UNIVERSIDAD DISTRITAL
FRANCISCO JOSE DE CALDAS

Tecnura

http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/650
DOI: http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.4.a01

INVESTIGACION

Stress tests for videostreaming services based on RTSP protocol

Pruebas de estrés para servicios de videostreaming basados en el protocolo RTSP

Gabriel Elias Chanchi Golondrino', Franco Arturo Urbano Ordonez?,
Wilmar Yesid Campo Muhoz®

Fecha de recepcion: 29 de septiembre de 2014

Fecha de aceptacion: 24 de agosto de 2015

Como citar: Chanchi Golondrino, G. E., Urbano Ordofiez, F. A., & Campos Mufoz, W. Y. (2015). Stress tests for
videostreaming services based on RTSP protocol. Revista Tecnura, 19(46), 27-36. doi:10.14483/udistrital.jour.

tecnura.2015.4.a02

Abstract

Video-streaming is a technology with major impli-
cations these days in such diverse contexts as edu-
cation, health and the business sector; all of this
regarding the ease it provides for remote access to
live or recorded media content, allowing communi-
cation regardless of geographic location. One stan-
dard protocol that enables implementation of this
technology is real time streaming protocol, or RTSP.
However, since most application servers and Inter-
net services are supported on HTTP requests, very
little research has been done on generating tools
for carrying out stress tests on streaming servers.
This paper presents a stress measuring tool called
Hermes, developed in Python, which allows calcu-
lation of response times for establishing RTSP con-
nections to streaming servers, as well as obtaining
RAM memory consumption and CPU usage rate
data from these servers. Hermes was deployed in
a video-streaming environment where stress testing
was carried out on the LIVE555 server, using calls in
the background to VLC and OpenRTSP open sour-
ce clients.

Keywords: Hermes, RTSP, stress test, video streaming.

Resumen

El videostreaming es una de las tecnologias que ac-
tualmente tiene repercusiones importantes en dife-
rentes contextos como la educacioén, la salud y el
sector empresarial; todo lo anterior gracias a las fa-
cilidades que esta brinda para el acceso a conteni-
dos multimedia de manera remota, ya sea en vivo o
en diferido, permitiendo la comunicacién indepen-
dientemente de la ubicacién geogréfica. Uno de los
protocolos estandar que permite la implementacion
de esta tecnologia es RTSP, sin embargo dado que
la mayoria de servidores de aplicaciones y servicios
en internet estan soportados en peticiones HTTP, es
poco el trabajo que se ha realizado en cuanto a la
generacion de herramientas, para realizar pruebas
de estrés sobre servidores de streaming. Este articulo
presenta una herramienta de medicion de estrés lla-
mada Hermes, desarrollada en el lenguaje Python,
la cual permite el calculo de los tiempos de respues-
ta en el establecimiento de conexiones RTSP a servi-
dores de streaming, asi como la obtencién de datos
de consumo de memoria RAM y porcentaje de uso
de CPU de estos servidores. Hermes fue desplegada
dentro de en un entorno de videostreaming, sobre el

Ingeniero En Electrénica y Telecomunicaciones, Magister en Ingenieria Telematica, Candidato a Doctor en Ingenieria Telemética. Docente
Institucién Universitaria Colegio Mayor del Cauca. Popayan, Colombia. Contacto: gchanchi@unimayor.edu.co
Ingeniero En electrénica y Telecomunicaciones, Magister en Ingenieria, Area Telematica. Docente de la Fundacién Universitaria de

Popayan. Popayan, Colombia. Contacto: frurbano5@gmail.com

Ingeniero en Electrénica y Telecomunicaciones, Magister en Ingenieria, Area Telematica, Doctor en Ingenieria Telematica. Docente de la
Universidad del Quindio. Armenia, Colombia. Contacto: wycampo@uniquindio.edu.co

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[27]

http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a02
mailto:gchanchi@unimayor.edu.co
mailto:frurbano5@gmail.com
mailto:wycampo@uniquindio.edu.co

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLoNDRINO, G. E., UrsaNnO OrDOREZ, F. A., & Campos Muroz, W. Y.

cual se realiz6 la evaluacién de estrés para el servi-
dor LIVE555, usando para ello invocaciones en se-
gundo plano a los clientes libres VLC y OpenRTSP.

Palabras clave: Hermes, pruebas de estrés, RTSP,
videostreaming.

INTRODUCTION

The technology of streaming involves sending vi-
deo or audio data requests to the server. In respon-
se, the server sends data flows, or streams. But it is
not necessary for the entire stream to arrive in or-
der to begin to view the images or hear sound on
the client side. Rather, the video can be viewed or
the audio listened to while the streams that form
the whole file requested continue to arrive. This
way of working on the net significantly improves
waiting times and also allows the handling of both
live and recorded media files (Biernacki, & Tuts-
chku, 2013).

The video streaming systems operate on the
client/server model, where the client requests data
from a server via a network, and the network res-
ponds to the request by delivering media content
to be interpreted by the client. The audio and vi-
deo are encoded in special formats that compress
the data to sizes that are easy to handle. The server
then delivers them via the network, the client in-
terprets them and deploys them for presentation to
the end user.

It should be emphasized that video streaming
technologies have advanced so dramatically that
currently the experience of the end-user on the
web, given a good bandwidth, is very close to that
of watching TV. Modern servers and media clients
can even work intelligently according to the band-
width constraints of the network to try to reduce
buffering times and interruptions. Full screen, high
quality video with hi-fi sound can therefore be en-
joyed on a computer connected to the Internet.

The benefits offered by streaming include com-
panies able to communicate more effectively with
their staff and clients, small businesses able to sell
more products by improving and enriching the
user experience, and thousands of people attentive

and listening to radio stations from anywhere in the
world. It also forms a major component of many
emerging video and music services, as well as be-
ing one of the most important tools in areas such as
distance learning, health, telemedicine, electronic
banking and network infrastructure.

On the technical side, a widely used protocol for
communication between client and streaming ser-
ver is Real Time Streaming Protocol, or RTSP. It was
developed by the Multiparty Multimedia Session
Control Working Group (MMUSIC WG) of the IETF
(Internet Engineering Task Force) and published as
RFC 2326 in 1998 (Liu, Du, Wang, YANG, & Wang,
2010) and RTSP version 2.0 is currently in develo-
pment, as a replacement for RTSP 1.0.

RTSP (Rao, Lanphier, Stiemerling, Schulzrinne,
& Westerlund, 2011) is a connectionless data flow
protocol in real time used to define how informa-
tion is sent between client and server, enabling the
delivery of previously stored or live media content
to be initiated and controlled. The protocol wor-
ks at application level and ensures that data deli-
very is carried out correctly. RTSP defines different
types of connection and sets of requirements in its
quest to get an uninterrupted shipment of efficient
data flow via IP networks. RTSP is independent
of transport protocol and may function either on
UDP or TCP. However, in most cases TCP is used
for control and UDP for data transmission with
RTP (Markovic, Acanski, Bako, & Mudri, 2014).
During a session, a client can open and close re-
liable transport connections to the server via RTSP
requests. Among the RTSP protocol properties are:

e Multi-server capacity: each flow of audiovisual
content belonging to the same presentation can
reside in different servers.

Similar to HTTP (hypertext transfer protocol):
when possible, RTSP reuses HTTP concepts.

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[28]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLonDRINO, G. E., UrBaNO ORrDOREZ, F. A., & CamPOs MuRoz, W. Y.

Extendable: new methods and parameters can
readily be added to RTSP.

Secure: RTSP uses the security mechanisms of
the network at the transport level.

In the world of Information and Communications
Technologies (ICTs) meanwhile, the field related to
software testing is very important for identifying
and removing possible defects from products. For
example, there are stress tests that allow testing of
the robustness and reliability of a tool, subjecting
it to extreme conditions in order to obtain data
about its operating limits. To test HTTP web ser-
vers, several tools exist that simulate simultaneous
and sequential HTTP requests, Apache Benchmark
(Olson, Christensen, Lee, & Yun, 2011) being one
of the most widely used options.

However, in the area of streaming based on the
RTSP protocol, very few studies have explicitly fo-
cused on stress test for streaming media servers,
taking account of the particular format of the video
streaming protocol with respect to the format of
the HTTP requests (Xue-sen, Jun, & Hong-sheng,
2009) (Lee, Min, & Kim, 2005). Also with the in-
crease in networks bandwidth, the performance of
streaming media server has become an important
factor restricting streaming media application (Yan,
Haocheng, & Jinyao, 2013) . This paper presents
Hermes, a testing tool developed for measuring
stress. The tool enables measurement of connec-
tion setup times obtained by submitting an RTSP
server to multiple simultaneous connections. It
was developed in Python programming language
and internally uses calls in the background to VLC
and OpenRTSP open source clients. Python is used
because of the ease with which it allows calls to
OS (operating system) commands (run in the bac-
kground of VLC and OpenRTSP) as well as for its
multi-threaded support characteristics and ability
to perform complex mathematical calculations.

In order to assess the operation of the Hermes
stress measuring tool, a set of open source tools and
technologies were prepared in a video streaming
environment allowing transmission and reception

of media content to different types of clients and
over a number of different OS, using RTSP proto-
col. In this way, the tool was used to simulate the
establishment of multiple simultaneous connec-
tions to the RTSP server of the streaming environ-
ment (LIVE555 server). The paper is organized as
follows: section 2 includes the methodology used
for the development of this work; section 3 pre-
sents concepts and technologies considered for the
development of the stress measurement tool; sec-
tion 4 describes each of the functional modules of
the stress measurement tool; section 5 shows the
test scenario in which stress tests with the propo-
sed tool were carried out; section 6 presents the re-
sults of test implementation, reflected in streaming
client connection establishment times and memory
tests from streaming server; and finally section 7
shows the conclusions drawn from this work, to-
gether with consequent future research intentions.

METHODOLOGY

In order to perform stress test for video streaming
services based on RTSP, we develop this work in
four phases, namely: analysis of technologies and
tools, configuration of the video streaming envi-
ronment, design and implementation of Hermes,
tests (see figure 1).

Configuration
of the
video streaming
environment

Analysis of
technologies and
tools

Design and
implementation
of Hermes

Figure 1. Phases of the methodology

Source: own elaboration.

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[29]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLoNDRINO, G. E., UrsaNnO OrDOREZ, F. A., & Campos Muroz, W. Y.

In the first phase, we select a set of open source
tools for video streaming transmission, taking into
account the processes of encoding, diffusion and
reception of multimedia content. In the second
phase, we configure an end to end video streaming
environment, considering the open source tools
selected in the first phase. In the third phase, we
develop a stress measurement tool called Hermes,
taking into account the characteristics of the RTSP
server configured in the second phase. It's impor-
tant to highlight that the second and third phases
are performed simultaneously, in order to allow
the iterative development of Hermes. Finally, in the
fourth phase we perform the connection establish-
ment times and memory consumption tests from
streaming server, using the stress measurement tool
developed in the third phase. This paper addressed
the phases of the methodology as follows: section
3 includes the phase of analysis of technologies
and tools, section 4 considers the phase of design
and implementation of Hermes, section 5 covers
the phase of configuration of the video streaming
environment, and section 6 describe the phase of
tests.

CONCEPTUAL FRAMEWORK

Streaming technology enables content playback
while downloading, rather than obliging the user
to wait for the entire video to download before
playing. These reproduction techniques, almost in
real time, fit perfectly with the needs of users who
have smart devices and access to all kinds of ne-
tworks. Stream transmission can be point-to-point
(Unicast) or multiple (Multicast). In addition, the
material may be pre-encoded, live or real-time co-
ded video. Communication channels may be static
or dynamic, packet-switched or circuit-switched.
They can support variable bitrate and some form of
quality of service QoS or simply work in best effort
mode (Barbero, & Gallardo, 2013).The specific
properties of the video application are strongly de-
termined by the codecs and the container format.

A codec is a compression and encoding algori-
thm used to reduce stream size. Video compression
is achieved by exploiting the similarities or redun-
dancies existing in a typical video signal. Examples
of these are MPEG-1, MPEG-2, MPEG-4, Vorbis,
and DivX. A container format meanwhile con-
tains one or several already-encoded streams. AV,
MOV, ASF are container formats (Doumanoglou,
Alexiadis, Zarpalas & Daras, 2014). In order to
shape the videostreaming environment in which
the Hermes tool operates, VLC and OpenRTSP
were selected as clients and LIVE555 as server, ta-
king into account that these tools have a degree
of maturity and development in work with media
content, specifically in regard to encoding, trans-
mission and reception on multiple platforms, in
addition to the features described below:

e VLC: an open source, cross-platform, multime-
dia player (Linux, Windows, Mac OS X, BeOS,
Solaris, etc). It can read MPEG-1, MPEG-2 and
MPEG-4/DivX files from a hard drive, CD-ROM,
DVD, VCD and from a satellite receiver card
(DVB-S). It supports unicast or multicast trans-
mission and functions under IPV4 or IPV6 (Vun
& Ansary, 2010) . VLC allows the reproduction
and distribution of content on demand using the
RTP/RTCP, RTSP protocols and 3GP files. To do
this, an archive to be used as reference in the
implementation of the program is defined. If the
client makes a rtsp://ip:port/resource request, it
will access the specified file. Although VLC is a
great tool for transcoding or multicast transmis-
sion it has proved neither robust nor comfortable
for streaming video on demand. Despite not be-
ing a greatly useful option as the main server, it
can be used as a transcoder or even as an alter-
nate server (Delgado, Quintana, Rufo, Rabadan,
Quintana, & Perez-Jimenez, 2010). In the present
work it is employed as a client.

To decode a stream, VLC first unpacks it. This
means that it reads the container format and se-
parates audio, video, and subtitles. Then, each of
these streams is sent to its decoder, which carries

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[30]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLonDRINO, G. E., UrBaNO ORrDOREZ, F. A., & CamPOs MuRoz, W. Y.

out a mathematical processing to decompress
the stream. VLC also has the ability to work in
silent mode, i.e. it can be run from command
line from any of the supported operating systems
and can receive the streaming without displaying
the graphical user interface (GUI), simultaneous-
ly managing to filter both audio and video if so
desired.

* OpenRTSP: a command line program that can

be used to open, transmit, receive and record
streaming specified by a RTSP URL (rtsp://). Op-
enRTSP retrieves the session description (SDP),
which allows control over the audio or video ses-
sions of media content. The data received from
these sessions are written in different output files
extracted from the payload of the RTP protocol
(Vun & Ansary, 2010) (Chu, Jiang, Hao & Wei-
Jiang, 2013).
Both VLC in its silent mode and OpenRTSP were
used as videostreaming service clients. So that
they can be launched, these tools are called in
the background from the Python application pro-
posed in this paper (Hermes).

e LIVE555: an open source RTSP server using RTSP,
RTP and SDP protocols for media streaming. It is
compatible with media players such as VLC and

Threading Library

Tkinter Library

Thread Launcher

Graphic User
Interface

Figure 2. Hermes stress measurement tool modular diagram

Source: own elaboration.

QuickTime. LIVE555 is an open source applica-
tion. Its source code is available and it can be
modified to meet specific requirements. LIVE555
can generate various types of media file strea-
ming such as: TransportStream in MPEG (.ts),
WebM or Matroska (.webm or .mkv), MPEG-1,
MPEG-2 (.mpeg), MPEG-4 (.m4e), H.264 (.264),
DV (.dv), MP3 (.mp3), WAV (.wav), AMR (.amr),
and AAC (.aac). These streams can be received
and/or reproduced by any RTSP/RTP media client
that conforms to the standards, among these be-
ing: VLC Media Player, QuickTime Player, Ami-
no Set-Top Boxes, and OpenRTSP (Vun & Ansary,
2010).

HERMES STRESS MEASURING TOOL

In this section the modular diagram of the Python
application, Hermes is presented. It was developed
to measure stress in establishing connection to the
LIVE555 streaming server from the streaming en-
vironment (figure 2). In the diagram, the following
main functional blocks can be seen: GUI Thread
Launcher, Command Executor and Timer.

The Craphic user interface module uses Tkinter
graphics library, in which a set of GUI components

OS5 Library

A

VLC Command

- 7
Command
Executor

OpenRTSF
Command
(S
Time
Library

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLoNDRINO, G. E., UrsaNnO OrDOREZ, F. A., & Campos Muroz, W. Y.

(buttons and text fields) are created. These are used
to request the RTSP streaming server address to be
evaluated and the number of simultaneous con-
nections to be established. This interface also has
a pair of text fields in which the total time to esta-
blish the RTSP-type simultaneous connection with
the streaming server and the average time of each
connection are presented.

The Thread launcher module meanwhile is res-
ponsible for creating an instance of a thread for
every simultaneous connection requested from
the graphic interface and makes use of the Python
Threading Library. Each thread launched is de-
signed to establish an RTSP connection with the
LIVE555 streaming server, so that for n threads
launched, n parallel connections to the server are
generated.

The Command Executer module is called whe-
never a thread is launched. Its function is to execu-
te a command from the OS (Linux or Windows), to
establish the RTSP connection with the streaming
server. The command executed may be either of
two types: VLC command or OpenRTSP command.
VLC command launches a VLC client on the ope-
rating system console in silent mode (without ope-
ning the GUI) to establish a RTSP connection to
the streaming server, while OpenRTSP command
launches a OpenRTSP client on the operating sys-
tem console, to establish the RTSP connection to
the streaming server. For this module to execute
OS commands, the OS library in Python is used,
which allows direct interaction with the system
console from the programming language.

A time count is launched simultaneously at the
moment the threads are launched and counts in
milliseconds until connection to the streaming ser-
ver is established. This is performed by the Timer
module with the help of the Python Time Library.
When the connection establishment time for n si-
multaneous clients has been obtained in GUI, the
connection processes can be stopped by calling,
with the help of the OS library, the OS “killall”
command.

TOOL USE ENVIRONMENT

This section presents a diagram showing the diffe-
rent components of the streaming environment in
which Hermes was used for measuring stress (see
figure 3a and figure 3b). The diagram highlights
two important modules—the RTSP streaming ser-
ver and the clients in which the Python tool is run.
Communication between client modules and ser-
ver is done through a wireless network, with the
purpose of controlling the client access to strea-
ming server through an independent network.

Server module

This module comprises the LIVE555 streaming
server and media content packaged in the MPG
container. The streaming server listens for RTSP re-
quests through the 8554 port and supports the fo-
[lowing media containers: .264, .aac, .ac3, .amr,
.dv, .m4e, .mkv, .mp3, .mpg, .ts, vob, .wav, and
.webm. The media content used was coded in
standard definition (SD) using the MPEG-1 codec
(mpga for audio and mpgv for video) using the
ffmpeg open source encoding tool. This module
was implemented on an AMD Quad Core compu-
ter with 4GB RAM, CPU clocked at 2.1 Ghz and
Ubuntu 11.10 Linux OS.

Client module

The client module consists of two streaming clients
deployed on two laptops with Ubuntu Linux 11.10
operating system. Each computer runs the Python
application, Hermes, in establishing the connec-
tion, with the difference that in each case the Python
application uses a different tool (VLC and Open-
RTSP) in the background to connect to the LIVE555
server. For measurement purposes, the streaming
clients are executed independently, i.e. measure-
ments as a first step were taken with the VLC tool
running in the background and then with the Open-
RTSP tool running in the background (see figure 4).

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[32]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLonDRINO, G. E., UrBaNO ORrDOREZ, F. A., & CamPOs MuRoz, W. Y.

X Ubuntu Linux 11.10 05
Client

Ubuntu Linux 11.10 OS Python + VLC
Client

MPG Files i W a @]

S]

Live555 Streaming Server

Wireless Router Python + OpenRTSP
Client
N
Ubuntu Linux 11.10 0§ @) L
Client & A Y

Figure 3a. Environment in which Hermes was used — detailed view

Source: own elaboration.

Figure 3b. Environment in which Hermes was used — view of actual scenario

Source: own elaboration.

Dispositivos P Carpetapersonal (M Escritorio medidores MEDIDORES -
— Disco local

_sistemadea...

: openRTSP (LIVESSS Streaming Media v2011.07.21)

9:8554/boltl.mpg RTSP/1.8
Direccion

rtsp:/192.168.1.100:8554/bolt1.mpg a v2011.67.21)
Conaxiones

Tiempo Total
148.267089844 ms
Tiempo Unitario
3.70667724609 ms

Adptar
Parar | 0:8554/bolt1l.mpg RTSP/1.6
Cerrar

9:8554/boltl.mpg RTSP/1.6

a2 v2011.07.21)

a v2011.67.21)

Figure 4. Client module

Source: own elaboration.

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36
[33]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLoNDRINO, G. E., UrBaANO ORrRDOREZ, F. A., & CamPOs MuNoz, W. Y.

TESTS AND RESULTS

Figure 5 shows the results of testing for connec-
tion establishment time performed on the LIVE555
server and obtained by applying a number of con-
current connections using the Python stress mea-
suring tool, Hermes. As mentioned in the previous
section, this tool can establish two types of RTSP
connections via the VLC or the OpenRTSP tool, in
both cases running in silent mode.

Connection time Vs Number of clients
3500
3000 7
/
& 2500 7 L
= 4
£ 2000 #
s /’
g s
5 1500 - = VIC
E 7’
S 1000 = 4 e 0 penRTSP
s
rd
500 >
"4 ___.—--"_'—__-
N s _._-—-——'_——_-
0
0 20 40 20 100 120
Number of clients

Figure 5. Connection time vs number of clients

Source: own elaboration.

RAM consumption vs Number of clients

2,5

E‘- , r/

51,5 /

L]

e
0,5 e —RAM

consumption

0

20 40 60 80 100

Number of clients

120

a. RAM memory consumption (MB)
Figure 6. Memory usage tests

Source: own elaboration.

b

Meanwhile, in figure 6, the results of the RAM
consumption testing and CPU usage rate, perfor-
med on the LIVE555 server, are shown. These tests
were made by submitting the streaming server to
multiple simultaneous connections using the Her-
mes tool that allows different number of instances
of the OpenRTSP and VLC open source clients to
run in the background. The memory consumption
and CPU usage rate data were obtained using Linux
“ps aux”, which provides a report on the amount
of RAM and CPU used by each of the OS active
processes. This information was filtered by the awk
programming language (included in the Linux OS),
giving specific usage data for the LIVE555 process.

According to figure 5, when RTSP connections
are established using Hermes with VLC running
internally in the background, the relationship be-
tween the number of clients and the connection es-
tablishment time is directly proportional, reaching
a value of 1,500 milliseconds from 0 to 60 clients,
and doubling this time (3,000 milliseconds) from
60 to 100 clients.

When RTSP connections are established using
Hermes with OpenRTSP running internally in the
background, the relationship between the number
of clients and the connection establishment time

CPU usage rate Vs Number of clients

90
80

- ,_‘_—J‘—'

60

50

30

CPU usagerate (%)

20

10

= (PU usage rate

40 60 80 100
Number of clients

20 120

. CPU usage rate

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[34]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLonDRINO, G. E., UrBaNO ORrDOREZ, F. A., & CamPOs MuRoz, W. Y.

grows more slowly than it does with VLC, reaching
a value of 250 milliseconds between 0 and 60
clients, and a value of 500 milliseconds between
60 and 100 clients.

Turning to figure 6.a, the relation between the
number of simultaneous clients and the memory
consumption is directly proportional, changing
by approximately 0.5% each time the number of
clients connected to the streaming server increases
by 20. Figure 6.b indicates the relation between
the number of simultaneous clients and percent
CPU usage. This, as before, is directly proportio-
nal with greater variation in growth to 40 clients
(a 60% increase) and a more stable variation (20%
increase) between 40 and 100 clients.

CONCLUSIONS AND FUTURE WORK

From the tests on establishing connections it can
be concluded that the times obtained for simulta-
neous requests below 100 clients are manageable
and allow content to be received more than ade-
quately. The difference in behavior between VLC
and OpenRTSP lies in the fact that the latter is a
tool run only from the console (silent mode wi-
thout media playback) and as such responds much
better to RTSP connections.

According to the tests of RAM memory con-
sumption and CPU usage rate and according to the
trend marked out by figures 5a and 5b, the CPU
usage rate caused by requests containing over 100
clients on the LIVE555 server may lead to proces-
sing problems in broadcasting content, while cau-
sing difficulties in obtaining suitable reception of
such by the clients.

The Hermes stress measuring tool facilitates ob-
taining connection establishment times for mul-
tiple simultaneous RTSP clients on a streaming
server with support for this protocol. This tool as
such allows secondary measurements of memory
consumption to be made on the streaming ser-
ver side, facilitating evaluation of the performan-
ce of the server given multiple simultaneous RTSP
connections.

The use of Python language in constructing
Hermes facilitates the calling (via OS commands)
to RTSP clients such as VLC and OpenRTSP, throu-
gh which it is possible to connect to the streaming
server. Similarly the support of multi-thread featu-
res by the language allows the launching of multi-
ple RTSP requests to evaluate the performance of
the server.

The environment in which Hermes is used co-
llects and integrates the most useful tools from the
world of open source software, to implement ser-
vices based on video streaming using the RTSP
protocol.

In future work, it is the intention to extend the
operation of Hermes so that graphics can be gene-
rated in real-time, with response times provided by
the server.

ACKNOWLEDGEMENTS

This work has been carried out in the framework
of the project “Testbed for support of the service
of video streaming of educational material in the
FUP” conducted in the Fundacién Universitaria de
Popayan (FUP). The work has benefited from the
support of the Colciencias National Doctorate Pro-
gram, Act no. 528 of 2011. We are especially gra-
teful to Colin McLachlan for suggestions relating to
the English text.

REFERENCES

Barbero, J.M., Gallardo, C. QoS for JPEG2000 Storage
System: Based on Data Structure. Advanced Infor-
mation Networking and Applications (AINA), 2013
IEEE 27th International Conference on , vol., no.,
pp. 954 — 959, 25-28 March 2013.

Biernacki, A., Tutschku, K. (2013). Performance of HTTP
video streaming under different network condi-
tions. Multimedia Tools and Applications, V 72,
N2, Springer US, pp. 1143 — 1166, 2013.

Chu, D., Jiang C., Hao, Z., Jiang, W. (2013) The De-
sign and Implementation of Video Surveillance
System Based on H.264, SIP, RTP/RTCP and RTSP.

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[35]

Stress tests for videostreaming services based on RTSP protocol

CHANCHI GoLoNDRINO, G. E., UrsaNnO OrDOREZ, F. A., & Campos Muroz, W. Y.

Computational Intelligence and Design (ISCID),
2013 Sixth International Symposium on , vol.2, no.,
pp. 39 — 43, 28-29 Oct. 2013.

Delgado, F., Quintana, 1., Rufo, J., Rabadan, J. A,
Quintana, C., & Perez-Jimenez, R. Design and
Implementation of an Ethernet-VLC Interface for
Broadcast Transmissions. [EEE Communications Let-
ters, XIV(12), pp. 1089 -1091, Dec 2010.

Begic, Z., Bajric, H., & Kos, M. (2010). Rapid synchro-
nization of RTP multicast sessions using the retrans-
mission server. 2010 International Conference on
Software, Telecommunications and Computer Ne-
tworks (Soft COM), (pp. 326-330).

Cherepanova, A., & Mukhina, 1. (2010). Methods for
quality estimation of video codecs and effective
application of them in videoconferencing on out-
sourcing basis. 2070 International Conference and
Seminar on Micro/Nanotechnologies and Electron
Devices (EDM), (pp. 265-269).

Delgado, F., Quintana, I., Rufo, J., Rabadan, J. A., Quin-
tana, C., & Perez-Jimenez, R. (2010, Diciembre).
Design and Implementation of an Ethernet-VLC In-
terface for Broadcast Transmissions. [EEE Communi-
cations Letters, XIV(12), 1089-1091.

Lee, Y.-J., Min, O.-G., & Kim, H.-Y. (2005). Performan-
ce evaluation technique of the RTSP based strea-
ming server. Computer and Information Science,
(pp- 414-417).

Liu, Y., Du, B., Wang, S., YANG, H., & Wang, X. (2010).
Design and Implementation of Performance Testing
Utility for RTSP Streaming Media Server. 2070 First
International Conference on Pervasive Computing
Signal Processing and Applications (PCSPA), (pp.
193-196).

Olson, M., Christensen, K., Lee, S., & Yun, J. (2011).
Hybrid web server: Traffic analysis and prototype.

2011 IEEE 36th Conference on Local Computer Ne-
tworks (LCN), (pp. 131-134).

Rao, A., Lanphier, R., Stiemerling, M., Schulzrinne, H.,
& Westerlund, M. (2011, Septiembre 10). Real Time
Streaming Protocol 2.0 (RTSP). Retrieved from http://
tools.ietf.org/html/draft-ietf-mmusic-rfc2326bis-27

Vun, N., & Ansary, M. (2010). Implementation of an
embedded H.264 live video streaming system.
2010 IEEE 14th International Symposium on Con-
sumer Electronics (ISCE), (pp. 1-4).

Wu, D., Hou, Y., Zhu, W., Zhang, Y.-Q., & Peha, J. (2001,
Marzo). Streaming video over the Internet: approa-
ches and directions. IEEE Transactions on Circuits
and Systems for Video Technology, XI(3), 282-300.

Xue-sen, L., Jun, L., & Hong-sheng, X. (2009). Perfor-
mance Evaluation Model of Streaming Media Ser-
ver. Computer Engineering, 270-272.

Yan, H., Haocheng, H., & Jinyao, Y. (2013). Perfor-
mance Measurement and Bottleneck Analysis for
Streaming Media Servers . 3rd International Confe-
rence on Multimedia Technology (ICMT 2013), (pp.
1211-1219).

Yu, H., Chang, E.-C., Tang Ooi, W., Chan, M.-C., &
Cheng, W. (2009). Integrated Optimization of Vi-
deo Server Resource and Streaming Quality Over
Best-Effort Network. IEEE Transactions on Circuits
and Systems for Video Technology. March 2009,
XIX(3), 374-385.

Zhang, H., Jiang, G., Yoshigira, K., Chen, H., & Saxe-
na, A. (2009). Resilient Workload Manager: Taming
Bursty Workload of Scaling Internet Applications.
Proceedings of the 6th International Conference In-
dustry Session on Autonomic Computing and Com-
munications Industry Session, (pp. 19-28). New
York.

Tecnura e p-ISSN: 0123-921X ® e-ISSN: 2248-7638 ¢ Vol. 19 No. 46 ® Octubre - Diciembre 2015 pp. 27-36

[36]

