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ABSTRACT

Context: Nowadays, the images of the Earth surface and the algorithms
for their classification are widely available. In particular, the algorithms
are promising in the differentiating of cotton crops stages, but it is
necessary to establish the capabilities of the different algorithms in order

to identify their advantages, and disadvantages.

Method: This paper describes the assessment process in which the
Support Vector Machines (SVM) and random-forest technique (decision
trees) are compared with the maximum likelihood estimation when
differentiating the stages of cotton crops. A RapidEye satellite image of a

geographic area in the municipality of San Pelayo, Cordoba (Colombia),


https://doi.org/10.1016/j.egypro.2016.11.077

is used for the study. Using a set of sampling polygons, a random sample
of 6000 pixels was taken (2000 training and 4000 for validating the
classifications.) Confusion matrices, and R (data processing and analysis

software) were used during the validation process

Results: The maximun likelihood estimation presented a correct
classification percentage of 68.95%. SVM correctly classified 81.325% of
the cases and the decision trees correctly classified 78.925%. The
confidence test for the classifications showed non-overlapping intervals,

and SVM obtained the highest values.

Conclusions: It was possible to confirm the superiority of the technique
based on support vector machines for the proposed verification zones.
However, this technique requires a number of classes that
comprehensively represent the variations of the image (in order to
guarantee a minimum number of support vectors) to avoid confusion in
the classification of hon-sampled areas. This was less evident in the other

two classification techniques analysed.

Keywords: confidence test, confusion matrix, decision tree, random

forest, software R, support vector machine.



RESUMEN

Contexto: Hoy en dia las imagenes de la superficie de la Tierra estan
ampliamente disponibles, asi como la evolucion de los algoritmos para su
clasificacion. Estos son prometedores para la diferenciacion de los
diversos estadios del cultivo de algoddn. Por esta razon es necesario

establecer sus capacidades, ventajas y desventajas.

Métodos: En este articulo se describe el proceso de valoracion de las
bondades de la clasificacién basada en las técnicas de maquinas de
soporte vectorial (SVM, por su sigla en inglés) y bosques aleatorios
(arboles de decisién) en comparaciéon con la técnica de maxima
verosimilitud, empleando una imagen del satélite RapidEye, de un area
geografica ubicada en el municipio de San Pelayo, en el departamento de
Cordoba (Colombia), con el proposito de diferenciar varios estadios de
cultivos de algoddén. A partir de un conjunto de poligonos de muestreo, se
tomo6 de manera aleatoria un total de 6000 pixeles, 2000 de ellos para
entrenamiento y 4000 para realizar la validacidn de las clasificaciones. La
comparacién de los resultados obtenidos de cada técnica fue realizada a
partir de las matrices de confusidn del proceso de validacién, mediante el

software de procesamiento y analisis de datos R.



Resultados: El porcentaje de clasificacion correcta (PCC) para la
clasificaciéon de maxima probabilidad correspondié a 68,95 %, para la
clasificacion SVM fue 81,325 %, y para bosques aleatorios fue 78,925 %.
La prueba de confianza para las clasificaciones demostré intervalos no

solapados, obteniendo los valores mas altos para SVM.

Conclusiones: Para las zonas de verificaciéon planteadas, se pudo
constatar la superioridad de la técnica basada en maquinas de soporte
vectorial; sin embargo, se concluyd que para esta técnica se requiere un
numero de clases que representen de forma exhaustiva las variaciones
de la imagen, garantizando asi un minimo de vectores de soporte, para
evitar en la clasificacidn resultante las confusiones en las areas restantes
no muestreadas, lo cual fue menos evidente en las otras dos técnicas de

clasificacion analizadas.

Palabras clave: arboles de decisidon, bosques aleatorios, maquinas de

soporte vectorial, matriz de confusidn, pruebas de confianza, software R.

INTRODUCTION

Currently there is no doubt there is a large amount of images available of

the Earth surface; and digital image processing techniques and the



algorithms to carry out pixel classification have also become accessible
(Camacho Velasco, Vargas Garcia, & Arguello Fuentes, 2016; Neira &
Rocha, 2013). Efforts have been made around the supervised and
unsupervised approaches based on support vector machines (SVM)
(Lizarazo, 2008) and random forests (Tso & Mather, 2009) and have

concluded that these two are the most promising techniques.

In particular, the availability of these multispectral images and recent
classification algorithms turn out very promising in differentiating stages
of cotton crops. However, it is necessary to establish the capabilities of

these algorithms (their advantages and disadvantages.)

The company Germany Blackbridge (Blackbridge Group, 2014) owns and
operates a commercial system of Earth observation, which consists of a
constellation of RapidEye satellites with characteristics called 5 -5 -5 -
5: 5 satellites, 5 spectral bands, 5 m spatial resolution and 5 million Km?
of daily collection capacity. Additionally, it has a radiometric
discrimination capacity of 4096 levels (12-bit) that represents an

attractive feature for achieving required discrimination.

A RapidEye image window with five electromagnetic spectrum bands was
used for this study: blue (440-510nm), green (520-590nm), red (630-

690nm), Red- Edge (690-730nm) and near infrared (760-880nm). The



RapidEye images include the Red-Edge band, which is particularly
sensitive to changes in chlorophyll content, hence the importance of its

use in this research.

The purpose of this study was to demonstrate empirically the benefits of
random forest and SVM classification techniques, using the facilities
provided by the software R for data analysis and processing (Quinlan,
1993), and to compare them with the maximum likelihood estimation,
which is the conventional classification technique for discriminating

cotton’s crops stages.

Data and methods

This section describes the data and methods used to carry out the study.
A differentiation of types of cotton crops in the selected geographical area
was performed in a previous study and used in this one (Alzate, 2012).
Processing methods were implemented using the facilities of the software
R such as dismo, e1071, MASS, mda, raster, rgdal, sp, vcd, rpart and

randomForest libraries.

Study area

In the Colombian Caribbean, cotton is one of the most traditional crops

with better performance and greater capacity to generate employment.



Despite facing an international market that is highly variable, cotton crops
in Colombia have a significant level of competitiveness (Negrete,

Moreales, & Martinez, 2009).

However, Cdérdoba has suffered several problems regarding cotton
production (Coronado, 2009). For this reason, the Colombian
Confederation of cotton—Conalgodon and the Department of Agriculture
proposed a census of producers in the country during 2011 in order to
provide subsidies that allow production to stay afloat. International
Colombia corporation (CCI in Spanish) was hired to carry out a pilot study
in the area of Cérdoba with RapidEye multispectral imagery that allowed
the company to an overview of the cultivated areas of cotton through
supervised classification of maximum likelihood, using samples of cotton

raised in the field.

For the current study of comparing different techniques of supervised
classification, a smaller area was selected within the existing pilot area in
the municipality of San Pelayo in Cdérdoba (8.9594° N, 75.8369° W).

Figure 1 shows the location of the area.

Source: own work



ow 76°5'0"W 76°0°0"W 75°55'0"W 75°50'0"W

SAN ANTERC SAR-ENT
PURISIMA|
San Bernardo del iento
9°15'0"N~ =9°15'0"N

— ,JN
W E
MONITOS qy_ Study area
* Deparment .|

9100"N /Lﬁ 1 o I
Municipality [ ]

LORICA

9°5°0"N S

CORDOBA 50N
W 7 COTORRA
9°0'0"N

. j;qc‘c—-g”O'U"N
SAN PELAYO
s ,/‘ 7/

8°55'0"N+ MONEER H&‘

BASL i .
0w 76°5'0"W 76°00"W 75°55'0"W 75°500"W 75°45'0"W

8°55'0"N

CERETE

Figure 1. Location of area of study

Data

The RapidEye 2012 image window used in this work was provided for CCI
and already has geometric, radiometric, and sensor corrections. It is a
12-bit radiometric level (16-bit store) and its positional accuracy
corresponds with the standard 1: 25,000 United States National Map

Accuracy Standards (NMAS).



The process was performed on software Revolution R Enterprise 7.0 (64-
bit) using a laptop Acer ASPAIR ONE quad core with 2 GB of RAM. The
main statistical parameters by bands for the selected window are
presented in Table 1. Figure 2 shows the histogram obtained by the
function pairs in R software with relationships between bands. The
samples for the classification covered a 10,11% of the total image

window.

Table 1. Radiometric statistics for the image window used

Band Band Band Band Band

1 2 3 4 5

Min. 5531 3703 2006 2089 2902

1st Qu. 6442 5467 3838 4676 7332

Median 6784 5643 4393 4899 7754

3rd Qu. 6898 6055 4948 5300 8334

Max. 18738 17400 14992 12526 14399

NA's 6241 6241 6241 6241 6241

Source: own work.

Source: own work.
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Figure 2. Histograms and relationships between bands

For the multispectral image, the matrices of covariance and correlation
were calculated using cov and cor R functions, and the auxiliary function
na.omit to ignore unknown values in the image. This allowed analysing

redundant information in the set of bands.

The delimitation of sampling areas was carried out for the image window
during ten stages of cotton growth and three kinds of differentiated
features: River, urban area (infrastructure), and dry soil. On-screen
digitalization was performed using the software ArcGIS (ArcMap module)
based on a color composition 4, 2, 1 that yielded greater discrimination

coverages.



It was possible to define a considerable number of classes given the high
radiometric and spectral resolution of the image; however, they were
limited to 13 during this study. The infrastructure class was added from
the beginning in order to assess the quality each technique has to
differentiate "infrastructure" from "bare soil" and "soil with few
vegetation" in presence of the usual confusion between them; but it could
have been ignored during the first stages and added in the final step of

classification.

METHODS

A supervised technique that used previous knowledge already acquired
on the study area was used to classify the image (Alzate, 2012). Based
on this, the most representative sampling areas considered were created
first. Then, the classification algorithms were trained using a subset of
those sampling areas to obtain a model to be applied. Afterwards, the
recognition of different categories was carried out by applying each model
to the whole image window. Finally, the validation phase of the obtained

results was performed.

The classification process was developed using the maximum likelihood
estimation, random forests, and the SVM supervised classification, which

are described below.



Maximum likelihood classifier

The Maximum likelihood classifier considers that the radiometric values in
each class fit a normal distribution. This allows each class to be described
by a probability function from its mean vector and variance/covariance
matrix. This function is similar to the distribution of the radiometric values
of each category; hence, the probability that a radiometric value is a
member of a given class can be calculated (Figure 3). The calculation was
performed for each involved class, assigning the pixel to that which

maximizes the probability function (Alzate, 2011).

Source: Alzate (2011).
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Support vector machines (SVM)

According with Tso & Mather (2009), structural risk minimization adopted
by the SVM method consists of minimizing the probability of
misclassification of a randomly extracted data set from a fixed but
unknown probability distribution (Vapnik, 1995, 1998). The SVM training
phase always finds a global minimum. The basic operation of SVM involves
building a separation hyperplane (i.e. a limit of decision) based on the
training sample distribution in feature spaces, looking for the margin of
separation between pairs of classes maximized (Vapnik, 1979). Not all
samples of training contribute to the construction of the hyperplane, so

normally only a subset is chosen as support vector.

As shown in Figure 4, only the darkest samples have enough support
vectors to define the separation hyperplane of the two classes with
maximum distance. Information Classes are derived from remote sensing
data so do not always present the linear separation showed in the Figure
4 (a). Therefore, it is necessary to make the criterion of complete
separation between classes more flexible, allowing their overlap by
introducing a measure of overlapping cost. This should be minimized by

supervising it as shown in the Figure 4 (b).

In the case of non-linear decision surfaces, it is proposed that a vector of



attributes be transformed to a Euclidean space with a higher dimension
than the original Euclidean space [i.e. a generalization of Euclidean space
called Hilbert space (Halmos, 1967; Kolmogorov & Fomin, 1970)].
Thereby, the distribution of training samples is separated making it
possible to define a linear separation hyperplane (Boser, Guyon, & Vapnik,

1992) as is shown in Figure 4 (c).

Sources: (a) y (b) Tso & Mather (2009); (c) Statnikov et al. (2009)
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Figure 4. Maximum separation of classes by hyperplanes. (a) Separable



samples without overlap. (b) Separable samples with measure of the

overlay cost. (c) Samples separation in a space of higher dimension.

Random forest

The Random forest approach for classification builds decision trees and
then it randomly combines them (Castro, Garcia, & Jiménez, 2017). The
hierarchical approach of random forest classifier is a technique that uses
a sequence of decision criteria on an unknown pattern for labelling it (Tso
& Mather, 2009). A root node, a set of internal nodes, and leaf nodes (end
nodes) make up the decision tree. The root and middle nodes represent
decision stages, while end nodes represent the final classification. To
implement the classification process, a set of rules establish the path that
needs to be followed. It starts at the root node and ends when the item
to be classified reach the leaf node. This last node assigns the

corresponding label to the classified object.

The way in which it goes to the next node is decided in each intermediate
node. Figure 5 displays the use of the reflectance values as an input to
find its respective hypothetical class (i.e. between “1” and “7”) in order
to produce a hierarchical decision tree. For the example, the decisions’
nature taken as a base and the sequence in which the spectral bands are

chosen will affect the results of the classification. Therefore, finding the



optimum configuration of the tree to be used for the classification is highly

necessary.

Source: own work.

Band 1 <6698
T

Band 5 <7358 Band 4 <4140

Band 2 >=6320
1

Band 5 <6726  Band 2 <5379

—
3 6
Band 2 <5967
[ = |
2 5 7

Band 5>=68
4
4 6

Figure 5. Example of a decision tree

The indexes most used in decision trees induction are the information gain
index (Quinlan, 1979, 1993) and the impurity Gini index (Breiman et al.,

1984). The R software functions uses both.

The gain index is based on the measurement of entropy used in
information theory. A set of training data has a probability of being part
of a given class, which corresponds to the relative frequency of the
observed pixels (for example, if the total size of the training sample is 20

and that of class i contains 6 pixels, the probability of class i is 0.3). The



test that produces the greatest information gain is selected. In order to
calculate the information gain, there must first obtain the respective

entropy in the given node as shown in equation (1).

I(6) = = ) f(t.1) log, £(8,)) (1)
j=1
Where f(t,j) is the proportion of training samples belonging to j class, j €
{1,2,...,m}, in the node t, and m is the number of classes. If the node t

contains N, samples, then f(t,j) is calculated by equation (2).

f{t; _,I'] = wirzh:r:[ l_'l:}'[,f:l r F(_}Fl-,j] = {ﬂ, ;{;]J;itwrﬂje {2]

Finally, for a partition on the attribute X, the respective information gain

is calculated according to the equation (3).
Gain(t, X) = Ig(t) — (;_lt) Ie () — (:Ti) lg (tcep ) - = (:_I) I (txcx) (3)

The Gini impurity index measures an input function impurity with respect
to the classes reaching its minimum (zero) when all the attributes in the
node fall into a single class of information. The Ig(txy,)) Gini index
associated with the X € {x,,x,,...,x.}) attribute for the node t is expressed

in the equation (4).



Ig [Tx(x._:} =1 _Z f(tx(x-l:-j)j (4)

As mentioned, the classification approach based on random forest
combines classifier trees generated using a random training sample
dataset for either one. Each tree provides a vote to the class in which
should be located an input vector (Breiman, 2001). The approach to
produce a random forest combines bagging methods and random
subspaces. The Bagging Technique (Breiman, 1996), consist in generate
randomly training subsets of n size from a training size N (n<N) set, if M
spectral bands are available, m (m < M) subsets are chosen randomly to

calculate the best partition on each node (using GINI).

Classification procedure and comparative assessment of

classifications

Figure 6 shows an overview of the general steps of image classifications

and their comparative assessment, which are described next.

Source: own work.
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techniques

1. Training spots definition: sample polygons were drawn for each type
of coverage to be discriminated. A set of points was extracted from
these sample areas based on a random process by using R software
randomPoints function. A set of 6000 points were extracted, 2000 of
them were used for the training step, and the other as a set of
checkpoints for the validation stage (see Figure 7).

2. Extracting spectral signatures: the next step computed statistics from
radiometric values for each class based on training sample
multispectral pixels (5 bands). Then, the model with the characteristic
patterns of each class was created for the three considered
classification algorithms.

3. The function /da of the software R was used to generate the maximum



likelihood model; the svm function was used for the SVM model, but
in this case the parameters cost, gamma, epsilon and
NumberOfSupportVectors were previously tuned running the tune.svm
function (using 16, 1, 0.1, and 365 respectively). The function rpart in
the software R was used for modeling the decision tree.

4. Image classification: the image classification was carried out by all the
techniques using the function predict of the software R. In each case,
each model generated in the previous step was used.

5. Thematic accuracy evaluation: this step used 4000 validation pixels
that were extracted from sampling polygons and their corresponding
classified pixels obtained through the classification process in the
previous step. These data were used as input to run the confusion
function for each of the classification techniques in order to generate
the corresponding confusion matrixes. From the confusion matrix the
percentage of correct classification (PCC) and the Kappa index (Tso &
Mather, 2009) were calculated. The PCC is the percentage of pixels in
the image correctly classified. The global Kappa index measures the
agreement between pixels classified and class sample pixels for all the
covered categories. In weighted kappa, weights were assigned to
quantify the relative importance among the disagreements.

6. Comparative assessment: Using the results of the thematic accuracy



evaluation, a comparative assessment was performed based on the
number of pixels correctly classified and the confidence intervals

associated with the classifications.

Source: own work.

76°520'W 0" " 75°490'W

75°520"W 75°510"W 75°50'0"W 75°49'0'W

Figure 7. Definition of training sites for discriminated coverages

RESULTS

The obtained classification images are shown in Figure 8, and the

results are described in the following sections.



Source: own work.

Figure 8. Resulting images from each technique used. (a) Maximum
likelihood classification, (b) SVM classification (¢) Random forest

classification.

Maximum likelihood classification
The confusion matrix for the maximum likelihood classification can be

seen in Table 2. The labels between 1 and 13 correspond to the order of



named classes in resulting classifications (Figure 8). The PCC from matrix

corresponds to 68.95%.

Table 2. Maximum likelihood classification confusion matrix

1 2 3 4 5 6 7 8 9 |10 11 | 12 | 13
1 /201 O 0 0 0 0 0 0 0 0 0 0 0
2 0O |249| 53 0 0 0 0 3 26 | 0 | 14 2 1
3 0 1 [323| 0 0 0 0| 10 0 0 | 40 0 13
4 2 15 1 [338| 0 |105| 2 | 31 7 0 0 25 9
5 0 10 0 0O |57 O 0 0 69 | O 0 24 0
6 0 0 0 86 | 0 [117| O 0 0 0 0 0 3
7 0 0 0 0 0 0O |33] O 4 0 0 0 0
8 0 0 18 9 0 0 0 [381| O 0 | 59 0 39
9 0 40 | 21 0 8 O |16 O [498| 0 0 5 0
10| O 0 4 0 0 0 0 3 0O |75] 12 0 0
11, O 3 75 0 0 0 0| 71 0 21161 O 29
12| O 24 7 0 2 0 4 0 15| 0 0 |124| O
13| 0 0 22 6 017 | 0 |144 | O 0| 31 0 | 201
Source: own work.
Table 3 shows the kappa values and the approximate standard error
(ASE) obtained by R software.

Table 3. Kappa index for maximum likelihood classification

Kappa

ASE




No 0,65452| 0,008140

weighted 01 087

Weighted 0,65885| 0,021374

01 677

Source: own work.

SVM classification

Confusion matrix for this classification is shown in Table 4 from this
confusion matrix, the PCC was 81,325%, Kappa index and ASE is shown

in Table 5.

Table 4. SVM classification confusion matrix

22
1| 7 0 0 0 0 0O 0] O 0O 0| O 0 0
26
2, 0 0 |29 ] 6 0 O 0|1 |26|0) 8 9 2
33
3] 0 |17 | 6 1 0 0O 0| 6 O |0 |27 | 0 | 23
43
4 1 4 1 7 3 |78 ] 1| 8 6 |0 1 5 8
11
5| 0 1 0 0 8 O 0] 0 |13/0)] 0 |12 O
15

Ul W (o




54
9 0 | 25| 2 O [17 ] 0 | 8] O 6 10| 0 6 0
1 8
0| 0 0 1 0 0 0O 0] O 0O |7 1 0 0
1 18
1] 0 7 156 | 1 1 O 0|38 |0 |1 1 0 | 41
1 13
21 0 |14 ] 4 4 |20 0 [ 3] O 7 |0 1 1 0
1 34
310 O |10 | 4 0 1 [0[28] 0 |0 8 0 4

Source: own work.

Table 5. Kappa index for SVM classification

Kappa ASE
No 0,7924| 10,0068
weight 927 4676
ed
Weight 0,7875| 0,0224
ed 924 1239

Source: Own work.

Random forests classification

The function varImpPlot in the software R was used to generate the band

rank graph shown in Figure 9 for the random forest. The mean decreased

accuracy was calculated based on the classification error for each band




on the outside of the bag (OOB) portion; then, the band was permuted
with the others and the error recalculated. The difference between the
two values was averaged over all trees and normalized by the standard
deviation of differences. The other measure is Gini index total reduction

regarding the tree partition from a given band averaged over all the trees.

Source: own work
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Figure 9. Decision tree induced by software R

Using R software randomForest function, a random forest model with 500
trees was generated using the five bands of the RapidEye image; then the
obtained model was applied to the window image. See confusion matrix

for this classification in Table 6.



Table 6. Confusion matrix for random forests classification

18
1/ 6/ o| o| o]/ o]l o/ o/ o/ ol o] 0/ o/ o
24
2| o| 8| 42| 3| 3| ol o] 0|26/ 0| 5/ 3/ 4
33
3] o| 10| 8| 1| o| o] o] 3| 4| o| 27| o] 18
47
4| o| 11| 1| 5| 2| 52| 5| 12| 7|/ 0|/ o] 5| 19
10
5| o/ o/ o/ o| 1| o]l o]l o] 30| o] o] 30| O
10
6| o/ o| o]l 78/ o| o] o] 2| ol 0o/ o] o] 5
3
7/ o]l o]l o/ o| ol oflo9] o/ 3/o0| ol ol o
38
8| o| o| 1| 7| o| 1] o] 9| o] o| 27| o] 67
53
9| o] 19/ 3| 0| 20| o] 3| o]l 4|/ 0/ o] 5| o
1 9
ol o/ o/ 1| 1| o| o] o] ol ol o/ 1| o] o
1 16
1| o| 3| 49| 2| o| o| o| 54| o] o] 9| 1| 30
1 13
2| o] 20| 4| 2| 10| o|l 4| o| 6| 0] 1| 6] 0O
1 35
3] o| 3| 13| 3| o| 6| 0] 43| 0| o] 22| o 2

Source: own work.

The PCC and the Kappa indexes were calculated from the confusion
matrix. The PCC was 78.925%, and Kappa index and ASE are shown in

Table 7.



Table 7. Kappa index for random forests classification

Kappa ASE
No weighted 0,7649762 0,007191266
Weighted 0,7686324 0,022229681

Source: own work.
Confidence intervals

Table 5 shows the confidence interval for each classification calculated by

using equation (5) (Tan, Steinbach, & Kumar, 2004).

oo 2N(Kappa)Z® + Z,/Z? + 4N(Kappa) — 4N(Kappa)® (5)
B 2N Z?

Where, N is the number of samples, Kappa is the value of the Kappa index

without weight, and Z corresponds to 1.96 for a confidence level of 95%.

Table 5. Confidence intervals

Confidence intervals
Classification
Minimum Maximum
Maximum likelihood 0,6506820 0,6583582
SVM 0,7885810 0,7964044
Random forests 0,7615534 0,7683990

Source: own work.




DISCUSSION

From a visual inspection of classifications (Figure 8) it can be noted that
the number of classes (13) defined is low since the discrimination
provided by the RapidEye image with five spectral bands, 4096 levels of
radiometric resolution (12 bits), and a five meters spatial resolution was
underused. The variability of the coverage is directly proportional to the
sensor’s resolution, i.e. to greater spatial detail in the image greater
sensitivity to detect internal variations in a category. Therefore, the size
of both the training and the validation samples should be larger to take
advantage of the RapidEye image. However, since the purpose of this
study was to perform a comparative analysis of the maximum likelihood
estimation against SVM and random forests, it is permissible to overlook

this situation.

The visual examination also allowed us to observe that the maximum
likelihood classification achieved a better differentiation of coverages in
non-sampled areas of the image window whereas the other two
techniques (SVM and random forest) categorized confusedly
infrastructure, thus wrongly overestimated this class. It is worth
highlighting, however, that a good classification needs a more exhaustive

sampling in the cases of SVM and random forests. This is important so to



have representative vectors for each category in SVM, and to have
enough samples of different classes in random forest; otherwise, the
classifiers will not have appropriate differentiation criteria. On the other
hand, the SVM classification seemed to preserve the geometric details in

a faithful way.

The results obtained from the classifications and validation samples
indicate that the SVM technique has the fewer errors. It has a higher
number of correctly classified pixels (PCC), which can be seen in the
confusion matrix and in the results of the Kappa index (clearly superior
for this technique). In the case of random forests, discernment power was
higher because a RapidEye image was used (the excellent radiometric
resolution enables radiometric values of the same spectral band to be

used many times as separation criterion).

Taking into consideration the analysis of confidence intervals showed in

Table 5, the superiority of the SVM classification is evident.

CONCLUSIONS

It can be concluded from this study that SVM was the method that better
classified the validation areas because of the advantages of vector

samples, which allowed a clearer separation of the established classes



and thus avoiding confusions. This capability may be exploited to the
fullest with a more extensive sampling of cover changes. If there were
not enough training samples for a given class, it would be better not to
use it but mask it. The results obtained in areas where the density of
sampling was higher for different classes, showed the possibility of
discriminating mixed classes in the feature space taking them to spaces
of higher dimension provided by SVM, becoming a very powerful tool and

improving the quality of the obtained classification.

The maximum likelihood estimation correctly classified more of the
infrastructure clases than the other two techniques and this could be
verified visually. It is possible that SMV did not achieved this aspect of
the evaluation due to lack of support vectors. However, the confusion
matrices showed that SMV is superior to the other two in terms of the
ability to separate similar classes such as infrastructure and dry soil, but

it is restricted to the areas enough data sampling.

The classification confidence intervals shown in Table 5 show complete
separation but without high extreme values, which could be explained by
the difficulty all the three techniques had to perform the distinction

between dry soil and infrastructure, as seen in the confusion matrixes.



Additionally, the best result provided by SMV technique could be related
with the strategy of validation, which was based on selecting validation
data from the same training sample polygons. Therefore, it could generate
overvaluation, while the other two techniques were measured on equal
conditions. It would be advisable to carry out works for getting control

ground points to validate the classification obtained.
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