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ABSTRACT
On the field of parallel programing has emerged a 
new big player in the last 10 years. The GPU’s have 
taken a relevant importance on scientific computing 
because they offer a high performance computing, 
low cost and simplicity of implementation. Howe-
ver, one of the most important challenges is the pro-
gram languages used for this devices. The effort for 
recoding algorithms designed for CPUs is a critical 
problem. In this paper we review three of principal 
frameworks for programming CUDA devices com-
pared with the new directives introduced on the 
OpenMP 4 standard resolving the Jacobi iterative 
method. 
Keywords: CUDA, Jacobbi method, OmpSS, Ope-
nACC, OpenMP, OpenMP, Parallel Programming.

RESUMEN
En el campo de la programación paralela, ha arri-
bado un nuevo gran jugador en los últimos 10 
años. Las GPU han tomado una importancia re-
levante en la computación científica debido a 
que ofrecen alto rendimiento computacional, 
bajo costos y simplicidad de implementación; sin 
embargo, uno de los desafíos más grandes que 
poseen son los lenguajes utilizados para la progra-
mación de los dispositivos. El esfuerzo de reescri-
bir algoritmos diseñados originalmente para CPU 
es uno de los mayores problemas. En este artículo 
se revisan tres frameworks de programación para 
la tecnología CUDA y se realiza una compara-
ción con el reciente estándar OpenMP versión 4, 
resolviendo el método iterativo de Jacobi. 
Palabras clave: Método de Jacobi, OmpSS, Ope-
nACC, OpenMP, Programación paralela.
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INTRODUCTION 

Since 10 years ago, the massively parallel proces-
sors have used the GPUs as principal element on 
the new approach in parallel programming; it’s 
evolved from a graphics-specific accelerator to a 
general-purpose computing device and at this time 
is considered to be in the era of GPUs. (Nickolls & 
Dally, 2010). However, the main obstacle for large 
adoption on the programmer community has been 
the lack of standards that allow programming on 
unified form different existing hardware solutions 
(Nickolls & Dally, 2010). The most important play-
er on GPU solutions is Nvidia ® with the CUDA® 
language programming and his own compiler 
(nvcc) (Hill & Marty, 2008), with thousands of in-
stalled solutions and reward on top500 supercom-
puter list, while the portability is the main problem. 
Some community project and some hardware alli-
ance have proposed solutions for resolve this issue. 
OmpSS, OpenACC and OpenMPC have emerged 
as the most promising solutions (Vetter, 2012) using 
the OpenMP base model. In the last year, OpenMP 
board released the version 4 (OpenMP, 2013) appli-
cation program interface with support for external 
devices (including GPUs and Vector Processors). In 
this paper we compare the four implementation of 
Jacobi’s factorization, to show the advantages and 
disadvantages of each framework.

METHODOLOGY

The frameworks used working as extensions of 
#pragmas of the C languages offering the simplest 
way to programming without development com-
plicate and external elements. In the next section 
we describe the frameworks and give some imple-
mentations examples. In the last part, we show the 
pure CUDA kernels implementations.

Ompss

Ompss (a programming model form Barcelona Su-
percomputer center based on OpenMP and StarSs) 

is framework focusses on task decomposition para-
digm for developing parallel applications on cluster 
environments with heterogeneous architectures. It 
provides a set of compiler directives that can be 
used to annotate a sequential code. Additional fea-
tures have been added to support the use of ac-
celerators like GPUs. OmpSS is based on StartsS a 
task based programming model. It is based on an-
notating a serial application with directives that are 
translated by the compiler. With it, the same pro-
gram that runs sequentially in a node with a single 
GPU can run in parallel in multiple GPUs either 
local (single node) or remote (cluster of GPUs). Be-
sides performing a task-based parallelization, the 
runtime system moves the data as needed between 
the different nodes and GPUs minimizing the im-
pact of communication by using affinity schedul-
ing, caching, and by overlapping communication 
with the computational task. 

OmpSs is based on the OpenMP programming 
model with modifications to its execution and 
memory model. It also provides some extensions 
for synchronization, data motion and heterogen-
eity support.

1) Execution model: OmpSs uses a thread-pool 
execution model instead of the traditional OpenMP 
fork-join model. The master thread starts the exe-
cution and all other threads cooperate executing 
the work it creates (whether it is from work sharing 
or task constructs). Therefore, there is no need for a 
parallel region. Nesting of constructs allows other 
threads to generate work as well (Figure 1).

2) Memory model: OmpSs assumes that mul-
tiple address spaces may exist. As such shared 
data may reside in memory locations that are not 
directly accessible from some of the computa-
tional resources. Therefore, all parallel code can 
only safely access private data and shared data 
which has been marked explicitly with our ex-
tended syntax. This assumption is true even for 
SMP machines as the implementation may real-
locate shared data to improve memory accesses 
(e.g., NUMA).
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3) Extensions:
Function tasks: OmpSs allows to annotate func-

tion declarations or definitions Cilk (Durán, Pérez, 
Ayguadé, Badia & Labarta, 2008), with a task dir-
ective. In this case, any call to the function creates 
a new task that will execute the function body. The 
data environment of the task is captured from the 
function arguments.

Dependency synchronization: OmpSs inte-
grates the StarSs dependence support (Durán et al., 
2008). It allows annotating tasks with three clauses: 
input, output, in/out. They allow expressing, re-
spectively, that a given task depends on some data 
produced before, which will produce some data, 
or both. The syntax in the clause allows specifying 
scalars, arrays, pointers and pointed data. 

with an attached accelerator device, such as a GPU. 
Much of a user application executes on the host. 
Compute intensive regions are offloaded to the ac-
celerator device under control of the host. The de-
vice executes parallel regions, which typically 
contain work- sharing loops, or kernels regions, 
which typically contain one or more loops which 
are executed as kernels on the accelerator. Even in 
accelerator-targeted regions, the host may orches-
trate the execution by allocating memory on the ac-
celerator device, initiating data transfer, sending the 
code to the accelerator, passing arguments to the 
compute region, queuing the device code, waiting 
for completion, transferring results back to the host, 
and de-allocating memory (Figure 2). In most cases, 
the host can queue a sequence of operations to be 
executed on the device, one after the other (Wolfe, 
2013).

The actual problems with OpenACC are rela-
tionship with the only for-join model support and 
support for only commercial compilers can sup-
port his directives (PGI, Cray and CAPS) (Wolfe, 
2013; Reyes, López, fumero & Sande, 2012). In the 
last year, only one open source implementations 
has support (accULL) (Reyes & López-Rodríguez, 
2012).

Figure 1. OmpSS execution model

Source: Barcelona supercomputing Center, p. 11.  http://www.
training.prace-ri.eu/uploads/tx_pracetmo/OmpSsQuickOver-
viewXT.pdf  

OpenACC

OpenACC is an industry standard proposed for hete-
rogeneous computing on SuperComputer Conferen-
ce 2011. OpenACC follows the OpenMP approach, 
with annotation on Sequential code with compi-
ler directives (pragmas), indicating those regions of 
code susceptible to be executed in the GPU.

The execution model targeted by OpenACC API-
enabled implementations is host-directed execution 

Figure 2. OpenACC execution model

Source: Barcelona supercomputing Center p. 11.  http://www.
training.prace-ri.eu/uploads/tx_pracetmo/OmpSsQuickOver-
viewXT.pdf
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OpenMPC

The OpenMPC (OpenMP extendent for CUDA) is 
a framework to hide the complexity of program-
ming model and memory model to user (Lee & Ei-
genmann, 2010). OpenMPC consists of a standard 
OpenMP API plus a new set of directives and envi-
ronment variables to control important CUDA-re-
lated parameters and optimizations. 

OpenMPC addresses two important issues on GP-
GPU programming: programmability and tunability. 
OpenMPC as a front-end programming model pro-
vides programmers with abstractions of the com-
plex CUDA programming model and high-level 
controls over various optimizations and CUDA-re-
lated parameters. OpenMPC included fully auto-
matic compilation and user-assisted tuning system 
supporting OpenMPC. In addition to a range of 
compiler transformations and optimizations, the 
system includes tuning capabilities for generating, 
pruning, and navigating the search space of com-
pilation variants. 

OpenMPC use the compiler cetus (Dave, Bae, 
Min & Lee, 2009) for automatic parallelization 
source to source. The Source code on C has 3 level 
of analyzing 

- Privatization
- Reduction Variable Recognition
- Induction Variable substitution

OpenMPC adding a numbers of pragmas for an-
notate OpenMP parallel regions and select opti-
mization regions. The pragmas added has the 
following form: #pragma cuda <<function>>.

OpenMP release 4

OpenMP is the most used framework for program-
ming parallel software with shared memory and 
support on most of the existing compilers. With 
the explosion of multicore and manycore system, 
OpenMP gains acceptance on parallel program-
ming community and hardware vendors. From 
his creation to version 3 the focus of API was the 
CPUs environments, but with the introduction of 
GPUs and vector accelerators, the new 4 release 
includes support for external devices (OpenMP, 
2013). Historically, OpenMP has support Simple 
Instruction Multiple Data (SIMD) model only fo-
cusses on fork-join model (Figure 3), but in this new 
release the task-base model (Duran et al., 2008; 
Podobas, Brorsson & Faxén, 2010) has been intro-
duced to gain performance with more parallelism 
on external devices. The most important directives 
introduced were target, teams and distributed. This 
directives permit that a group of threads was distrib-
uted on a special devices and the result was copied 
to host memory (Figure 3). 

Figure 3. OpenMP 4 execution model

Source: Intel Parallel OpenMP.  http://www.theclassifiedsplus.com/video/video/axnA3kcLHK4/intel-parallel-openmp.html 
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Choose an initial guest    to the solution x. 
for k=1,2,…
 for i=1,2,…n
 xi=0
                            for j=1,2,…,i-1,i+1,…n
                                       xi = xi + ai,jxj

(k-1)

 end
                  xi = (bi + xi)/ ai,j

                     end
                     x(k)=x
                      check convergence; continue 
if necessary 
end

This iterative method can be implemented on a 
parallel form, using shared or distributed memory 
(Margaris, Souravlas & Roumeliotis, 2014) (Figure 
4). For distributed memory, it needs some explicit 
synchronization and data out-process data copy. 
In share memory, it needs distribution and data 
merge in memory. It uses the following method:

(3)

JACOBI ITERATIVE METHOD

Iterative methods are suitable for large scale linear 
equations. There are three commonly used iterati-
ve methods: Jacobi’s method, Gauss method and 
SOR iterative methods (Gravvanis, Filelis-Papado-
poulos & Lipitakis, 2013; Huang, Teng, Wahid & 
Ko, 2009). 

The last two iterative methods convergence 
speed is faster than Jacobi’s iterative method but 
lack of parallelism. They have advantages to Jaco-
bi method only when implemented in sequential 
fashion and executed on traditional CPUs. On the 
other hand, Jacobi’s iterative method has inher-
ent parallelism. It’s suitable to be implemented on 
CUDA or vector accelerators to run concurrently 
on many cores. The basic idea of Jacobi method is 
convert the system into equivalent system then we 
solved Equation (1) and Equation (2):

 (1)

On each iteration we solve :

 (2)

Where the values from the (k-1) iteration are 
used to compute the values for the kth iteration. 
The pseudo code for Jacobi method (Dongarra et 
al., 2008):

Figure 4. Parallel form of Jacobi method on shared 
memory (Alsemmeri, n.d.)

Source: Parallel Jacobi Algorithm https://www.cs.wmich.
edu/~elise/courses/cs626/s12/PARALLEL-JACOBI-ALGO-
RITHM11.pptx 

OPENMP IMPLEMENTATION 

int n=LIMIT_N;
int m=LIMIT_M;
A[n][m]; // the D-1 matrix 
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Anew [n][m];
y_vector[n]; //b vector
//fill the matriz with initial conditions 
…
#pragma omp parallel for shared (m, n, Anew, 

A)
    for (int j = 1; j < n-1; j++)
    {
      for (int i = 1; i < m-1; i++ )
      {
        Anew[j][i] = 0.25f * ( A[j][i+1] + A[j][i-1]
                  + A[j-1][i] + A[j+1][i]);
        error = fmaxf (error, fabsf(Anew[j][i]-A[j]

[i]));
      }
    }
#pragma omp parallel for shared (m, n, 

Anew, A)
 for (int j = 1; j < n-1; j++)
    {
      for (int i = 1; i < m-1; i++ )
      {
        A[j][i] = Anew[j][i];
      }
    }
    if (iter % 100 == 0) printf(“%5d, %0.6f\n”, 

iter, error);
    iter++;
  }
…//print the result

OPENACC IMPLEMENTATION 

int n=LIMIT_N;
int m=LIMIT_M;
A[n][m]; // the D-1 matrix 
Anew [n][m];
y_vector[n]; //b vector
//fill the matriz with initial conditions 
…
#pragma omp parallel for shared (m, n, Anew, 

A)
#pragma acc kernels
    for( int j = 1; j < n-1; j++)
    {
      for( int i = 1; i < m-1; i++ )
      {
        Anew[j][i] = 0.25f * ( A[j][i+1] + A[j][i-1]
                  + A[j-1][i] + A[j+1][i]);
        error = fmaxf( error, fabsf(Anew[j][i]-A[j]

[i]));
      }
    }
#pragma omp parallel for shared (m, n, Anew, 

A)
#pragma acc kernels
 for( int j = 1; j < n-1; j++)
    {
      for( int i = 1; i < m-1; i++ )
      {
        A[j][i] = Anew[j][i];
      }
    }
    if(iter % 100 == 0) printf(“%5d, %0.6f\n”, 

iter, error);
    iter++;
  }
…//print the result
 
In this implementation appears a new annota-

tion #pragma acc kernels, where it indicates that 
the code will be executed. This simple annotation 
hides a complex implementation of CUDA kernel, 
the copy of data from host to devices and devices 
to GPU and definition of grid of threads and the 

In this section, the for-joint model appears on 
section annotate with #pragma omp parallel for 
shared (m, n, Anew, A) where every threads (nor-
mally equals to cores) on system running a copy 
of code with different data section shared all vari-
ables named on shared() section. When the size 
of m and n is minor or equals to number of cores, 
the performance is similar on GPUs and CPUs, 
but when the size if much higher that number of 
cores available, the performance of GPUs increas-
es because the parallelism level is higher (Fowers, 
Brown, Cooke & Stitt, 2012; Zhang, Miao, & Wang, 
2009).
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data manipulation (Amorim & Haase, 2009; Sand-
ers & Kandrot, 2011; Zhang et al., 2009). 

PURE CUDA IMPLEMENTATION 
(WANG, N.D.)

…
 int dimB, dimT;
  dimT = 256;
  dimB = (dim / dimT) + 1;
  
  float err = 1.0;

  // set up the memory for GPU
  float * LU_d;
  float * B_d;
  float * diag_d;
  float *X_d, *X_old_d;
  float * tmp;

  cudaMalloc( (void **) &B_d, sizeof(float) * 
dim );

  cudaMalloc( (void **) &diag_d, sizeof(float) 
* dim );

  cudaMalloc( (void **) &LU_d, sizeof(float) * 
dim * dim);

  cudaMemcpy( LU_d, LU, sizeof(float) * dim * 
dim, cudaMemcpyHostToDevice);

  cudaMemcpy( B_d, B, sizeof(float) * dim, 
cudaMemcpyHostToDevice);

  cudaMemcpy( diag_d, diag, sizeof(float) * 
dim, cudaMemcpyHostToDevice);

  cudaMalloc( (void **) &X_d, sizeof(float) * 
dim);

  cudaMalloc( (void **) &X_old_d, sizeof(float) 
* dim);

  cudaMalloc( (void **) &tmp, sizeof(float) * 
dim);

…
//call to cuda kernels 

 // 2. Compute X by A x_old

     cudaMemcpy( X_old_d, x_old, sizeof(float) 
* dim, cudaMemcpyHostToDevice);

matMultVec<<<dimB, dimT>>>(LU_d, X_
old_d, tmp, dim, dim); // use x_old to compute 
LU X_old and store the result in tmp

     substract<<<dimB, dimT>>>(B_d, tmp, 
X_d, dim);    // get the (B - LU X_old), which is 
stored in X_d

     diaMultVec<<<dimB, dimT>>>(diag_d, 
X_d, dim);    // get the new X

     
     // 3. copy the new X back to the Host 

Memory
     cudaMemcpy( X, X_d, sizeof(float) * dim, 

cudaMemcpyDeviceToHost);

     // 4. calculate the norm of X_new - X_old
     substract<<<dimB, dimT>>>(X_old_d, X_d, 

tmp, dim);
     VecAbs<<<dimB, dimT>>>(tmp, dim);
     VecMax<<<dimB, dimT>>>(tmp, dim);
     // copy the max value from Device to Host
cudaMemcpy(max, tmp, sizeof(float), 

cudaMemcpyDeviceToHost);
// cuda kernel for vector multiplication 
__global__ void matMultVec(float * mat_A, 
              float * vec, 
              float * rst, 
              int dim_row, 
              int dim_col)
{
  int rowIdx = threadIdx.x + blockIdx.x * 

blockDim.x; // Get the row Index 
  int aIdx;
  while(rowIdx < dim_row)
  {
     rst[rowIdx] = 0; // clean the value at first
     for (int i = 0; i < dim_col; i++)
     {
       aIdx = rowIdx * dim_col + i; // Get the 

index for the element a_{rowIdx, i}
       rst[rowIdx] += (mat_A[aIdx] * vec[i] ); // do 

the multiplication
     }
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     rowIdx += gridDim.x * blockDim.x;
  }
  __syncthreads();
}

// cuda kernel for vector subtraction 
__global__ void substract(float *a_d, 
             float *b_d, 
             float *c_d, 
             int dim)
 {
   int tid = threadIdx.x + blockIdx.x * blockDim.x;
   while ( tid < dim )
   {
     c_d[tid] = a_d[tid] - b_d[tid];
     tid += gridDim.x * blockDim.x;
   }
 }
 
 __global__ void VecMax(float * vec, int dim)
{
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  while (dim > 1)
  {
     int mid = dim / 2; // get the half size
     if (tid < mid)  // filter the active thread
     {
       if (vec[tid] < vec[tid+mid] ) // get the larger 

one between vec[tid] and vec[tid+mid]
          vec[tid] = vec[tid+mid]; // and store the 

larger one in vec[tid]
     }

     //deal with the odd case
     if (dim % 2 )   // if dim is odd...we need care 

about the last element
     {
       if (tid == 0 ) // only use the vec[0] to com-

pare with vec[dim-1]
       {
          if (vec[tid] < vec[dim-1] )

            vec[tid] = vec[dim-1];
       }
     }

     __syncthreads(); // sync all threads
     dim /= 2;    // make the vector half size short.
  }
}

The effort for writing three kernels, manage-
ment the logic of grids dimensions, copy data from 
hosts to GPU and GPU to host, the aspect of syn-
chronization thread on the groups of Threads on 
GPU and some aspects as ThreadID calculation 
required high computation on hardware devices 
and code programming.

TEST TECHNIQUE 

We take the three implementations of Jacobi me-
thod (Pure OpenMP, OpenACC, OpenMPC) and 
running it on SUT (System Under Test) of Table 1, 
and make multiples running with square matri-
ces of incremental sizes (Table 2), take processing 
time for analyzing the performance (Kim, n.d.; 
Sun & Gustafson, 1991) against the code number 
lines needed on the algorithm. 

 
Table 1. Characteristics of System under Test

System Supermicro SYS-1027GR-TRF

CPU
Intel® Xeon® 10-core E5-2680 V2 CPUs @ 
2.80 GHz

Memory 32GB DDR3 1600MHz

GPU
NVIDIA Kepler K40 GPUs, 2880 Cuda Cores, 
Memory 12GB

OS Red Hat Enterprise Linux Server release 6.4

Compiler
PGI Compiler Accelerator Fortran/C/C++ 14 
release 9 for Linux

L2 Cache 256K

L3 Cache 25MB
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Table 2. Matrix size performance comparison.

Matrix 
size 
(N)

Implementation Mean Running 
Time (Seconds)

2048

OpenMP with 20 Threads 26.578

OpenACC 74,970

OpenMPC 69,890

4096

OpenMP with 20 Threads 74,280

OpenACC 92,320

OpenMPC 75,120

8096

OpenMP with 20 Threads 116,23

OpenACC 98,00

OpenMPC 101,420

16192

OpenMP with 20 Threads 522.320

OpenACC 190,230

OpenMPC 222,320

RESULT 

The performance on the three frameworks (OpenMP 
v. 4, OpenACC, OpenMPC) presents a similar re-
sult on square matrices with size of 2048; howev-
er, if the size ingresses to 4096, the performance 
is little high on OpenACC implementation. With 
huge matrices greater than 12288, another factor 
as cache L2 and L3 has impact on process of data 
copy from host to device (Bader & Weidendorfer, 
2009; Barragan & Steves, 2011; Gupta, Xiang, & 
Zhou, 2013). The performance of using a frame-
work against using direct GPU CUDA languages, 
was just a bit (<5%), but the number of code lines 
was 70% minor. This shows that the framework of-
fers useful programming tools with computational 
performance advantage; however, the performance 
gains on GPUs is on region of algorithms with high 
level of parallelism, and low data coupling with the 
host code (Dannert, Marek, & Rampp, 2013). 

CONCLUSION

The new devices for high performance compu-
ting need standardized methods and languages 
that permits interoperability, easy programming 
and well defined interfaces for integrating the data 

interchange between memory segments of the pro-
cessors (CPUs) and devices. Besides, it is neces-
sary that languages have support for working with 
two or more devices on parallel using the same 
code but running segments of high parallelism in 
automatically form. OpenMP is the de facto stan-
dard for shared memory programming model, but 
the support for heterogeneous devices (Gpus, ac-
celerators, fpga, etc.) is in very early stage, the 
new frameworks and industrial API need help for a 
growing and maturating standard. 
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FUTURE WORKS 

It is necessary to analyze the impact of frameworks 
for multiple devices on the same host for mana-
gement problems of memory locality, unified 
memory between CPU and devices and I/O ope-
rations from devices using the most recent ver-
sion of its standard framework. With the support of 
GPUs device on the following version of GCC5, it 
is possible to obtain a compiler performance com-
parison between commercial and standards open 
source solutions. Furthermore, it’s necessary to re-
view the impact of using cluster with multi-devi-
ces, messaging pass and MPI integration for high 
performance computing using the language exten-
sions (Schaa & Kaeli, 2009). 
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