
feedback to reinforce the learning process of the
student. Open to consideration is the possible
use of the method for real-time correction where
hints to remedy possible mistakes are given to
the student as he progresses writing up his an-
swers to an online test.

In its existing form the scores computed with
the method can be used to reach a crisp deci-
sion on accepting or rejecting an answer. But
alternatively it may also be used to defi ne jud-
gment categories based on the similarity score,
for instance “defi nitely accept”, “requiring hu-
man inspection” and “defi nitively reject”. In this
way the labor of the human examiner would be
narrowed down to those answers in the second
category only. Otherwise answers can be given
an automatic continuous grade in proportion to
the score assigned with the method.

38.indd 5938.indd 59 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

investigación

6060 Tecnura Vol. 18 No. 39 enero - marzo de 2014

Two empirical studies were performed to illus-
trate the potential of the method. The fi rst one
was aimed at showing the ability of the method
to recognise misspelled variants of a fi ll-in-the-
blank question. On a list of 186 synthetic irre-
gular answers a perfect-match rate of 80 % was
achieved. When a correctness rate threshold of
30 % was set, the matching rate increased to
99 %. It is interesting to note that the additional
recognized variants were regarded by a human
expert as bizarre and unlikely to occur in reali-
ty, which may explain why they were initially
rejected by the method. We believe that these
results corroborate the promise of the method
in performing a reliable assessment in this sce-
nario. What is more, it could be valuable for
questions requiring answers in a second langua-
ge where the student is not native speaker and
therefore particularly more susceptible to make
spelling mistakes.

In the second empirical scenario the method was
tested to assess a questionnaire where a longer
but still short-free answer was expected. The ex-
periment was constraint to the specifi c domain
of computer programming where answers are
fragments of code that must comply with strin-
gent algorithmic patterns and syntax rules. The
answers were collected from real-world code
written up by students of a computer program-
ming course. The method obtained promising
results in recognizing answers that were jud-
ged on the whole as correct by a human expert,
even if containing small syntax errors. We found
however as a drawback that freedom in using
nomenclature for entity names in the program
code, may have a misleading impact in rejecting
answers as incorrect. Thus either highlighted di-
rections about permissible entity nomenclature
accompanying the statement of the question, or
other techniques such as regular expression re-
cognition of nomenclature terms, are needed to
obtain a more reliable assessment in this scena-
rio.

The regular expression approach is an appealing
avenue of future research and it may take advan-
tage from the stringent structure characterizing
fragments of code. In a computer language like
Java it would be not diffi cult to defi ne regular
expression rule such as “public class * {” that
would identify the name of a class, or the rule
“private int *;” to extract the name of an at-
tribute. The custom nomenclature can be drawn
out in this way and be replaced with the cano-
nical nomenclature defi ned by the test-maker
and such operation will not alter the meaning or
structure of the original fragment of code. Fo-
llowing this regular expression preprocessing
the modifi ed answer can be evaluated with the
proposed method to give a more truthful as-
sessment.

On the other hand it is remarkable that the same
generic confi guration of the method was used in
both experiments despite being from two very
different domains. Certainly tuning the method
to the specifi c OOP domain of the second ex-
periment will benefi t the recognition rate so as
to become more accurate in the identifi cation of
precise algorithmic structures or commands. For
instance, it would be interesting to investigate
the effect of having different confi gurations of
costs (not only binary, but continuous values) in
the edit distance function, as well as the effect of
defi ning more precisely admissible punctuation
marks and separators required by the syntax of
the language when invoking this function.

As a concluding comment we recall in passing
that the purpose of the method for checking the
answer of an OOP question was to evaluate the
semantics and not the syntax of the answer. No-
netheless a composite evaluation using an ave-
rage of the results of our method and those of a
compiler report over the fragment of code might
give a more realistic scoring. Even more power-
ful would be to combine those scores and others
obtained with Latent Semantic Analysis and

38.indd 6038.indd 60 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

Towards automatic recognition of irregular, short-open answers in Fill-in-the-blank tests
SERGIO A. ROJAS

investigación

61

REFERENCIAS

other Natural Language Processing techniques
(see e.g. [4] - [6]). The ultimate goal is to bring
LMS and courseware management platforms
closer to the realm of automatic scoring of se-

mi-open-ended questions and release tutors and
instructors from the tedious task of such manual
assessment, allowing them to focus in learning-
support activities of more merit.

[1] H. Schuman, S. Presser, “The Open and
Closed Question”, American Sociological
Review, vol. 44, no. 5, pp. 692-712, 1979.

[2] S. Jordan, T. Mitchell, “E-assessment for
learning? The potential of short free-text
questions with tailored feedback”, British
Journal of Educational Technology, vol.
40, no. 2, pp. 371-385, 2009.

[3] L. Cutrone, M. Chang, “Automarking: Au-
tomatic Assessment of Open Questions”,
in Proceedings of the 10th IEEE Interna-
tional Conference on Advanced Learning
Technologies, pp. 143-147, Sousse, Tuni-
sia, July, 2010.

[4] R. Klein, A. Kyrilov, M. Tokman, “Au-
tomated assessment of short free-text re-
sponses in computer science using latent
semantic analysis”, in Proceedings Of The
16th Annual Joint Conference On Innova-
tion And Technology In Computer Science
Education (ITiCSE ‘11), ACM, New York,
USA, pp. 158-162, 2011.

[5] D. Perez, A. Gliozzo, et ál., “Automatic
assessment of students’ free-text answers
underpinned by the combination of a
bleu-inspired algorithm and latent seman-
tic analysis”, in Proceedings of the Eigh-
teenth International Florida Artifi cial In-
telligence Research Society Conference,
FLAIRS, 2005.

[6] N. Kaur, K. Jyoti, “Automated assessment
of short one-line free-text responses in
computer science”, International Journal
of Computer Science and Informatics, vol.
2, no. 1, pp.105-109, 2012.

[7] V. Cardona, and S. Rojas, “Recognising ir-
regular answers in automatic assessment of
fi ll-in-the-blank tests”, in Proceedings of
the IEEE Workshop on Engineering Appli-
cations (WEA 2012), Bogotá, Colombia,
2012.

[8] R. Wagner, and M. Fischer, “The string-to-
string correction problem”, Journal of the
ACM, 21, pp. 168-173, 1974.

Tecnura Vol. 18 No. 39 pp. 47 - 61 Enero - marzo de 2014

38.indd 6138.indd 61 18/12/2013 09:18:33 p.m.18/12/2013 09:18:33 p.m.

