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ABSTRACT 

Context: Nowadays, the images of the Earth surface and the algorithms 

for their classification are widely available. In particular, the algorithms 

are promising in the differentiating of cotton crops stages, but it is 

necessary to establish the capabilities of the different algorithms in order 

to identify their advantages, and disadvantages. 

Method: This paper describes the assessment process in which the 

Support Vector Machines (SVM) and random-forest technique (decision 

trees) are compared with the maximum likelihood estimation when 

differentiating the stages of cotton crops. A RapidEye satellite image of a 

geographic area in the municipality of San Pelayo, Cordoba (Colombia), 

https://doi.org/10.1016/j.egypro.2016.11.077


is used for the study. Using a set of sampling polygons, a random sample 

of 6000 pixels was taken (2000 training and 4000 for validating the 

classifications.) Confusion matrices, and R (data processing and analysis 

software) were used during the validation process  

Results: The maximun likelihood estimation presented a correct 

classification percentage of 68.95%. SVM correctly classified 81.325% of 

the cases and the decision trees correctly classified 78.925%. The 

confidence test for the classifications showed non-overlapping intervals, 

and SVM obtained the highest values. 

Conclusions: It was possible to confirm the superiority of the technique 

based on support vector machines for the proposed verification zones. 

However, this technique requires a number of classes that 

comprehensively represent the variations of the image (in order to 

guarantee a minimum number of support vectors) to avoid confusion in 

the classification of non-sampled areas. This was less evident in the other 

two classification techniques analysed. 

Keywords: confidence test, confusion matrix, decision tree, random 

forest, software R, support vector machine. 

 



RESUMEN 

Contexto: Hoy en día las imágenes de la superficie de la Tierra están 

ampliamente disponibles, así como la evolución de los algoritmos para su 

clasificación. Estos son prometedores para la diferenciación de los 

diversos estadios del cultivo de algodón. Por esta razón es necesario 

establecer sus capacidades, ventajas y desventajas. 

Métodos: En este artículo se describe el proceso de valoración de las 

bondades de la clasificación basada en las técnicas de máquinas de 

soporte vectorial (SVM, por su sigla en inglés) y bosques aleatorios 

(árboles de decisión) en comparación con la técnica de máxima 

verosimilitud, empleando una imagen del satélite RapidEye, de un área 

geográfica ubicada en el municipio de San Pelayo, en el departamento de 

Córdoba (Colombia), con el propósito de diferenciar varios estadios de 

cultivos de algodón. A partir de un conjunto de polígonos de muestreo, se 

tomó de manera aleatoria un total de 6000 pixeles, 2000 de ellos para 

entrenamiento y 4000 para realizar la validación de las clasificaciones. La 

comparación de los resultados obtenidos de cada técnica fue realizada a 

partir de las matrices de confusión del proceso de validación, mediante el 

software de procesamiento y análisis de datos R.  



Resultados: El porcentaje de clasificación correcta (PCC) para la 

clasificación de máxima probabilidad correspondió a 68,95 %, para la 

clasificación SVM fue 81,325 %, y para bosques aleatórios fue 78,925 %. 

La prueba de confianza para las clasificaciones demostró intervalos no 

solapados, obteniendo los valores más altos para SVM. 

Conclusiones: Para las zonas de verificación planteadas, se pudo 

constatar la superioridad de la técnica basada en máquinas de soporte 

vectorial; sin embargo, se concluyó que para esta técnica se requiere un 

número de clases que representen de forma exhaustiva las variaciones 

de la imagen, garantizando así un mínimo de vectores de soporte, para 

evitar en la clasificación resultante las confusiones en las áreas restantes 

no muestreadas, lo cual fue menos evidente en las otras dos técnicas de 

clasificación analizadas. 

Palabras clave: árboles de decisión, bosques aleatorios, máquinas de 

soporte vectorial, matriz de confusión, pruebas de confianza, software R. 

 

INTRODUCTION 

Currently there is no doubt there is a large amount of images available of 

the Earth surface; and digital image processing techniques and the 



algorithms to carry out pixel classification have also become accessible 

(Camacho Velasco, Vargas García, & Arguello Fuentes, 2016; Neira & 

Rocha, 2013). Efforts have been made around the supervised and 

unsupervised approaches based on support vector machines (SVM) 

(Lizarazo, 2008) and random forests (Tso & Mather, 2009) and have 

concluded that these two are the most promising techniques.  

In particular, the availability of these multispectral images and recent 

classification algorithms turn out very promising in differentiating stages 

of cotton crops. However, it is necessary to establish the capabilities of 

these algorithms (their advantages and disadvantages.) 

The company Germany Blackbridge (Blackbridge Group, 2014) owns and 

operates a commercial system of Earth observation, which consists of a 

constellation of RapidEye satellites with characteristics called 5 – 5 – 5 – 

5: 5 satellites, 5 spectral bands, 5 m spatial resolution and 5 million Km2 

of daily collection capacity. Additionally, it has a radiometric 

discrimination capacity of 4096 levels (12-bit) that represents an 

attractive feature for achieving required discrimination.  

A RapidEye image window with five electromagnetic spectrum bands was 

used for this study: blue (440-510nm), green (520-590nm), red (630-

690nm), Red- Edge (690-730nm) and near infrared (760-880nm). The 



RapidEye images include the Red-Edge band, which is particularly 

sensitive to changes in chlorophyll content, hence the importance of its 

use in this research. 

The purpose of this study was to demonstrate empirically the benefits of 

random forest and SVM classification techniques, using the facilities 

provided by the software R for data analysis and processing (Quinlan, 

1993), and to compare them with the maximum likelihood estimation, 

which is the conventional classification technique for discriminating 

cotton’s crops stages. 

Data and methods 

This section describes the data and methods used to carry out the study. 

A differentiation of types of cotton crops in the selected geographical area 

was performed in a previous study and used in this one (Alzate, 2012). 

Processing methods were implemented using the facilities of the software 

R such as dismo, e1071, MASS, mda, raster, rgdal, sp, vcd, rpart and 

randomForest libraries.  

Study area 

In the Colombian Caribbean, cotton is one of the most traditional crops 

with better performance and greater capacity to generate employment. 



Despite facing an international market that is highly variable, cotton crops 

in Colombia have a significant level of competitiveness (Negrete, 

Moreales, & Martínez, 2009). 

However, Córdoba has suffered several problems regarding cotton 

production (Coronado, 2009). For this reason, the Colombian 

Confederation of cotton—Conalgodon and the Department of Agriculture 

proposed a census of producers in the country during 2011 in order to 

provide subsidies that allow production to stay afloat. International 

Colombia corporation (CCI in Spanish) was hired to carry out a pilot study 

in the area of Córdoba with RapidEye multispectral imagery that allowed 

the company to an overview of the cultivated areas of cotton through 

supervised classification of maximum likelihood, using samples of cotton 

raised in the field. 

For the current study of comparing different techniques of supervised 

classification, a smaller area was selected within the existing pilot area in 

the municipality of San Pelayo in Córdoba (8.9594° N, 75.8369° W). 

Figure 1 shows the location of the area. 

Source: own work 



 

Figure 1. Location of area of study 

Data 

The RapidEye 2012 image window used in this work was provided for CCI 

and already has geometric, radiometric, and sensor corrections. It is a 

12-bit radiometric level (16-bit store) and its positional accuracy 

corresponds with the standard 1: 25,000 United States National Map 

Accuracy Standards (NMAS). 



The process was performed on software Revolution R Enterprise 7.0 (64-

bit) using a laptop Acer ASPAIR ONE quad core with 2 GB of RAM. The 

main statistical parameters by bands for the selected window are 

presented in Table 1. Figure 2 shows the histogram obtained by the 

function pairs in R software with relationships between bands. The 

samples for the classification covered a 10,11% of the total image 

window. 

Table 1. Radiometric statistics for the image window used 

 

Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Min. 5531 3703 2006 2089 2902 

1st Qu. 6442 5467 3838 4676 7332 

Median 6784 5643 4393 4899 7754 

3rd Qu. 6898 6055 4948 5300 8334 

Max. 18738 17400 14992 12526 14399 

NA's 6241 6241 6241 6241 6241 

Source: own work. 

Source: own work. 



 

Figure 2. Histograms and relationships between bands 

For the multispectral image, the matrices of covariance and correlation 

were calculated using cov and cor R functions, and the auxiliary function 

na.omit to ignore unknown values in the image. This allowed analysing 

redundant information in the set of bands.  

The delimitation of sampling areas was carried out for the image window 

during ten stages of cotton growth and three kinds of differentiated 

features: River, urban area (infrastructure), and dry soil. On-screen 

digitalization was performed using the software ArcGIS (ArcMap module) 

based on a color composition 4, 2, 1 that yielded greater discrimination 

coverages.  



It was possible to define a considerable number of classes given the high 

radiometric and spectral resolution of the image; however, they were 

limited to 13 during this study. The infrastructure class was added from 

the beginning in order to assess the quality each technique has to 

differentiate "infrastructure" from "bare soil" and "soil with few 

vegetation" in presence of the usual confusion between them; but it could 

have been ignored during the first stages and added in the final step of 

classification. 

METHODS 

A supervised technique that used previous knowledge already acquired 

on the study area was used to classify the image (Alzate, 2012). Based 

on this, the most representative sampling areas considered were created 

first. Then, the classification algorithms were trained using a subset of 

those sampling areas to obtain a model to be applied. Afterwards, the 

recognition of different categories was carried out by applying each model 

to the whole image window. Finally, the validation phase of the obtained 

results was performed. 

The classification process was developed using the maximum likelihood 

estimation, random forests, and the SVM supervised classification, which 

are described below. 



Maximum likelihood classifier 

The Maximum likelihood classifier considers that the radiometric values in 

each class fit a normal distribution. This allows each class to be described 

by a probability function from its mean vector and variance/covariance 

matrix. This function is similar to the distribution of the radiometric values 

of each category; hence, the probability that a radiometric value is a 

member of a given class can be calculated (Figure 3). The calculation was 

performed for each involved class, assigning the pixel to that which 

maximizes the probability function (Alzate, 2011). 

Source: Alzate (2011). 

 

Figure 3. Assignment of pixels by maximum likelihood classifier 

 



Support vector machines (SVM) 

According with Tso & Mather (2009), structural risk minimization adopted 

by the SVM method consists of minimizing the probability of 

misclassification of a randomly extracted data set from a fixed but 

unknown probability distribution (Vapnik, 1995, 1998). The SVM training 

phase always finds a global minimum. The basic operation of SVM involves 

building a separation hyperplane (i.e. a limit of decision) based on the 

training sample distribution in feature spaces, looking for the margin of 

separation between pairs of classes maximized (Vapnik, 1979). Not all 

samples of training contribute to the construction of the hyperplane, so 

normally only a subset is chosen as support vector. 

As shown in Figure 4, only the darkest samples have enough support 

vectors to define the separation hyperplane of the two classes with 

maximum distance. Information Classes are derived from remote sensing 

data so do not always present the linear separation showed in the Figure 

4 (a). Therefore, it is necessary to make the criterion of complete 

separation between classes more flexible, allowing their overlap by 

introducing a measure of overlapping cost. This should be minimized by 

supervising it as shown in the Figure 4 (b). 

In the case of non-linear decision surfaces, it is proposed that a vector of 



attributes be transformed to a Euclidean space with a higher dimension 

than the original Euclidean space [i.e. a generalization of Euclidean space 

called Hilbert space (Halmos, 1967; Kolmogorov & Fomin, 1970)]. 

Thereby, the distribution of training samples is separated making it 

possible to define a linear separation hyperplane (Boser, Guyon, & Vapnik, 

1992) as is shown in Figure 4 (c). 

Sources: (a) y (b) Tso & Mather (2009); (c) Statnikov et al. (2009) 

 

Figure 4. Maximum separation of classes by hyperplanes. (a) Separable 



samples without overlap. (b) Separable samples with measure of the 

overlay cost. (c) Samples separation in a space of higher dimension. 

Random forest 

The Random forest approach for classification builds decision trees and 

then it randomly combines them (Castro, García, & Jiménez, 2017). The 

hierarchical approach of random forest classifier is a technique that uses 

a sequence of decision criteria on an unknown pattern for labelling it (Tso 

& Mather, 2009). A root node, a set of internal nodes, and leaf nodes (end 

nodes) make up the decision tree. The root and middle nodes represent 

decision stages, while end nodes represent the final classification. To 

implement the classification process, a set of rules establish the path that 

needs to be followed. It starts at the root node and ends when the item 

to be classified reach the leaf node. This last node assigns the 

corresponding label to the classified object. 

The way in which it goes to the next node is decided in each intermediate 

node. Figure 5 displays the use of the reflectance values as an input to 

find its respective hypothetical class (i.e. between “1” and “7”) in order 

to produce a hierarchical decision tree. For the example, the decisions’ 

nature taken as a base and the sequence in which the spectral bands are 

chosen will affect the results of the classification. Therefore, finding the 



optimum configuration of the tree to be used for the classification is highly 

necessary. 

Source: own work. 

 

Figure 5. Example of a decision tree 

 

The indexes most used in decision trees induction are the information gain 

index (Quinlan, 1979, 1993) and the impurity Gini index (Breiman et al., 

1984). The R software functions uses both. 

The gain index is based on the measurement of entropy used in 

information theory. A set of training data has a probability of being part 

of a given class, which corresponds to the relative frequency of the 

observed pixels (for example, if the total size of the training sample is 20 

and that of class i contains 6 pixels, the probability of class i is 0.3). The 



test that produces the greatest information gain is selected. In order to 

calculate the information gain, there must first obtain the respective 

entropy in the given node as shown in equation (1). 

 

Where f (t, j) is the proportion of training samples belonging to j class,  j ∈

{1, 2, . . . , m}, in the node t, and m is the number of classes. If the node t 

contains Nt samples, then f (t, j) is calculated by equation (2). 

 

Finally, for a partition on the attribute X, the respective information gain 

is calculated according to the equation (3). 

 

The Gini impurity index measures an input function impurity with respect 

to the classes reaching its minimum (zero) when all the attributes in the 

node fall into a single class of information. The IG(tX(xi))  Gini index 

associated with the X ∈  {x1 , x2, . . . , xr}) attribute for the node t is expressed 

in the equation (4). 



 

As mentioned, the classification approach based on random forest 

combines classifier trees generated using a random training sample 

dataset for either one. Each tree provides a vote to the class in which 

should be located an input vector (Breiman, 2001). The approach to 

produce a random forest combines bagging methods and random 

subspaces. The Bagging Technique (Breiman, 1996), consist in generate 

randomly training subsets of n size from a training size N (n<N) set, if M 

spectral bands are available, m (m < M) subsets are chosen randomly to 

calculate the best partition on each node (using GINI). 

Classification procedure and comparative assessment of 

classifications 

Figure 6 shows an overview of the general steps of image classifications 

and their comparative assessment, which are described next.  

Source: own work. 



 

Figure 6. Process of classification and comparative assessment of used 

techniques 

1. Training spots definition: sample polygons were drawn for each type 

of coverage to be discriminated. A set of points was extracted from 

these sample areas based on a random process by using R software 

randomPoints function. A set of 6000 points were extracted, 2000 of 

them were used for the training step, and the other as a set of 

checkpoints for the validation stage (see Figure 7). 

2. Extracting spectral signatures: the next step computed statistics from 

radiometric values for each class based on training sample 

multispectral pixels (5 bands). Then, the model with the characteristic 

patterns of each class was created for the three considered 

classification algorithms. 

3. The function lda of the software R was used to generate the maximum 



likelihood model; the svm function was used for the SVM model, but 

in this case the parameters cost, gamma, epsilon and 

NumberOfSupportVectors were previously tuned running the tune.svm 

function (using 16, 1, 0.1, and 365 respectively). The function rpart in 

the software R was used for modeling the decision tree. 

4. Image classification: the image classification was carried out by all the 

techniques using the function predict of the software R. In each case, 

each model generated in the previous step was used. 

5. Thematic accuracy evaluation: this step used 4000 validation pixels 

that were extracted from sampling polygons and their corresponding 

classified pixels obtained through the classification process in the 

previous step. These data were used as input to run the confusion 

function for each of the classification techniques in order to generate 

the corresponding confusion matrixes. From the confusion matrix the 

percentage of correct classification (PCC) and the Kappa index (Tso & 

Mather, 2009) were calculated. The PCC is the percentage of pixels in 

the image correctly classified. The global Kappa index   measures the 

agreement between pixels classified and class sample pixels for all the 

covered categories. In weighted kappa, weights were assigned to 

quantify the relative importance among the disagreements.  

6. Comparative assessment: Using the results of the thematic accuracy 



evaluation, a comparative assessment was performed based on the 

number of pixels correctly classified and the confidence intervals 

associated with the classifications. 

Source: own work. 

 

Figure 7. Definition of training sites for discriminated coverages 

RESULTS 

The obtained classification images are shown in Figure 8, and the 

results are described in the following sections. 

 



Source: own work. 

 

Figure 8. Resulting images from each technique used. (a) Maximum 

likelihood classification, (b) SVM classification (c) Random forest 

classification. 

Maximum likelihood classification 

The confusion matrix for the maximum likelihood classification can be 

seen in Table 2. The labels between 1 and 13 correspond to the order of 



named classes in resulting classifications (Figure 8). The PCC from matrix 

corresponds to 68.95%.  

Table 2. Maximum likelihood classification confusion matrix 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 201 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 249 53 0 0 0 0 3 26 0 14 2 1 

3 0 1 323 0 0 0 0 10 0 0 40 0 13 

4 2 15 1 338 0 105 2 31 7 0 0 25 9 

5 0 10 0 0 57 0 0 0 69 0 0 24 0 

6 0 0 0 86 0 117 0 0 0 0 0 0 3 

7 0 0 0 0 0 0 33 0 4 0 0 0 0 

8 0 0 18 9 0 0 0 381 0 0 59 0 39 

9 0 40 21 0 8 0 16 0 498 0 0 5 0 

10 0 0 4 0 0 0 0 3 0 75 12 0 0 

11 0 3 75 0 0 0 0 71 0 2 161 0 29 

12 0 24 7 0 2 0 4 0 15 0 0 124 0 

13 0 0 22 6 0 17 0 144 0 0 31 0 201 

Source: own work. 

Table 3 shows the kappa values and the approximate standard error 

(ASE) obtained by R software. 

 

Table 3. Kappa index for maximum likelihood classification 

 Kappa     ASE     



No 

weighted 

0,65452

01 

0,008140

087 

Weighted 0,65885

01 

0,021374

677 

Source: own work. 

SVM classification 

Confusion matrix for this classification is shown in Table 4 from this 

confusion matrix, the PCC was 81,325%, Kappa index and ASE is shown 

in Table 5. 

Table 4. SVM classification confusion matrix 

 1 2 3 4 5 6 7 8 9 

1

0 11 12 13 

1 

22

7 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 

26

0 29 6 0 0 0 1 26 0 8 9 2 

3 0 17 

33

6 1 0 0 0 6 0 0 27 0 23 

4 1 4 1 
43
7 3 78 1 8 6 0 1 5 8 

5 0 1 0 0 

11

8 0 0 0 13 0 0 12 0 

6 0 0 0 26 0 

15

2 0 2 0 0 0 0 10 

7 0 0 0 0 0 0 
3
5 0 4 0 0 0 0 

8 0 0 3 7 0 0 0 

39

9 0 0 20 0 69 



9 0 25 2 0 17 0 8 0 

54

6 0 0 6 0 

1

0 0 0 1 0 0 0 0 0 0 

8

7 1 0 0 

1
1 0 7 56 1 1 0 0 38 0 1 

18
1 0 41 

1

2 0 14 4 4 20 0 3 0 7 0 1 

13

1 0 

1

3 0 0 10 4 0 1 0 28 0 0 8 0 

34

4 

Source: own work. 

 

Table 5. Kappa index for SVM classification 

  Kappa ASE 

No 

weight

ed 

 0,7924

927 

0,0068

4676 

Weight

ed 

 0,7875

924 

0,0224

1239 

Source: Own work. 

 

Random forests classification 

The function varImpPlot in the software R was used to generate the band 

rank graph shown in Figure 9 for the random forest. The mean decreased 

accuracy was calculated based on the classification error for each band 



on the outside of the bag (OOB) portion; then, the band was permuted 

with the others and the error recalculated. The difference between the 

two values was averaged over all trees and normalized by the standard 

deviation of differences. The other measure is Gini index total reduction 

regarding the tree partition from a given band averaged over all the trees. 

Source: own work 

 

Figure 9. Decision tree induced by software R 

 

Using R software randomForest function, a random forest model with 500 

trees was generated using the five bands of the RapidEye image; then the 

obtained model was applied to the window image. See confusion matrix 

for this classification in Table 6. 

 



Table 6. Confusion matrix for random forests classification 

  1 2 3 4 5 6 7 8 9 
1
0 11 12 13 

1 

18

6 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 

24

8 42 3 3 0 0 0 26 0 5 3 4 

3 0 10 

33

8 1 0 0 0 3 4 0 27 0 18 

4 0 11 1 

47

5 2 52 5 12 7 0 0 5 19 

5 0 0 0 0 
10
1 0 0 0 30 0 0 30 0 

6 0 0 0 78 0 

10

0 0 2 0 0 0 0 5 

7 0 0 0 0 0 0 

3

9 0 3 0 0 0 0 

8 0 0 1 7 0 1 0 

38

9 0 0 27 0 67 

9 0 19 3 0 20 0 3 0 

53

4 0 0 5 0 

1
0 0 0 1 1 0 0 0 0 0 

9
0 1 0 0 

1

1 0 3 49 2 0 0 0 54 0 0 

16

9 1 30 

1

2 0 20 4 2 10 0 4 0 6 0 1 

13

6 0 

1
3 0 3 13 3 0 6 0 43 0 0 22 0 

35
2 

Source: own work. 

 

The PCC and the Kappa indexes were calculated from the confusion 

matrix. The PCC was 78.925%, and Kappa index and ASE are shown in 

Table 7. 



Table 7. Kappa index for random forests classification 

 

Source: own work. 

Confidence intervals 

Table 5 shows the confidence interval for each classification calculated by 

using equation (5) (Tan, Steinbach, & Kumar, 2004). 

 

Where, 𝑁 is the number of samples, 𝐾𝑎𝑝𝑝𝑎 is the value of the Kappa index 

without weight, and Z corresponds to 1.96 for a confidence level of 95%. 

Table 5. Confidence intervals   

 

Source: own work. 

 Kappa ASE 

No weighted 0,7649762 0,007191266 

Weighted 0,7686324 0,022229681 

 

Classification 

Confidence intervals 

Minimum   Maximum     

Maximum likelihood 0,6506820 0,6583582 

SVM 0,7885810 0,7964044 

Random forests 0,7615534 0,7683990 

 



DISCUSSION 

From a visual inspection of classifications (Figure 8) it can be noted that 

the number of classes (13) defined is low since the discrimination 

provided by the RapidEye image with five spectral bands, 4096 levels of 

radiometric resolution (12 bits), and a five meters spatial resolution was 

underused. The variability of the coverage is directly proportional to the 

sensor’s resolution, i.e. to greater spatial detail in the image greater 

sensitivity to detect internal variations in a category. Therefore, the size 

of both the training and the validation samples should be larger to take 

advantage of the RapidEye image. However, since the purpose of this 

study was to perform a comparative analysis of the maximum likelihood 

estimation against SVM and random forests, it is permissible to overlook 

this situation. 

The visual examination also allowed us to observe that the maximum 

likelihood classification achieved a better differentiation of coverages in 

non-sampled areas of the image window whereas the other two 

techniques (SVM and random forest) categorized confusedly 

infrastructure, thus wrongly overestimated this class. It is worth 

highlighting, however, that a good classification needs a more exhaustive 

sampling in the cases of SVM and random forests. This is important so to 



have representative vectors for each category in SVM, and to have 

enough samples of different classes in random forest; otherwise, the 

classifiers will not have appropriate differentiation criteria. On the other 

hand, the SVM classification seemed to preserve the geometric details in 

a faithful way. 

The results obtained from the classifications and validation samples 

indicate that the SVM technique has the fewer errors. It has a higher 

number of correctly classified pixels (PCC), which can be seen in the 

confusion matrix and in the results of the Kappa index (clearly superior 

for this technique). In the case of random forests, discernment power was 

higher because a RapidEye image was used (the excellent radiometric 

resolution enables radiometric values of the same spectral band to be 

used many times as separation criterion).  

Taking into consideration the analysis of confidence intervals showed in 

Table 5, the superiority of the SVM classification is evident. 

CONCLUSIONS 

It can be concluded from this study that SVM was the method that better 

classified the validation areas because of the advantages of vector 

samples, which allowed a clearer separation of the established classes 



and thus avoiding confusions. This capability may be exploited to the 

fullest with a more extensive sampling of cover changes. If there were 

not enough training samples for a given class, it would be better not to 

use it but mask it. The results obtained in areas where the density of 

sampling was higher for different classes, showed the possibility of 

discriminating mixed classes in the feature space taking them to spaces 

of higher dimension provided by SVM, becoming a very powerful tool and 

improving the quality of the obtained classification. 

The maximum likelihood estimation correctly classified more of the 

infrastructure clases than the other two techniques and this could be 

verified visually. It is possible that SMV did not achieved this aspect of 

the evaluation due to lack of support vectors. However, the confusion 

matrices showed that SMV is superior to the other two in terms of the 

ability to separate similar classes such as infrastructure and dry soil, but 

it is restricted to the areas enough data sampling. 

The classification confidence intervals shown in Table 5 show complete 

separation but without high extreme values, which could be explained by 

the difficulty all the three techniques had to perform the distinction 

between dry soil and infrastructure, as seen in the confusion matrixes. 



Additionally, the best result provided by SMV technique could be related 

with the strategy of validation, which was based on selecting validation 

data from the same training sample polygons. Therefore, it could generate 

overvaluation, while the other two techniques were measured on equal 

conditions. It would be advisable to carry out works for getting control 

ground points to validate the classification obtained. 
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