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RESUMEN 

 

Contexto: Este trabajo presenta diferentes modelos basados en redes neuronales artificiales, 

entre ellas las NNARX, para la estimación de la radiación solar global a partir de mediciones 

del índice UV. El objetivo es determinar la eficiencia de los modelos estudiados para estimar 

la radiación solar global en términos del coeficiente de determinación (R2), la raíz del error 

medio cuadrático (RMSE) y el error absoluto medio (MAE).  
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Metodología: Se divide en cuatro etapas: i) conformación del set de datos de entrenamiento 

(en este caso se utiliza un set de entrenamiento de 213.019 datos recolectados durante 5 años 

en la ciudad de Pasto, Colombia, con la estación Davis Vantage Pro 2.0); ii) pre-

procesamiento de los datos para remover datos erróneos e inusuales; iii) definición de 

modelos basados en redes neuronales artificiales recurrentes y convencionales basándose en 

un análisis de topologías, e.g. NNFIR y NNARX; iv) entrenamiento de los modelos y 

evaluación de la eficiencia de la estimación por medio de métricas como R2, RMSE y MAE. 

Para validar el modelo se utilizaron datos recolectados durante el último año, los cuales no 

se incluyeron en el entrenamiento. 

Resultados: Los modelos de estimación de radiación solar global basados en NNARX 

presentan la mejor eficiencia en la estimación en comparación con redes neuronales 

convencionales. El modelo NNARX221 presenta un RMSE de 54,32 y un MAE de 18,06 

w/m2. 

Conclusiones: Los modelos NNARX tienen una gran eficiencia para estimar la radiación 

solar global, en el mejor de los casos con un coeficiente de determinación de 0,9697. Los 

modelos más eficientes se caracterizan por utilizar dos instantes pasados y el instante actual 

de índice UV y realimentar dos instantes pasados de su propia salida de radiación estimada. 

Además, los resultados numéricos muestran que la contribución de la temperatura y humedad 

relativa no es relevante para mejorar la eficiencia de la estimación de la radiación solar global. 

Estos modelos pueden ser particularmente importantes dado que solamente utilizan 

mediciones realizadas con sensores de índice UV que son menos costosos que los sensores 

de radiación solar.  

 



Palabras clave: redes neuronales recurrentes, Davis Vantage PRO 2.0, modelo de radiación 

solar, índice UV 

 

ABSTRACT 

 

Context: This work presents different models based on artificial neural networks, among 

them NNARX, for estimating global solar radiation from UV index measurements. The 

objective is to determine the efficiency of the models studied to estimate global solar 

radiation in terms of the coefficient of determination (R2), the root-mean-square error 

(RMSE), and the mean absolute error (MAE). 

Methodology: It is divided into four stages: i) conformation of the training dataset (in this 

case, it uses a training set of 213.019 data collected over five years in the city of Pasto, 

Colombia, with the Davis Vantage Pro 2.0 station); ii) pre-processing of data to remove 

erroneous and unusual data; iii) definition of models based on recurrent and conventional 

artificial neural networks according to an analysis of topologies, e.g. NNFIR and NNARX; 

iv) training of the models and evaluation of the estimation efficiency through metrics such 

as R2, RMSE, and MAE. To validate the model, a new dataset collected during the last year 

was used, which was not included in the data training. 

Results: The global solar radiation estimation models based on NNARX show the best 

estimation efficiency compared to conventional neural networks. The NNARX221 model 

has an RMSE of 54,32 and a MAE of 18,06 w/m2. 

Conclusions: NNARX models are highly efficient at estimating global solar radiation, with 

a coefficient of determination of 0,9697 in the best of cases. The most efficient models are 

characterized by using two past times and the current UV index instant, and they feed from 

two past times of their own estimated radiation output. Furthermore, the numerical results 



show that the contribution of temperature and relative humidity is not relevant to improving 

the efficiency of the estimation of global solar radiation. These models can be particularly 

important since they only use measurements made with UV index sensors, which are less 

expensive than solar radiation ones. 

 

Keywords: recurrent neural network, Davis Vantage PRO 2.0, solar radiation model, solar 

radiation, UV index 

 

 

INTRODUCTION 

 

Solar radiation data have become important due to the increase in the use of solar energy. In 

general, solar radiation data are obtained from long-term monitoring stations, and they are 

used for photovoltaic applications or thermal heating, cooling, or drying systems. 

To design an accurate photovoltaic system according to a specific zone, it is necessary to 

perform an irradiance study using radiation sensors such as pyranometers, pyrheliometers, or 

sunphotometers. However, this kind of sensors are usually expensive, especially in cases 

where a large number of them is necessary. 

The literature has several models and studies used to detect radiation at lower costs (Cruz-

Colón et al., 2012). Chacón et al. (2008) and Ortiz et al. (2005) developed a low cost 

irradiance sensor that describes the electric behavior of a photovoltaic module using an 

exponential model applied to a solar cell. The maximum error between the estimated and 

measured irradiance was 1,11%. Abe et al. (2020) proposed a sensor based on a 

phototransistor. They used the arithmetic mean for the ungrouping data method (Viljoen & 

Merwe, 2000). The results of the simulation showed a determination coefficient (R2) of 

0,99099 with respect to the pyranometer. Mancilla-David et al. (2014) introduced a solar 



irradiance sensor using a photovoltaic cell, a temperature detector, and a low-cost 

microcontroller programmed with an artificial neural network to determine the irradiance. 

Under ordinary operating conditions, simulation and experimental results showed that these 

methods can obtain an accurate estimation. However, it is difficult to collect complete data 

to train these soft sensors. In addition, as time passes, a solar cell will change its electrical 

characteristics. 

Sayago et al. (2011), Ruiz-Cárdenas et al. (2016), and Moreno et al. (2012) used neural 

network models capable of estimating solar radiation through meteorological variables such 

as temperature, relative humidity, wind speed, and rainfall. The results show determination 

coefficients between 0,80 and 0,86 and root mean square errors values (RMSE) between 25 

and 48%. Khan et al. (2013), Capizzi et al. (2012), and Aliberti et al. (2021) explored models 

to estimate global solar radiation based on artificial neural networks (ANN), e.g. second-

generation Wavelets with ANN, Long Short-Term Memory (LSTM), Feed-Forward Neural 

Networks (FFNN). The results show that the best models reached a correlation coefficient of 

0,98 for Wavelet and ANN. The model based on LSTM obtained an RMSE equal to 113 

wh/m2 and a determination coefficient of 0,9744. Hernández-Mora et al. (2013) developed a 

statistical methodology to determine solar irradiance and the ambient temperature from real 

measurement data, collected every hour from six in the morning to six in the afternoon. The 

Anderson-Darling test (Anderson & Darling, 1952; Torres, 2002) was applied to these data, 

thus achieving a correlation coefficient higher than 0,96 for each hour. Despite being a 

reliable model, it is necessary to have a database of at least five years. Obando et al.  (2019) 

presented a literature review of ANN models for solar radiation estimation. It analyses 

different ANN structures under several performance criteria, providing a decision 

methodology to evaluate ANN models for solar radiation prediction. 



Korachagaon et al. (2015) proposed several polynomial models to estimate global solar 

radiation using variables such as, ratio of duration of sunshine to maximum sunshine hours, 

mean temperature, and mean relative humidity. The models allow estimating radiation at any 

location of the earth’s surface. Some results showed that the least RMSE is within 0,185, and 

a correlation coefficient of the measured and estimated global solar radiation was found to 

be 0,52494. Likewise, Eraso-Checa et al. (2018) proposed a polynomial to estimate global 

radiation from the UV index, which is valid for Pasto, Colombia. The results showed a 

correlation factor of 0,9642, and the RMSE is 30,90, which is acceptable for mid-range and 

low-end measurement devices. 

The main contribution of this paper is that it explores the relationship between the UV index 

and solar radiation. The responses of these variables have a similar behavior, and the spectral 

response curves denote similar characteristics. This work uses an ANN trained with radiation 

and UV index data, and it determines the radiation based on UV index measurement and 

time. This estimation model becomes relevant because UV sensors are cheaper than radiation 

sensors, and generally they occupy less space. 

This paper is organized as follows: first, it presents the theoretical aspects related to the UV 

index and irradiance; second, the methodology is presented and described; third, all recurrent 

neural networks based on NNARX models are presented; and finally, the results and 

conclusions are presented. 

 

METHODOLOGY 

 

Solar radiation 

 

The Sun is the Earth’s main energy source. This star emits electromagnetic radiation of 

different frequency and wavelength in the electromagnetic spectrum. Solar radiation in the 



atmosphere has a wavelength between 150 nm and 4.000 nm, where 7% corresponds to 

ultraviolet radiation, 47% to visible radiation, and 46% to infrared radiation (Eraso-Checa et 

al., 2017; Würfel, 2009). However, the wavelength that reaches the Earth’s surface is 

attenuated to a range between 380 and 780 nm (Narváez & Hernández, 2013) due to 

absorption, reflection, and scattering phenomena. This also means that the global radiation 

on the surface is composed of beam, diffuse, and reflected radiation (Jäguer et al., 2006). 

Another parameter that attenuates solar radiation is the optical air mass, which is the path 

length that sunlight follows through the atmosphere (Jäguer et al., 2014).  

Figure 1 shows the power received per unit surface exposed to radiation for each wavelength 

at the outer side of the Earth’s atmosphere. It shows that the visible part of the spectrum has 

the large area between 400 nm and 700 nm, with a spectral irradiance peak around 2.000 

W/m2.nm. Ultraviolet (UV) light occupies the high energetic part of the spectrum. 

The integration of spectral irradiance over wavelength corresponds to the irradiance, which 

is a power per unit area (W/m2 or joules/m2sec). This is a magnitude scale that includes the 

complete wavelength information. Radiation measuring equipment gives the solar radiation 

response as irradiance (W/m2). 



 

Figure 1. Extra-terrestrial solar spectrum 

Source: Würfel (2009) 

 

UV index 

UV radiation is just a part of the solar spectrum at high frequencies (>1016 Hz). This means 

that it is very energetic and can ionize atoms by electrically charging them (Casal, 2010). 

Photon energy ranges from 3,2 eV up to 1,2x103 eV (Bohorquez-Ballén & Pérez-Mogollón, 

2007). UV radiation allows human beings to assimilate vitamin D and, in plants, it makes 

photosynthesis possible. However, it also has negative effects if there is prolonged exposure, 

especially in human health (it breaks biological molecules, damages the eyes and skin, it 

causes cancer, etc.) (Bohorquez-Ballén & Pérez-Mogollón, 2007).  

UV radiation is divided into three regions (Ryer, 1988): 

 UV-A: (315-400 nm): It is the least harmful to human beings, and its intensity reaches 

the terrestrial surface. 



 UV-B (280-315 nm): It is toxic to life and can destroy it. Ozone absorbs this energy 

(approximately 90%) and prevents it from reaching the Earth (Casal, 2010).  

 UV-C (100-280 nm): Its collision with oxygen atoms causes ozone generation, and it 

does not reach the Earth. This radiation would destroy life. 

 

According to Lucas et al. (2006), ambient UV radiation can be measured using a 

representation of the wavelength variation in the production of skin erythema. The UV index 

is an instance of this representation (the other are SED and MED). It is defined as the time-

weighted average effective UV irradiance multiplied by 40, and it is expressed as power per 

unit area (W/m2).  

Figure 2 shows the behavior of both spectral irradiance and the erythemal action spectrum in 

the UV region. 

 

Figure 2. UV spectral irradiance and erythemal action spectrum 

Source: National Services Centre (n.d.) 

 



The UV index is categorized as shown in Table 1, and the values range from 0 on. The higher 

the index value, the greater potential damage to the skin in the less time.  

Table 1. UV index categorization 

UV Index Danger Category 

0-2 Low 

3-5 Moderate 

6-7 High 

8-10 Very High 

11+ Extreme 

Source: based on National Services Centre (n.d.) 

Methodological process  

To develop and validate the estimation model, a methodological process was carried out, 

which was adapted from Eraso-Checa et al. (2018). In this case, the methodology used is 

composed of a typical process that increases estimation reliability. In Figure 3, the 

methodological process is shown. 

Dataset of UV Index, temperature 
and humidity

Removal of 
erroneous data

Estimation of solar 
radiation using NNs

Evaluation by metrics

e

 

Figure 3. Methodological process 

Source: Authors 



A set of climatic variables (UV index, temperature, humidity, and solar radiation) was 

extracted from the Davis Vantage PRO station. In this case, the dataset is made up of 

approximately 305.000 data for each variable from 2013 to 2018. Since the first data are raw, 

it was necessary to remove spurious and erroneous data using an inspection algorithm. This 

process removes not-a-number data, data equal to infinity, and unusual data such as out-of-

range values that are physically impossible to reach. Finally, a training dataset of 213.019 

data and a validation dataset of 91.696 were obtained. 

After that, solar radiation was estimated with following steps: first, the estimation model 

based on neural networks (NN) was defined, considering estimation structures and inputs; 

secondly, the structure was trained using the dataset; then, there was an evaluation process 

using the validation dataset, which calculated some predefined metrics such as mean absolute 

error (MAE), root mean square error (RMSE), and the coefficient of determination (R2). 

Estimation models based on ANNs 

Different nonlinear models based on ANNs were used to estimate solar radiation. Mainly, 

two different ANN structures were used to model the estimators: Neural Network Finite 

Impulse Response (NNFIR) structure and Neural Network Autoregressive with Exogenous 

Input (NNARX).  

NNFIR is a simple model estimator fed with external excitations to make a prediction. Figure 

4 shows, on the left side, a NNFIR that does not have feedback. NNARX is a recurrent neural 

network. On the right side of Figure 4, the network uses external excitations and past instants 

to make a prediction. 



u2(k-d)   u2(k-d-n)
NNFIR

uj(k-d)   uj(k-d-n)

u1(k-d)   u1(k-d-n)
u2(k-d)   u2(k-d-n)

uj(k-d)   uj(k-d-n)

u1(k-d)   u1(k-d-n)

y(k-d)   y(k-d-m)

y(k) y(k)

NNARX

Figure 4. NNFIR and NNARX structures 

Source: Authors 

As shown in Figure 4, the NNFIR and NNARX models are fed with past instants of one or 

more inputs (u1(⋅),… , uj(⋅)), and past instants of the estimated output (ŷ(⋅)) in case of the 

NNARX structure. For more details on NNARX and NNFIR structures, see their description 

in the referenced literature (Norgaard et al. 2000). 

In addition, this paper proposes to use the temperature as part of the estimator, aiming to 

compensate the lack of information of the reduced band in the UV index sensor. In that way, 

it is possible to quantify the contribution of the temperature in the estimation of solar 

radiation. To differentiate the models, models that use UV index and/or estimated radiation 

are denoted with 𝑎 at the end, and the estimation models that use temperature in addition to 

the UV index and/or estimated radiation are denoted with 𝑏 at the end. The definitions of 

these models are shown below, and they are summarized in Table 2. 

𝑅(⋅) is the global solar radiation, 𝑈𝑉(⋅) is the UV index, 𝑇(⋅) is the ambient temperature, 

and 𝑘 is the time instant. NNFIR and NNARX structures are configured as follows: one 

hidden layer with 20 neurons, sigmoidal activation function, and Bayesian Regularization as 

the training algorithm. 



Table 2. Mathematical definition of the NNFIR and NNARX models 

Model Mathematical definition 

NNFIRa 𝑅(𝑘) =  𝑓(𝑈𝑉(𝑘)) 

NNFIRb 𝑅(𝑘) =  𝑓 (𝑈𝑉(𝑘),  𝑇(𝑘)) 

NNARX111a 𝑅(𝑘) =  𝑓 (𝑅(𝑘 − 1), 𝑈𝑉(𝑘),  𝑈𝑉(𝑘 − 1)) 

NNARX111b 𝑅(𝑘) =  𝑓 (𝑅(𝑘 − 1),  𝑈𝑉(𝑘),   𝑈𝑉(𝑘 − 1), 𝑇(𝑘),  𝑇(𝑘 − 1)) 

NNARX211a 𝑅(𝑘) =  𝑓 (𝑅(𝑘 − 1),  𝑅(𝑘 − 2),  𝑈𝑉(𝑘),   𝑈𝑉(𝑘 − 1)) 

NNARX211b 𝑅(𝑘) =  𝑓(𝑅(𝑘 − 1),  𝑅(𝑘 − 2),  𝑈𝑉(𝑘),  𝑈𝑉(𝑘 − 1),  𝑇(𝑘),  𝑇(𝑘 − 1)) 

NNARX221a 𝑅(𝑘) =  𝑓(𝑅(𝑘 − 1),  𝑅(𝑘 − 2),  𝑈𝑉(𝑘),  𝑈𝑉(𝑘 − 1),  𝑈𝑉(𝑘 − 2)) 

NNARX221b 
𝑅(𝑘) =  𝑓(𝑅(𝑘 − 1),  𝑅(𝑘 − 2),  𝑈𝑉(𝑘),  𝑈𝑉(𝑘 − 1),   

𝑈𝑉(𝑘 − 2),  𝑇(𝑘),  𝑇(𝑘 − 1),  𝑇(𝑘 − 2)) 

 

Source: Authors 

RESULTS 

 

In this section, the first part describes the station that collected the raw data. The second one 

describes the training and validation processes, and then the estimation results are presented 

by figures and tables with the evaluation metrics. 

 

Meteorological station and data set 

Solar radiation, the UV index, temperature, and humidity data were collected from November 

2013 to December 2018 using the DAVIS Vantage Pro 2.0 meteorological station. This 

equipment uses the 6450 solar radiation sensor (Davis Instruments, 2014a) and the 6490 UV 

sensor that measures the global solar UV index (Davis Instruments, 2014b). 

After applying the methodological process to 305.172 data, a training dataset of 213.019 

elements and a validation set of 91.696 data for each variable (30% of total data) were 

obtained. There were 457 spurious and erroneous data, as shown in Figure 5. 



 

Figure 5. Use of data in the solar radiation estimation process 

Source: Authors 

Numerical results 

The NN MATLAB toolbox was used to train the eight proposed estimation models. Each 

model was trained using its corresponding dataset (inputs, outputs, and validation dataset). 

The following Figures show the solar radiation estimation results using a random day from 

the validation data set. 

 

Figure 6. Solar radiation estimation using NNFIR1 and NNFIR2 structures 

Source: Authors 

As shown in Figure 6, the radiation estimation with the NNFIRa and NNFIRb structures was 

able to follow the general behavior of the measured radiation. However, the error increases 



due to instant radiation changes. These models have an estimation error of ±38.80
𝑤

𝑚2
 and 

±42.71
𝑤

𝑚2, respectively. 

 

 

Figure 7. Solar radiation estimation using NNARX111a and NNARX111b structures 

Source: Authors 

The NNARX111a and NNARX111b structures improve the estimation of solar radiation 

reducing the error to ±26.60
w

m2 and ±28.61
w

m2, respectively (Figure 7). This optimization 

occurs because these structures make a prediction using past and present data. Therefore, 

they have a measurement radiation rate that is used to predict the next radiation value. 

 

Figure 8. Solar radiation estimation using NNARX211a and NNARX211b structures 

Source: Authors 



 

Figure 9. Solar radiation estimation using NNARX221a and NNARX221b structures 

Source: Authors 

Figures 8 and 9 show the NNARX211a, NNARX211b, NNARX221a, and NNARX221b 

structures. These kind of  structures reduce the error between ±26.27
w

m2 and ±24.53
w

m2. 

This is posssible because the network makes a prediction from two past instants. In the same 

way, predictions with structures that include more than two past instants were developed. 

Nevertheless, the error does not reduce its value significantly. 

From Figures 7-9, it can be noticed that the differences between type a and b models are not 

significant. Despite this, type b models use other variables (temperature, humidity) to 

complement the estimation in contrast with type a models, which only use the input variable 

and the past instants. These additional variables do not significantly reduce the error. In 

contrast, the error increases in some cases. 

According to the numerical results presented in Table 3, considering the validation data set 

(91.696 elements), type 𝑎 models have a similar behavior to type 𝑏 ones. Type 𝑏 models have 

a smaller RMSE and a bigger R2 coeficient in comparison with type 𝑎 models. In contrast, 

type 𝑎 models have a smaller MAE than type 𝑏 models. However, the differences between 

models 𝑎 and 𝑏 are not significant. 

Table 3. Numerical results of estimation models for the validation dataset 



Structure/Metric RMSE MAE R2 

NNFIRa 87,855 42,526 0,92294 

NNFIRb 86,863 41,301 0,92489 

NNARX111a 55,835 18,624 0,96805 

NNARX111b 55,532 18,643 0,96838 

NNARX211a 55,066 18,314 0,96895 

NNARX211b 54,809 18,347 0,96925 

NNARX221a 54,710 17,905 0,96927 

NNARX221b 54,321 18,069 0,96971 

 

Source: Authors 

Also, NNARX221a and NNARX221b have the best performance in terms of RMSE, MAE, 

and R2 compared to other estimation models. 

 

Figure 10. Comparison between estimation structures NNARX221a and NNARX221b for a 

random day 

Source: Authors 

As seen in the Figure 10 and Table 3, the differences between estimation structures 

NNARX221a and NNARX221b are not significant. Hence, the contribution of the auxiliary 

variables (temperature and humidity) in the estimation of solar radiation is not relevant. In 

this sense, the NNARX221a model has the best performance (based on R2) only using past 

and present instants of solar radiation and the UV index. 

CONCLUSIONS 

 



This similarity in graphical patterns between the UV index information recorded with the 

6490 Davis sensor and the solar radiation data recorded with the 6450 Davis sensor allow 

estimating solar radiation based on UV index. For this process, there were two NNFIR and 

eight NNARX-trained structures. The best performance corresponds to a NNARX221 

structure that makes a prediction using two past instants that include the UV index and its 

own outputs. It shows a determination coefficient (R2) of 0,9697, a RMSE equal to 54,32, 

and a MAE of 18,06 w/m2. Because of that, the use of this structure allows the determination 

of solar radiation in an accurate way using the UV index. 

The numerical results show that the contribution of the auxiliary variables (temperature and 

humidity) in the estimation of solar radiation is not relevant. The best estimations are made 

only using past and present instants of solar radiation and the UV index. This is particularly 

important since UV index measurement equipment usually has a lower cost than global 

radiation ones.  

For future work, it could be interesting to test other prediction techniques based on artificial 

intelligence, such as random forests, decision trees, and short-term memories, among others. 

This methodology and models can be generalized to be used with other variables or time 

series. 
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