
Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[121]

UNIVERSIDAD DISTRITAL
FRANCISCO JOSÉ DE CALDAS

Tecnura
http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/650

DOI: http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a09

InvestIgacIón

Abstract
In Model Driven Engineering (MDE) approaches,
metamodelers usually need to create a metamo-
del based on existing metamodels, where each one
abstracts a specific domain, in order to abstract a
new domain, which includes elements that could be
taken from the other already created metamodels.
This kind of constructions allows getting advanta-
ge of the knowledge obtained in the construction of
the previous built metamodels. This paper presents a
proposal to solve metamodel composition through a
Domain Specific Language (DSL). This DSL is used
by metamodelers, who are the people that know the
domains abstracted by the different metamodels and
know how to combine those metamodels in order
to generate the new one. Moreover, a simple case
study is presented so as to demonstrate the low level
of complexity of the DSL.
Keywords: computational modeling, metamodeling,
software prototyping.

Resumen
En enfoques de ingeniería basada en modelos (MDE),
los metamodeladores usualmente tienen que crear
un metamodelo basado en metamodelos existentes,
en donde cada uno abstrae un dominio específico
con el fin de abstraer un nuevo dominio, que inclu-
ye los elementos que se podrían tomar de los otros
metamodelos ya creados. Este tipo de construccio-
nes permite obtener ventaja de los conocimientos
obtenidos en la construcción de los metamodelos
previamente construidos. En este trabajo se presen-
ta una propuesta para resolver la composición de
metamodelos a través de un lenguaje de dominio
específico (DSL). Este DSL es utilizado por metamo-
deladores, que son las personas que conocen los do-
minios abstraídos por los diferentes metamodelos y
saben cómo combinar los metamodelos para gene-
rar uno nuevo. Además, se presenta un caso de es-
tudio simple con el fin de demostrar el bajo nivel de
complejidad del DSL.
Palabras clave: metamodelamiento, modelamiento
computacional, prototipo de software.

Metamodels composition strategy for the model
driven engineering context

Estrategia de composicion de metamodelos para el contexto
de ingeniería basada en modelos

Héctor Arturo Flórez Fernández*

Fecha de recepción: 23 de julio de 2013 Fecha de aceptación: 5 de diciembre de 2014

Citation / Para citar este artículo: Flórez Fernández, H. A. (2015). Metamodels composition strategy for the mo-
del driven engineering context. Revista Tecnura, 19(44), 121-132. doi:http://dx.doi.org/10.14483/udistrital.jour.
tecnura.2015.2.a09

* Electronic Engineer, Computer Science Engineer, Specialist in Management, Magister in Information and Communication Sciences, Magister in
Management, Doctor candidate in Engineering. Assistant professor in the Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
Contacto: haflorezf@udistrital.edu.co

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[122]

INTRODUCTION

A metamodel is a component to abstract the con-
cepts of a specific domain of information, and it is
constructed by one metamodeler, who is the per-
son that knows the domain and can solve a problem
using a MDE approach. Also, one model is a simpli-
fication of a system with an intended goal (J. Bézi-
vin, 2005), (P.A. Muller, F.; Fondement, B. Baudry,
and B. Combemale, 2009), or an artifact to repre-
sent a specific case of a domain that is constructed
by modelers. In MDE approaches the models must
conform to the metamodel that abstract the domain.
In addition, modeling has an important role in deve-
loping software systems because it provides means
to concepts (J. Henriksson, F. Heidenreich, J. Johan-
nes, S. Zschaler, and U. Assmann, 2008), (H. Florez,
2012) abstracted in a specific domain.

Furthermore, in several cases metamodelers need
to represent a new domain; however, the new do-
main can have concepts already abstracted in exis-
ting metamodels. Consequently, metamodelers can
reuse several concepts from several metamodels in
order to create the new metamodel (M. Emerson
and J. Sztipanovits, 2006) (G. Karsai, M. Maroti, A.
Ledeczi, J. Gray, and J. Sztipanovits, 2004).

This proposal presents a metamodel composi-
tion solution strategy, where one metamodeler, who
knows several domains abstracted in correspondent
metamodels, constructs a new metamodel, which
is intended to abstract the new domain, based on
the existing metamodels. The new metamodel is ge-
nerated by creating and executing a script that has
instructions defined in one DSL. Instructions of the
DSL allow metamodelers to include several existing
metamodels and make several operations regarding
the elements, attributes, and relations included in
the selected metamodels. In addition, the DSL also
allows creating new elements, attributes, and rela-
tions in the composed metamodel.

The rest of the paper is structured as follows. Sec-
tion 2 presents different techniques to solve the me-
tamodel composition problem. Section 3 presents
the proposed methodology and strategy for solving

the metamodels composition. Section 4 presents the
language developed to solve metamodels composi-
tion; also, an example about composition using the
proposed language. Section 5 presents the composi-
tion engine in which the process for composition is
explained. Section 6 presents a summarized case of
study. In section 7, the related work is presented. Fi-
nally, section 8 presents the conclusions.

METAMODELS COMPOSITION

In MDE, metamodels composition is necessary for
several reasons (A. Ledeczi, G. Nordstrom, G. Kar-
sai, P. Volgyesi, and M. Maroti, 2001), (J. Oldevik, L.
Kutvonen, and N. Alonistioti, 2005). One metamo-
del is the set of abstractions and techniques that go-
vern how systems related with the domain are going
to be modeled; as a result, metamodels represent
the way in which a particular engineering domain
is abstracted. When a new domain is needed to be
abstracted, several previously constructed domains
could represent some elements that the new do-
main needs to include in their abstraction. For ins-
tance, in the case that a language designer requires
to create a new language, it is possible to get the
knowledge included in existing languages with the
purpose to reuse the common existing elements be-
tween the existing languages and the new language.
Consequently, the effort in process of the construc-
tion of the new language can be reduced as much
as possible getting advantage of the efforts invested
in the domains taken through the correspondent
metamodels. Then, metamodel composition offers
benefits to Domain Specific Modeling Language
(DSML) analogous to software reuse offers benefits
to software engineering (M. Emerson and J. Sztipa-
novits, 2006). For instance, it is possible to achieve:
the avoidance of duplication effort, emergence of
high quality reusable metamodel fragments, recog-
nition of metamodeling patterns, and reduction of
time in the creation of new DSMLs.

Metamodel composition strategies aim to su-
pport the construction of complex metamo-
dels using atomic transformations (J. Oldevik, L.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[123]

Kutvonen, and N. Alonistioti, 2005). In the context
of MDE, there are some processes for metamodel
composition: 1) matching elements, 2) elements
merge, and 3) class refinement (M. Emerson and J.
Sztipanovits, 2006). Matching models is a process
used to identify different views of the same concept
(R. France, F. Fleurey, R. Reddy, B. Baudry, and S.
Ghosh, 2007), in order to unify those several equi-
valent concepts in one composed concepts. This
strategy can create new concepts that are enriched
by different descriptions previously made in exis-
ting metamodels. Metamodel merge combines se-
veral concepts creating a new one in order to avoid
collisions between the elements described in two
different metamodels (M. Emerson and J. Sztipa-
novits, 2006) used for the metamodel composition
process. Merging concepts not only allows joining
concepts defined in existing metamodels, but also
allows customizing those concepts by adding or
removing attributes or relations. Class refinement
is used to add details in one single element that has
not been composed with other elements. The refi-
ned class can be taking from existing metamodels;
as a result, the refinement does not imply the crea-
tion of all features of the class (e.g., attributes and
relations); thus, the refinement becomes an useful
mechanism for polishing the composed metamo-
del in order to obtain the desired abstractions.

METHODOLOGY AND SOLUTION
STRATEGY

This proposal consists of a strategy where the domain
experts, who are metamodelers, modify the metamo-
dels explicitly specifying the composition process.
Metamodelers know the reasons why a metamodel
needs to be composed, define the set of input me-
tamodels required to get the composed metamodel,
and create a script with the operations needed to
built the new metamodel. Figure 1 illustrates com-
position process and the metamodeler responsibili-
ties. The metamodeler, who is intended to create a
composed metamodel and understands the domains
abstracted by other metamodels, selects at least two

existing metamodels as inputs of the process. Later
on, based on the selected metamodels, he/she crea-
tes the composition script that is one source code
written using the DSL presented in section 4. Finally,
the metamodeler executes the composition script
in the “Composition Engine” presented in section 5
providing the required metamodels and obtaining as
output one composed metamodel.

The composition engine receives the script de-
veloped by metamodelers and imports the support
metamodels defined in the script. These scripts are
loaded in dynamic memory and manipulated with
Eclipse Modeling Framework (EMF) making the
modifications determined in the script in order to
generate only one composed metamodel as output.

The composition engine process (see figure
2) is based on the set of instructions Δ that co-
rresponds to several instructions (Δ = {δ1, δ2, …
, δn}). Each instruction δi changes the composed
metamodel MM0 based on the support metamo-
dels {MMsup-1, MMsup-2, … , MMsup-m}. In addition,
the instruction δi changes the affected support
metamodels, so after the execution of the instruc-
tion δi the engine will contain a new version of
the composed metamodel (MMi) and the support

Figure 1. Composition process.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[124]

metamodels {MMsup-1.i, MMsup-2.i, ... , MMsup-n.i}.
Thus, after the execution of the instruction δi, the
composition engine creates the composed meta-
model (MMi) that is ready to use by the metamo-
deler. The composition engine also is capable to
identify exceptions in the process. Then, due to
several instructions can depend on the results of
the execution of previous instructions; one excep-
tion finalizes the composition engine process and
the composed metamodel is not created.

The work of creating metamodels can be con-
sidered demanding because it should include the
analysis of the context that usually contains a big
amount of elements and relations between elements.
Due to this strategy is based on existing metamodels
that already abstract properly domains, metamode-
lers do not need to make a big effort for abstracting
fragments of the domain, but they can dedicate this
effort for understanding the way in which the existing
metamodels can support the composition process.
In addition, effort for the creation of the new meta-
model decreases because the composition engine is
able to provide one validated composed metamo-
del; thus, the metamodeler just need to write one
basic script in order to generate the desired result.

COMPOSITION LANGUAGE

The proposal resolves the metamodels composi-
tion by defining one Domain Specific Language
(DSL). This DSL includes an instructions catalog of
the possible operations that can be applied over
several input metamodels in order to generate a

unique output composed metamodel. The instruc-
tions presented in the catalog are created following
the technique “class refinement”; however, one
instruction, which is joinClasses is based in the te-
chnique “element merge” in order to take advanta-
ge of the specific features of this technique.

The structure of the DSL consists in the next
three operations:

• Operation “import”. This operation allows speci-
fying several input metamodels.

• Operation “export”. This operation allows specif-
ying the output composed metamodel.

• Instructions. Each instruction specifies a change
in the composed metamodel.

The DSL has a set of operations that allow
metamodelers to define possible changes over the
input metamodels in order to construct the com-
posed metamodel, which are defined in the in-
struction catalog. This proposal is completeness
from the principle that each instruction has high
granularity, which implies that the operation can-
not be decomposed into smaller operations (M.
Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth,
2010), to ensure unitary changes on the metamod-
el in the composition process. As a result, the DSL
has a catalog made up of 16 instructions. With these
instructions metamodelers can make the necessary
changes on the classes, attributes and references
from the input metamodels. Also, metamodelers
can include new classes, attributes and references
that are not defined in any input metamodel.

Figure 2. Composition strategy.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[125]

Possible changes related with classes include
create, delete, rename, set abstract, unset abstract,
divide a class in several classes, and join several
classes. Possible changes related with attributes in-
clude create, delete, rename, and update. Possible
changes related with references include create, dele-
te, rename, create inheritance reference, and delete

inheritance reference. Table 1 presents the instruc-
tion catalog created for the composition language.

When any instruction make reference to a class,
it is necessary to indicate the name of the input
metamodel in which the class is placed. In the case
that the instruction does not have the name of the
input metamodel, the engine will search the class

Table 1. Instruction Catalog.

Instruction Parameters

Class

newClass Class Name
deleteClass Class Name

renameClass Class Name
New Class Name

setAbstractClass Class Name
setNonAbstractClass Class Name

joinClasses
New Class Name
Class Name 1
Class Name 2

divideClasses

Class Name
Divided Classes
-Divided class name
-Divided class attributes
-Divided class references

Attribute

newAttribute
Class Name
Attribute Name
Type

deleteAttribute Class Name
Attribute Name

renameAttribute
Class Name
Attribute Name
New Attribute Name

updateAttribute
Class Name
Attribute Name
Type

Reference

newReference

Reference Name
Source Class Name
Target Class Name
Containment
Min Cardinality
Max Cardinality

deleteReference Class Name
Reference Name

updateReference

Class Name
Containment
Min Cardinality
Max Cardinality

newInheritanceReference Sub Class Name
Super Class Name

deleteInheritanceReference Sub Class Name

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[126]

between the classes created before in the compo-
sition process.

With this instructions catalog, the composition
language offers a language that supports a great va-
riety of metamodel composition cases.

In order to explain how the operations can
be used, the next two metamodels presented in
figure 3 will be used.

The goal of the example will include the next
operations.

• Create a new class named “N”
• Create a new attribute named “attN1” in the class

N with type EInt

• Create a new class named “M”
• Create a new attribute named “attM1” in the

class M with type EInt
• Create a new attribute named “attB3” in the class

B with type EInt
• Set abstract the class V
• Join the classes E and N with the name EN
• Create a new reference named M_Z with source

class M, target class Z, containment false, min
cardinality 1 and max cardinality *.

• Create a new reference named X_B with sour-
ce class X, target class B, containment false, min
cardinality 0 and max cardinality *.

Figure 3. Imported metamodels

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[127]

• Divide the class X creating the class X1 with the
attribute attX1 and the references X_Y and X_B;
and the class X2 with the attribute attX1 and the
references X_Y and X_W.

The listing presents with the source code for ge-
nerating the composed metamodel following the
requirements described.

1. import "inputMM1.ecore"
2. import "inputMM2.ecore"
3. export "outputMM"
4. newClass (N)
5. newAttribute (N, attN1, EInt)
6. newClass (M)
7. newAttribute (M.attM1, EInt)
8. newAttribute (B.attB3, EInt)
9. setAbstractClass (inputMM1.V)
10. joinClasses (EN, inputMM1.E, N)
11. newReference (M_Z, M, inputMM2.Z, false, 1, -1)

12. newReference (X_B, exampleMM2.X, exam-
pleMM1.B, false, 0, -1)

13. divideClass (exampleMM2.X [X1, attX1, X_Y,
X_B], [X2, attX1, X_Y, X_W])

As a result of the composition process, the com-
posed metamodel generated is shown in the figure 4.

COMPOSITION ENGINE

The composition engine of this proposal executes
the composition script sequentially. Once, the en-
gine executes the import operations, it creates in
dynamically memory the objects of each metamo-
del inside the correspondent package. Using the
metamodels shown in the figure 3, and the pre-
vious example script, after executing the first, the
second, and the third operations (lines 1, 2, and
3), the distribution of the elements in dynamic
memory is presented in the figure 5. With these

Figure 4. Output metamodel.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[128]

operations the engine imports two support meta-
models (MMsup-1, MMsup-2) and creates the compo-
sed metamodel (MM0). The elements that belong to
MMsup-1 and MMsup-2 are included in MM0.

Figure 5. Distribution of the elements in dynamic
memory.

Source: own work.

In addition, after the composition engine exe-
cutes the sixth operation, the classes N and M
are created in the generic package “outputMM”.
The distribution of the elements in dynamic me-
mory after the seventh operation is presented in
the figure 6.

Also, after the composition engine executes the
tenth operation, the class EN is created in the ge-
neric package “outputMM”. However, the classes
involved in this operation that are E (that belongs
to MMsup-1) and N will be deleted from the corres-
pondent packages. The distribution of the elements
in dynamic memory after the tenth operation is
presented in the figure 7.

Figure 6. Distribution of the elements in dynamic memory.

Source: own work.

Figure 7. Distribution of the elements in dynamic memory.

Source: own work.

Finally, after the composition engine executes the
thirteenth operation, the classes X1 and X2 are crea-
ted in the generic package “outputMM”. However,
the class X (that belongs to MMsup-2) will be deleted
from the correspondent package. The distribution of
the elements in dynamic memory after the thirteenth
operation is presented in the figure 8.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[129]

Figure 8. Distribution of the elements in dynamic memory.

Source: own work.

Once the composition engine executes the
script, the classes from the import metamodels that
have not been affected will be translated to the ge-
neric package “outputMM”. Also the packages of
the imported metamodels will be deleted. As a re-
sult, all elements in the composed metamodel will
belong to the generic package.

In the case that the engine finds that one opera-
tion cannot be executed, the engine will report the
mistake and the process will not continue. The re-
asons in which the process can fail are the follows:

• The import metamodel does not exist.
• The class, attribute, or reference required does

not exist.
• In the case of creation of new elements; the class,

attribute, or reference related already exist.
• After executing the script, there are duplicated

classes.

CASE STUDY

In order to demonstrate the functionality of the
language, a simple case is taken. In this case, it is
taken a summarized metamodel of a bike and a
summarized metamodel of a car.

Bike Metamodel

The figure 9 presents a summarized metamodel of
the bike with the elements abstracted for this do-
main. This metamodel consist in the main parts of a

Figure 9. Bike metamodel.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[130]

bike. This metamodel indicates that one bike has one
frame, two wheels, and one or two breaks. Moreover,
the frame has one handle and one fork, and supports
just one wheel. Furthermore, the fork supports the
other wheel. Finally, each break acts over one wheel.

Car Metamodel

The figure 10 presents a summarized metamodel
of the car with the elements abstracted for this do-
main. This metamodel consist in the main parts of a
car. This metamodel indicates that one car has one
chassis, four wheels, four hydraulic breaks, and
one engine. Moreover, the chassis has one body
that has up to 5 doors, and supports four wheels.
Finally, each break acts over one wheel.

Composed Metamodel

Based on the previous metamodels, the next script
has been created in order to generate a compo-
sed metamodel related with a summarized mo-
torcycle domain. The motorcycle has the majority
of the components included in the bike metamo-
del; however, it requires more elements that can
be provided by the car metamodel. The listing

presents the composition script used for compo-
sing the metamodel.

1. import "bike.ecore"
2. import "car.ecore"
3. export "motorcycle"
4. renameClass (bike.Bike, "Motorcycle")
5. deleteClass (bike.Break)
6. deleteClass (car.Car)
7. deleteClass (car.Chassis)
8. deleteClass (car.Body)
9. deleteClass (car.Door)
10. deleteClass (car.HydraulicBreak.actOver)
11. newReference (hydraulicBreaks, bike.Motorcy-

cle, car.HydraulicBreak, trae, 2, 2)
12. joinClasses (NewWheel, bike.Wheel, car.Wheel)
13. newReference (actOver, car.HydraulicBreak,

bike.Wheel, trae, 1, 1)
14. newReference (engine, bike.Motorcycle, car.En-

gine, trae, 1, 1)
15. divideClass (bike.Frame, [FrameChassis, mate-

rial, handle, fork], [Seat, material]
16. newReference (seat, bike.Motorcycle, Seat, true,

1, 1)
17. newReference (frame, bike.Motorcycle, Frame-

Chassis, true, 1, 1)

Figure 10. Car metamodel.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[131]

The figure 11 presents a metamodel of the mo-
torcycle generated by the composition engine after
applying the previous script based on the compo-
sition DSL.

RELATED WORK

There are some approaches that already have trea-
ted the problem of metamodel composition. For
instance, the work of Emerson et al.5 presents a
complete description of metamodels composition.
Also, it presents a detailed characterization of diffe-
rent techniques (e.g., merge, refinement) providing
a wide understanding regarding advantages and di-
sadvantages for the composition in the MDE con-
text. However, this work does not present a specific
proposal for solving metamodels composition.

In addition, Karsai et al.6 presents a proposal
focused in the reusability of metamodels in one
specific domain of information. This proposal also
includes a language that allows the manipulation of
metamodels that abstracts subdomains of the desi-
red domain of information. Thus, the composition
process is not possible with metamodels of different
domains. Finally, this proposal acts over diagrams
based on UML, which can be taken as disadvantage

due to the MDE context has became more relevant
for academic and industrial communities.

Another related work is the proposal presen-
ted by (J. Oldevik, L. Kutvonen, and N. Alonistioti,
2005). In this work, the composition is achieved by
the execution of several transformations using the
transformation language Query View Transforma-
tion (QVT). This proposal consists in the creation
of one framework that supports the execution of
several transformations, where metamodels, which
conform ECORE metamodel, are treated as models
obtaining the desired behavior and results. This
proposal has a disadvantage regarding with the le-
vel of knowledge of QVT because in this project,
this language is focused in the transformation of
one metamodel instead of the creation of on new
metamodel as a result of the composition of seve-
ral input metamodels.

Finally (R. France, F. Fleurey, R. Reddy, B. Bau-
dry, and S. Ghosh, 2007) present a similar propo-
sal for composition because they have created a
DSL for defining the way in which the composi-
tion would be achieved. This proposal also takes
into account the strategies presented in this paper
(i.e. matching, merging, and refining); however,
they focus their results not in metamodels, but in

Figure 11. Motorcycle metamodell.

Source: own work.

Metamodels composition strategy for the model driven engineering context

Flórez Fernández, H. A.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 121-132
[132]

UML models restricting the solution in one speci-
fc domain. Also, the language created is based on
constraints, which makes harder the declaration
of simple composition tasks such us the refine-
ment of existing elements (e.g., updating of attri-
butes or relations).

CONCLUSIONS

A metamodel composition process, where meta-
modelers can adapt concepts abstracted in several
existing metamodels, is possible. In this approach
one DSL allows metamodelers define the creation
of new elements for the composed metamodel; the
way to adapt the elements existing in those input
metamodels, and the elements created in the com-
position process; and the generation of the new
composed metamodel.

An advantage of this approach is that metamode-
lers cannot perform illogical composition operations.
Another advantage of this approach is based on the
execution of the composition as a set of atomic ope-
rations over the input metamodels; each transition
can use the modifications done in the previous opera-
tions. One more advantage is the creation of metamo-
dels reducing the effort for metamodelers by getting
the elements abstracted in existing metamodels.

The presented approach is simple, completeness
and has high granularity, for each composition ope-
ration can be done independently and all of them
cannot be decompose in smaller operations; as a
result, the proposal is adequate to be used by meta-
modelers in order to create new abstractions throu-
gh a metamodel based on existing metamodels.

ACKNOWLEDGEMENT

The author thanks the Universidad Distrital Fran-
cisco José de Caldas.

REFERENCES

A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M.
Maroti (2001). On metamodel composition. Control
Applications,. (CCA '01). Proceedings of the 2001
IEEE International Conference on, pp. 756-760.

G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipano-
vits (2004). Composition and cloning in modeling
and meta-modeling. Control Systems Technology,
IEEE Transactions on, vol. 12, pp. 263-278.

H. Florez (2012). Model Transformation Chains as Stra-
tegy for Software Development Projects. The 3rd
International Multi-Conference on Complexity, In-
formatics and Cybernetics: IMCIC 2012.

J. Bézivin (2005). On the unification power of mo-
dels. Software and Systems Modeling, vol. 4, pp.
171-188.

J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler,
and U. Assmann (2008). Extending grammars and
metamodels for reuse: the Reuseware approach.
Software, IET, vol. 2, pp. 165-184.

J. Oldevik, L. Kutvonen, and N. Alonistioti (2005). Transfor-
mation Composition Modelling Framework. Distribu-
ted Applications and Interoperable Systems. vol. 3543,
ed: Springer Berlin / Heidelberg, pp. 1135-1136.

M. Emerson and J. Sztipanovits (2006). Techniques for
Metamodel Composition. Computer Science and
Information Systems Reports, pp. 123-139.

M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth
(2010). Language Evolution in Practice: The History
of GMF. Software Language Engineering. vol. 5969,
ed: Springer Berlin / Heidelberg, pp. 3-22.

P.A. Muller, F.; Fondement, B. Baudry, and B. Combe-
male (2009). Modeling modeling modeling. Sof-
tware and Systems Modeling, pp. 1-13.

R. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh
(2007). Providing Support for Model Composition
in Metamodels. Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007. 11th IEEE
International, pp. 253-253.

