
Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[160]

Tecnura
http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/687

DOI: http://doi.org/10.14483/udistrital.jour.tecnura.2014.DSE1.a14

Reflexión

* Network Engineering with Master degree on software engineering and Free Software construction, minor degree on applied mathematics
and network software construction. Now running Doctorate studies on Engineering at Universidad Distrital and works as principal architect
on RUNT. Now works in focus on Parallel Programming, high performance computing, computational numerical simulation and numerical
weather forecast. E-mail: ejhernandezb@udistrital.edu.co

** Engineer in meteorology from the University of Leningrad, with a doctorate in physical-mathematical sciences of State Moscow University,
pioneer in the area of meteorology in Colombia, in charge of meteorology graduate at Universidad Nacional de Colombia, researcher and
director of more than 12 graduate theses in meteorology dynamic area and numerical forecast, air quality, efficient use of climate models
and weather. He is currently a full professor of the Faculty of Geosciences at Universidad Nacional de Colombia. E-mail: gdmontoyag@
unal.edu.co

*** System Engineering, PhD and Master degree on Informatics, director of research group GIIRA with focus on Social Network Analyzing,
eLearning and data visualization. He is currently associate professor of Engineering Faculty at Universidad Distrital. E-mail: cemonte-
negrom@udistrital.edu.co

ABSTRACT
On the field of parallel programing has emerged a
new big player in the last 10 years. The GPU’s have
taken a relevant importance on scientific computing
because they offer a high performance computing,
low cost and simplicity of implementation. Howe-
ver, one of the most important challenges is the pro-
gram languages used for this devices. The effort for
recoding algorithms designed for CPUs is a critical
problem. In this paper we review three of principal
frameworks for programming CUDA devices com-
pared with the new directives introduced on the
OpenMP 4 standard resolving the Jacobi iterative
method.
Keywords: CUDA, Jacobbi method, OmpSS, Ope-
nACC, OpenMP, OpenMP, Parallel Programming.

RESUMEN
En el campo de la programación paralela, ha arri-
bado un nuevo gran jugador en los últimos 10
años. Las GPU han tomado una importancia re-
levante en la computación científica debido a
que ofrecen alto rendimiento computacional,
bajo costos y simplicidad de implementación; sin
embargo, uno de los desafíos más grandes que
poseen son los lenguajes utilizados para la progra-
mación de los dispositivos. El esfuerzo de reescri-
bir algoritmos diseñados originalmente para CPU
es uno de los mayores problemas. En este artículo
se revisan tres frameworks de programación para
la tecnología CUDA y se realiza una compara-
ción con el reciente estándar OpenMP versión 4,
resolviendo el método iterativo de Jacobi.
Palabras clave: Método de Jacobi, OmpSS, Ope-
nACC, OpenMP, Programación paralela.

Parallel programming languages on heterogeneous architectures using
openmpc, ompss, openacc and openmp

Lenguajes para programación paralela en arquitecturas heterogéneas utilizando
openmpc, ompss, openacc y openmp

Esteban Hernández B.*, Gerardo de Jesús Montoya Gaviria**, Carlos Enrique Montenegro***

Fecha de recepción: June 10tyh, 2014 Fecha de aceptación: November 4t, 2014

Citation / Para citar este artículo: Hernández, E., Gaviria, G. de J. M., & Montenegro, C. E. (2014). Para-
llel programming languages on heterogeneous architectures using OPENMPC, OMPSS, OPENACC and
OPENMP. Revista Tecnura, 18 (Edición especial doctorado), 160–170. doi: 10.14483/udistrital.jour.tec-
nura.2014.DSE1.a14

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[161]

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

INTRODUCTION

Since 10 years ago, the massively parallel proces-
sors have used the GPUs as principal element on
the new approach in parallel programming; it’s
evolved from a graphics-specific accelerator to a
general-purpose computing device and at this time
is considered to be in the era of GPUs. (Nickolls &
Dally, 2010). However, the main obstacle for large
adoption on the programmer community has been
the lack of standards that allow programming on
unified form different existing hardware solutions
(Nickolls & Dally, 2010). The most important play-
er on GPU solutions is Nvidia ® with the CUDA®
language programming and his own compiler
(nvcc) (Hill & Marty, 2008), with thousands of in-
stalled solutions and reward on top500 supercom-
puter list, while the portability is the main problem.
Some community project and some hardware alli-
ance have proposed solutions for resolve this issue.
OmpSS, OpenACC and OpenMPC have emerged
as the most promising solutions (Vetter, 2012) using
the OpenMP base model. In the last year, OpenMP
board released the version 4 (OpenMP, 2013) appli-
cation program interface with support for external
devices (including GPUs and Vector Processors). In
this paper we compare the four implementation of
Jacobi’s factorization, to show the advantages and
disadvantages of each framework.

METHODOLOGY

The frameworks used working as extensions of
#pragmas of the C languages offering the simplest
way to programming without development com-
plicate and external elements. In the next section
we describe the frameworks and give some imple-
mentations examples. In the last part, we show the
pure CUDA kernels implementations.

Ompss

Ompss (a programming model form Barcelona Su-
percomputer center based on OpenMP and StarSs)

is framework focusses on task decomposition para-
digm for developing parallel applications on cluster
environments with heterogeneous architectures. It
provides a set of compiler directives that can be
used to annotate a sequential code. Additional fea-
tures have been added to support the use of ac-
celerators like GPUs. OmpSS is based on StartsS a
task based programming model. It is based on an-
notating a serial application with directives that are
translated by the compiler. With it, the same pro-
gram that runs sequentially in a node with a single
GPU can run in parallel in multiple GPUs either
local (single node) or remote (cluster of GPUs). Be-
sides performing a task-based parallelization, the
runtime system moves the data as needed between
the different nodes and GPUs minimizing the im-
pact of communication by using affinity schedul-
ing, caching, and by overlapping communication
with the computational task.

OmpSs is based on the OpenMP programming
model with modifications to its execution and
memory model. It also provides some extensions
for synchronization, data motion and heterogen-
eity support.

1) Execution model: OmpSs uses a thread-pool
execution model instead of the traditional OpenMP
fork-join model. The master thread starts the exe-
cution and all other threads cooperate executing
the work it creates (whether it is from work sharing
or task constructs). Therefore, there is no need for a
parallel region. Nesting of constructs allows other
threads to generate work as well (Figure 1).

2) Memory model: OmpSs assumes that mul-
tiple address spaces may exist. As such shared
data may reside in memory locations that are not
directly accessible from some of the computa-
tional resources. Therefore, all parallel code can
only safely access private data and shared data
which has been marked explicitly with our ex-
tended syntax. This assumption is true even for
SMP machines as the implementation may real-
locate shared data to improve memory accesses
(e.g., NUMA).

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[162]

3) Extensions:
Function tasks: OmpSs allows to annotate func-

tion declarations or definitions Cilk (Durán, Pérez,
Ayguadé, Badia & Labarta, 2008), with a task dir-
ective. In this case, any call to the function creates
a new task that will execute the function body. The
data environment of the task is captured from the
function arguments.

Dependency synchronization: OmpSs inte-
grates the StarSs dependence support (Durán et al.,
2008). It allows annotating tasks with three clauses:
input, output, in/out. They allow expressing, re-
spectively, that a given task depends on some data
produced before, which will produce some data,
or both. The syntax in the clause allows specifying
scalars, arrays, pointers and pointed data.

with an attached accelerator device, such as a GPU.
Much of a user application executes on the host.
Compute intensive regions are offloaded to the ac-
celerator device under control of the host. The de-
vice executes parallel regions, which typically
contain work- sharing loops, or kernels regions,
which typically contain one or more loops which
are executed as kernels on the accelerator. Even in
accelerator-targeted regions, the host may orches-
trate the execution by allocating memory on the ac-
celerator device, initiating data transfer, sending the
code to the accelerator, passing arguments to the
compute region, queuing the device code, waiting
for completion, transferring results back to the host,
and de-allocating memory (Figure 2). In most cases,
the host can queue a sequence of operations to be
executed on the device, one after the other (Wolfe,
2013).

The actual problems with OpenACC are rela-
tionship with the only for-join model support and
support for only commercial compilers can sup-
port his directives (PGI, Cray and CAPS) (Wolfe,
2013; Reyes, López, fumero & Sande, 2012). In the
last year, only one open source implementations
has support (accULL) (Reyes & López-Rodríguez,
2012).

Figure 1. OmpSS execution model

Source: Barcelona supercomputing Center, p. 11. http://www.
training.prace-ri.eu/uploads/tx_pracetmo/OmpSsQuickOver-
viewXT.pdf

OpenACC

OpenACC is an industry standard proposed for hete-
rogeneous computing on SuperComputer Conferen-
ce 2011. OpenACC follows the OpenMP approach,
with annotation on Sequential code with compi-
ler directives (pragmas), indicating those regions of
code susceptible to be executed in the GPU.

The execution model targeted by OpenACC API-
enabled implementations is host-directed execution

Figure 2. OpenACC execution model

Source: Barcelona supercomputing Center p. 11. http://www.
training.prace-ri.eu/uploads/tx_pracetmo/OmpSsQuickOver-
viewXT.pdf

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[163]

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

OpenMPC

The OpenMPC (OpenMP extendent for CUDA) is
a framework to hide the complexity of program-
ming model and memory model to user (Lee & Ei-
genmann, 2010). OpenMPC consists of a standard
OpenMP API plus a new set of directives and envi-
ronment variables to control important CUDA-re-
lated parameters and optimizations.

OpenMPC addresses two important issues on GP-
GPU programming: programmability and tunability.
OpenMPC as a front-end programming model pro-
vides programmers with abstractions of the com-
plex CUDA programming model and high-level
controls over various optimizations and CUDA-re-
lated parameters. OpenMPC included fully auto-
matic compilation and user-assisted tuning system
supporting OpenMPC. In addition to a range of
compiler transformations and optimizations, the
system includes tuning capabilities for generating,
pruning, and navigating the search space of com-
pilation variants.

OpenMPC use the compiler cetus (Dave, Bae,
Min & Lee, 2009) for automatic parallelization
source to source. The Source code on C has 3 level
of analyzing

- Privatization
- Reduction Variable Recognition
- Induction Variable substitution

OpenMPC adding a numbers of pragmas for an-
notate OpenMP parallel regions and select opti-
mization regions. The pragmas added has the
following form: #pragma cuda <<function>>.

OpenMP release 4

OpenMP is the most used framework for program-
ming parallel software with shared memory and
support on most of the existing compilers. With
the explosion of multicore and manycore system,
OpenMP gains acceptance on parallel program-
ming community and hardware vendors. From
his creation to version 3 the focus of API was the
CPUs environments, but with the introduction of
GPUs and vector accelerators, the new 4 release
includes support for external devices (OpenMP,
2013). Historically, OpenMP has support Simple
Instruction Multiple Data (SIMD) model only fo-
cusses on fork-join model (Figure 3), but in this new
release the task-base model (Duran et al., 2008;
Podobas, Brorsson & Faxén, 2010) has been intro-
duced to gain performance with more parallelism
on external devices. The most important directives
introduced were target, teams and distributed. This
directives permit that a group of threads was distrib-
uted on a special devices and the result was copied
to host memory (Figure 3).

Figure 3. OpenMP 4 execution model

Source: Intel Parallel OpenMP. http://www.theclassifiedsplus.com/video/video/axnA3kcLHK4/intel-parallel-openmp.html

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[164]

Choose an initial guest to the solution x.
for k=1,2,…
 for i=1,2,…n
 xi=0
 for j=1,2,…,i-1,i+1,…n
 xi = xi + ai,jxj

(k-1)

 end
 xi = (bi + xi)/ ai,j

 end
 x(k)=x
 check convergence; continue
if necessary
end

This iterative method can be implemented on a
parallel form, using shared or distributed memory
(Margaris, Souravlas & Roumeliotis, 2014) (Figure
4). For distributed memory, it needs some explicit
synchronization and data out-process data copy.
In share memory, it needs distribution and data
merge in memory. It uses the following method:

(3)

JACOBI ITERATIVE METHOD

Iterative methods are suitable for large scale linear
equations. There are three commonly used iterati-
ve methods: Jacobi’s method, Gauss method and
SOR iterative methods (Gravvanis, Filelis-Papado-
poulos & Lipitakis, 2013; Huang, Teng, Wahid &
Ko, 2009).

The last two iterative methods convergence
speed is faster than Jacobi’s iterative method but
lack of parallelism. They have advantages to Jaco-
bi method only when implemented in sequential
fashion and executed on traditional CPUs. On the
other hand, Jacobi’s iterative method has inher-
ent parallelism. It’s suitable to be implemented on
CUDA or vector accelerators to run concurrently
on many cores. The basic idea of Jacobi method is
convert the system into equivalent system then we
solved Equation (1) and Equation (2):

 (1)

On each iteration we solve :

 (2)

Where the values from the (k-1) iteration are
used to compute the values for the kth iteration.
The pseudo code for Jacobi method (Dongarra et
al., 2008):

Figure 4. Parallel form of Jacobi method on shared
memory (Alsemmeri, n.d.)

Source: Parallel Jacobi Algorithm https://www.cs.wmich.
edu/~elise/courses/cs626/s12/PARALLEL-JACOBI-ALGO-
RITHM11.pptx

OPENMP IMPLEMENTATION

int n=LIMIT_N;
int m=LIMIT_M;
A[n][m]; // the D-1 matrix

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[165]

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Anew [n][m];
y_vector[n]; //b vector
//fill the matriz with initial conditions
…
#pragma omp parallel for shared (m, n, Anew,

A)
 for (int j = 1; j < n-1; j++)
 {
 for (int i = 1; i < m-1; i++)
 {
 Anew[j][i] = 0.25f * (A[j][i+1] + A[j][i-1]
 + A[j-1][i] + A[j+1][i]);
 error = fmaxf (error, fabsf(Anew[j][i]-A[j]

[i]));
 }
 }
#pragma omp parallel for shared (m, n,

Anew, A)
 for (int j = 1; j < n-1; j++)
 {
 for (int i = 1; i < m-1; i++)
 {
 A[j][i] = Anew[j][i];
 }
 }
 if (iter % 100 == 0) printf(“%5d, %0.6f\n”,

iter, error);
 iter++;
 }
…//print the result

OPENACC IMPLEMENTATION

int n=LIMIT_N;
int m=LIMIT_M;
A[n][m]; // the D-1 matrix
Anew [n][m];
y_vector[n]; //b vector
//fill the matriz with initial conditions
…
#pragma omp parallel for shared (m, n, Anew,

A)
#pragma acc kernels
 for(int j = 1; j < n-1; j++)
 {
 for(int i = 1; i < m-1; i++)
 {
 Anew[j][i] = 0.25f * (A[j][i+1] + A[j][i-1]
 + A[j-1][i] + A[j+1][i]);
 error = fmaxf(error, fabsf(Anew[j][i]-A[j]

[i]));
 }
 }
#pragma omp parallel for shared (m, n, Anew,

A)
#pragma acc kernels
 for(int j = 1; j < n-1; j++)
 {
 for(int i = 1; i < m-1; i++)
 {
 A[j][i] = Anew[j][i];
 }
 }
 if(iter % 100 == 0) printf(“%5d, %0.6f\n”,

iter, error);
 iter++;
 }
…//print the result

In this implementation appears a new annota-

tion #pragma acc kernels, where it indicates that
the code will be executed. This simple annotation
hides a complex implementation of CUDA kernel,
the copy of data from host to devices and devices
to GPU and definition of grid of threads and the

In this section, the for-joint model appears on
section annotate with #pragma omp parallel for
shared (m, n, Anew, A) where every threads (nor-
mally equals to cores) on system running a copy
of code with different data section shared all vari-
ables named on shared() section. When the size
of m and n is minor or equals to number of cores,
the performance is similar on GPUs and CPUs,
but when the size if much higher that number of
cores available, the performance of GPUs increas-
es because the parallelism level is higher (Fowers,
Brown, Cooke & Stitt, 2012; Zhang, Miao, & Wang,
2009).

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[166]

data manipulation (Amorim & Haase, 2009; Sand-
ers & Kandrot, 2011; Zhang et al., 2009).

PURE CUDA IMPLEMENTATION
(WANG, N.D.)

…
 int dimB, dimT;
 dimT = 256;
 dimB = (dim / dimT) + 1;

 float err = 1.0;

 // set up the memory for GPU
 float * LU_d;
 float * B_d;
 float * diag_d;
 float *X_d, *X_old_d;
 float * tmp;

 cudaMalloc((void **) &B_d, sizeof(float) *
dim);

 cudaMalloc((void **) &diag_d, sizeof(float)
* dim);

 cudaMalloc((void **) &LU_d, sizeof(float) *
dim * dim);

 cudaMemcpy(LU_d, LU, sizeof(float) * dim *
dim, cudaMemcpyHostToDevice);

 cudaMemcpy(B_d, B, sizeof(float) * dim,
cudaMemcpyHostToDevice);

 cudaMemcpy(diag_d, diag, sizeof(float) *
dim, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &X_d, sizeof(float) *
dim);

 cudaMalloc((void **) &X_old_d, sizeof(float)
* dim);

 cudaMalloc((void **) &tmp, sizeof(float) *
dim);

…
//call to cuda kernels

 // 2. Compute X by A x_old

 cudaMemcpy(X_old_d, x_old, sizeof(float)
* dim, cudaMemcpyHostToDevice);

matMultVec<<<dimB, dimT>>>(LU_d, X_
old_d, tmp, dim, dim); // use x_old to compute
LU X_old and store the result in tmp

 substract<<<dimB, dimT>>>(B_d, tmp,
X_d, dim); // get the (B - LU X_old), which is
stored in X_d

 diaMultVec<<<dimB, dimT>>>(diag_d,
X_d, dim); // get the new X

 // 3. copy the new X back to the Host

Memory
 cudaMemcpy(X, X_d, sizeof(float) * dim,

cudaMemcpyDeviceToHost);

 // 4. calculate the norm of X_new - X_old
 substract<<<dimB, dimT>>>(X_old_d, X_d,

tmp, dim);
 VecAbs<<<dimB, dimT>>>(tmp, dim);
 VecMax<<<dimB, dimT>>>(tmp, dim);
 // copy the max value from Device to Host
cudaMemcpy(max, tmp, sizeof(float),

cudaMemcpyDeviceToHost);
// cuda kernel for vector multiplication
__global__ void matMultVec(float * mat_A,
 float * vec,
 float * rst,
 int dim_row,
 int dim_col)
{
 int rowIdx = threadIdx.x + blockIdx.x *

blockDim.x; // Get the row Index
 int aIdx;
 while(rowIdx < dim_row)
 {
 rst[rowIdx] = 0; // clean the value at first
 for (int i = 0; i < dim_col; i++)
 {
 aIdx = rowIdx * dim_col + i; // Get the

index for the element a_{rowIdx, i}
 rst[rowIdx] += (mat_A[aIdx] * vec[i]); // do

the multiplication
 }

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[167]

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

 rowIdx += gridDim.x * blockDim.x;
 }
 __syncthreads();
}

// cuda kernel for vector subtraction
__global__ void substract(float *a_d,
 float *b_d,
 float *c_d,
 int dim)
 {
 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 while (tid < dim)
 {
 c_d[tid] = a_d[tid] - b_d[tid];
 tid += gridDim.x * blockDim.x;
 }
 }

 __global__ void VecMax(float * vec, int dim)
{
 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 while (dim > 1)
 {
 int mid = dim / 2; // get the half size
 if (tid < mid) // filter the active thread
 {
 if (vec[tid] < vec[tid+mid]) // get the larger

one between vec[tid] and vec[tid+mid]
 vec[tid] = vec[tid+mid]; // and store the

larger one in vec[tid]
 }

 //deal with the odd case
 if (dim % 2) // if dim is odd...we need care

about the last element
 {
 if (tid == 0) // only use the vec[0] to com-

pare with vec[dim-1]
 {
 if (vec[tid] < vec[dim-1])

 vec[tid] = vec[dim-1];
 }
 }

 __syncthreads(); // sync all threads
 dim /= 2; // make the vector half size short.
 }
}

The effort for writing three kernels, manage-
ment the logic of grids dimensions, copy data from
hosts to GPU and GPU to host, the aspect of syn-
chronization thread on the groups of Threads on
GPU and some aspects as ThreadID calculation
required high computation on hardware devices
and code programming.

TEST TECHNIQUE

We take the three implementations of Jacobi me-
thod (Pure OpenMP, OpenACC, OpenMPC) and
running it on SUT (System Under Test) of Table 1,
and make multiples running with square matri-
ces of incremental sizes (Table 2), take processing
time for analyzing the performance (Kim, n.d.;
Sun & Gustafson, 1991) against the code number
lines needed on the algorithm.

Table 1. Characteristics of System under Test

System Supermicro SYS-1027GR-TRF

CPU
Intel® Xeon® 10-core E5-2680 V2 CPUs @
2.80 GHz

Memory 32GB DDR3 1600MHz

GPU
NVIDIA Kepler K40 GPUs, 2880 Cuda Cores,
Memory 12GB

OS Red Hat Enterprise Linux Server release 6.4

Compiler
PGI Compiler Accelerator Fortran/C/C++ 14
release 9 for Linux

L2 Cache 256K

L3 Cache 25MB

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[168]

Table 2. Matrix size performance comparison.

Matrix
size
(N)

Implementation Mean Running
Time (Seconds)

2048

OpenMP with 20 Threads 26.578

OpenACC 74,970

OpenMPC 69,890

4096

OpenMP with 20 Threads 74,280

OpenACC 92,320

OpenMPC 75,120

8096

OpenMP with 20 Threads 116,23

OpenACC 98,00

OpenMPC 101,420

16192

OpenMP with 20 Threads 522.320

OpenACC 190,230

OpenMPC 222,320

RESULT

The performance on the three frameworks (OpenMP
v. 4, OpenACC, OpenMPC) presents a similar re-
sult on square matrices with size of 2048; howev-
er, if the size ingresses to 4096, the performance
is little high on OpenACC implementation. With
huge matrices greater than 12288, another factor
as cache L2 and L3 has impact on process of data
copy from host to device (Bader & Weidendorfer,
2009; Barragan & Steves, 2011; Gupta, Xiang, &
Zhou, 2013). The performance of using a frame-
work against using direct GPU CUDA languages,
was just a bit (<5%), but the number of code lines
was 70% minor. This shows that the framework of-
fers useful programming tools with computational
performance advantage; however, the performance
gains on GPUs is on region of algorithms with high
level of parallelism, and low data coupling with the
host code (Dannert, Marek, & Rampp, 2013).

CONCLUSION

The new devices for high performance compu-
ting need standardized methods and languages
that permits interoperability, easy programming
and well defined interfaces for integrating the data

interchange between memory segments of the pro-
cessors (CPUs) and devices. Besides, it is neces-
sary that languages have support for working with
two or more devices on parallel using the same
code but running segments of high parallelism in
automatically form. OpenMP is the de facto stan-
dard for shared memory programming model, but
the support for heterogeneous devices (Gpus, ac-
celerators, fpga, etc.) is in very early stage, the
new frameworks and industrial API need help for a
growing and maturating standard.

FINANCING

This research was developed with own resources,
in the Doctoral thesis process at Universidad Dis-
trital Francisco José de Caldas.

FUTURE WORKS

It is necessary to analyze the impact of frameworks
for multiple devices on the same host for mana-
gement problems of memory locality, unified
memory between CPU and devices and I/O ope-
rations from devices using the most recent ver-
sion of its standard framework. With the support of
GPUs device on the following version of GCC5, it
is possible to obtain a compiler performance com-
parison between commercial and standards open
source solutions. Furthermore, it’s necessary to re-
view the impact of using cluster with multi-devi-
ces, messaging pass and MPI integration for high
performance computing using the language exten-
sions (Schaa & Kaeli, 2009).

ACKNOWLEDGMENT

We express our acknowledgment to director of
high performance center of Universidad Industrial
de Santander, the director of advanced computing
center of Universidad Distrital and Pak Liu Tech-
nical responsible for application characterization,
profiling and testing of HPC Advisor Council www.
hpcadvisorycouncil.com

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[169]

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

REFERENCES

Alsemmeri, M. (n.d.). CS 6260. Advanced Parallel Com-
putations Course. Retrieved October 3, 2014, from
https://cs.wmich.edu/elise/courses/cs626/home.htm

Amorim, R. & Haase, G. (2009). Comparing CUDA and
OpenGL implementations for a Jacobi iteration.
… & Simulation, 2009. …, 22–32. doi:10.1109/
HPCSIM.2009.5192847

Bader, M. & Weidendorfer, J. (2009). Exploiting me-
mory hierarchies in scientific computing. 2009
International Conference on High Performan-
ce Computing & Simulation, 33–35. doi:10.1109/
HPCSIM.2009.5192891

Barragan, E. H. & Steves, J. J. (2011). Performance analy-
sis on multicore system using PAPI. In 2011 6th
Colombian Computing Congress (CCC) (pp. 1–5).
IEEE. doi:10.1109/COLOMCC.2011.5936277

Dannert, T., Marek, A. & Rampp, M. (2013). Porting Lar-
ge HPC Applications to GPU Clusters: The Codes
GENE and VERTEX. Retrieved from http://arxiv.org/
abs/1310.1485v1

Dave, C., Bae, H., Min, S. & Lee, S. (2009). Cetus: A sour-
ce-to-source compiler infrastructure for multicores.
Computer (0429535). Retrieved from http://ieeex-
plore.ieee.org/xpls/abs_all.jsp?arnumber=5353460

Dongarra, J., Golub, G. H., Grosse, E., Moler, C. & Moo-
re, K. (2008). Netlib and NA-Net: Building a Scien-
tific Computing Community. Annals of the History
of Computing, IEEE, 30(2), 30–41. doi:10.1109/
MAHC.2008.29

Durán, A. et al. (2008). Extending the OpenMP tas-
king model to allow dependent tasks. Lectu-
re Notes in Computer Science, 5004, 111–122.
doi:10.1007/978-3-540-79561-2_10

Fowers, J., Brown, G., Cooke, P., & Stitt, G. (2012). A
performance and energy comparison of FPGAs,
GPUs, and multicores for sliding-window appli-
cations. Proceedings of the ACM/SIGDA …, 47.
doi:10.1145/2145694.2145704

Gravvanis, G. a., Filelis-Papadopoulos, C. K. & Lipitakis,
E. a. (2013). On numerical modeling performance of
generalized preconditioned methods. Proceedings

of the 6th Balkan Conference in Informatics on -
BCI ’13, 23. doi:10.1145/2490257.2490266

Gupta, S., Xiang, P. & Zhou, H. (2013). Analyzing lo-
cality of memory references in GPU architectures.
… of the ACM SIGPLAN Workshop on Memory …,
1–2. doi:10.1145/2492408.2492423

Hill, M. & Marty, M. (2008). Amdahl’s law in the mul-
ticore era. Computer, 41(7), 33–38. doi:10.1109/
MC.2008.209

Huang, P., Teng, D., Wahid, K. & Ko, S.-B. (2009). Per-
formance evaluation of hardware/software co-
design of iterative methods of linear systems.
2009 3rd International Conference on Signals,
Circuits and Systems (SCS), 1–5. doi:10.1109/
ICSCS.2009.5414164

Kim, Y. (2013). Performance tuning techniques for GPU
and MIC. 2013 Programming weather, climate, and
earth-system models on heterogeneous multi-core
platforms. Boulder, CO, National Oceanic and At-
mospheric Administration.

Lee, S. & Eigenmann, R. (2010). OpenMPC: Extended
OpenMP programming and tuning for GPUs. Pro-
ceedings of the 2010 ACM/IEEE International …,
(November), 1–11. doi:10.1109/SC.2010.36

Margaris, A., Souravlas, S. & Roumeliotis, M. (2014).
Parallel Implementations of the Jacobi Linear
Algebraic Systems Solve. arXiv Preprint arX-
iv:1403.5805, 161–172. Retrieved from http://arx-
iv.org/abs/1403.5805

Meijerink, J. & Vorst, H. van der. (1977). An iterative
solution method for linear systems of which the
coefficient matrix is a symmetric -matrix. Mathe-
matics of Computation, 31(137), 148–162. Retrie-
ved from http://www.ams.org/mcom/1977-31-137/
S0025-5718-1977-0438681-4/

Nickolls, J. & Dally, W. (2010). The GPU compu-
ting era. Micro, IEEE, 30(2), 56–69. doi:10.1109/
MM.2010.41

OpenMP, A. (2013). OpenMP application program
interface, v. 4.0. OpenMP Architecture Review
Board. Retrieved from http://scholar.google.com/
scholar?hl=en&btnG=Search&q=intitle:OpenMP-
+Application+Program+Interface#1

Parallel programming languages on heterogeneous architectures using openmpc, ompss, openacc and openmp

Esteban Hernández B., Gerardo de Jesús Montoya Gaviria, Carlos Enrique Montenegro

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 18 - Special Edition Doctorate • December 2014 • pp. 160-170
[170]

Podobas, A., Brorsson, M. & Faxén, K. (2010). A compa-
rison of some recent task-based parallel program-
ming models, 1–14. Retrieved from http://soda.
swedish-ict.se/3869/

Reyes, R., López, I., Fumero, J. & Sande, F. De. (2012). A
Comparative Study of OpenACC Implementations.
Jornadas Sarteco. Retrieved from http://www.jorna-
dassarteco.org/js2012/papers/paper_150.pdf

Reyes, R. & López-Rodríguez, I. (2012). accULL: An
OpenACC implementation with CUDA and Open-
CL support. Euro-Par 2012 Parallel …, 2(228398),
871–882. Retrieved from http://link.springer.com/
chapter/10.1007/978-3-642-32820-6_86

Sanders, J. & Kandrot, E. (2011). CUDA by Example.
An Introduction to General-Purpose GPU Pro-
gramming …. Retrieved from http://scholar.google.
com/scholar?hl=en&btnG=Search&q=intitle:CUD-
A+by+Example#1

Schaa, D. & Kaeli, D. (2009). Exploring the multi-
ple-GPU design space. 2009 IEEE International

Symposium on Parallel & Distributed Processing,
1–12. doi:10.1109/IPDPS.2009.5161068

Sun, X. & Gustafson, J. (1991). Toward a better para-
llel performance metric. Parallel Computing, 1093–
1109. Retrieved from http://www.sciencedirect.
com/science/article/pii/S0167819105800286

Vetter, J. (2012). On the road to Exascale: lessons from con-
temporary scalable GPU systems. … /A* CRC Works-
hop on Accelerator Technologies for …. Retrieved
from http://www.acrc.a-star.edu.sg/astaratipreg_2012/
Proceedings/Presentation - Jeffrey Vetter.pdf

Wang, Y. (n.d.). Jacobi iteration on GPU. Retrieved Sep-
tember 25, 2014, from http://doubletony-pblog.
azurewebsites.net/jacboi_gpu.html

Wolfe, M. (2013). The OpenACC Application Program-
ming Interface, 2.

Zhang, Z., Miao, Q. & Wang, Y. (2009). CUDA-Ba-
sed Jacobi’s Iterative Method. Computer Scien-
ce-Technology and …, 259–262. doi:10.1109/
IFCSTA.2009.68

