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RESUMEN

Contexto: Este trabajo presenta diferentes modelos basados en redes neuronales artificiales,
entre ellas las NNARX, para la estimacion de la radiacion solar global a partir de mediciones
del indice UV. El objetivo es determinar la eficiencia de los modelos estudiados para estimar
la radiacion solar global en términos del coeficiente de determinacion (R?), la raiz del error

medio cuadratico (RMSE) y el error absoluto medio (MAE).
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Metodologia: Se divide en cuatro etapas: i) conformacion del set de datos de entrenamiento
(en este caso se utiliza un set de entrenamiento de 213.019 datos recolectados durante 5 afios
en la ciudad de Pasto, Colombia, con la estacion Davis Vantage Pro 2.0); ii) pre-
procesamiento de los datos para remover datos erroneos e inusuales; iii) definicion de
modelos basados en redes neuronales artificiales recurrentes y convencionales basandose en
un andlisis de topologias, e.g. NNFIR y NNARX; iv) entrenamiento de los modelos y
evaluacion de la eficiencia de la estimacion por medio de métricas como R2, RMSE y MAE.
Para validar el modelo se utilizaron datos recolectados durante el ultimo afio, los cuales no
se incluyeron en el entrenamiento.

Resultados: Los modelos de estimacion de radiacion solar global basados en NNARX
presentan la mejor eficiencia en la estimacion en comparacion con redes neuronales
convencionales. EI modelo NNARX221 presenta un RMSE de 54,32 y un MAE de 18,06
w/m2,

Conclusiones: Los modelos NNARX tienen una gran eficiencia para estimar la radiacion
solar global, en el mejor de los casos con un coeficiente de determinacién de 0,9697. Los
modelos mas eficientes se caracterizan por utilizar dos instantes pasados y el instante actual
de indice UV y realimentar dos instantes pasados de su propia salida de radiacién estimada.
Ademas, los resultados numéricos muestran que la contribucion de la temperatura y humedad
relativa no es relevante para mejorar la eficiencia de la estimacion de la radiacion solar global.
Estos modelos pueden ser particularmente importantes dado que solamente utilizan
mediciones realizadas con sensores de indice UV que son menos costosos que los sensores

de radiacion solar.
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ABSTRACT

Context: This work presents different models based on artificial neural networks, among
them NNARX, for estimating global solar radiation from UV index measurements. The
objective is to determine the efficiency of the models studied to estimate global solar
radiation in terms of the coefficient of determination (R?), the root-mean-square error
(RMSE), and the mean absolute error (MAE).

Methodology: It is divided into four stages: i) conformation of the training dataset (in this
case, it uses a training set of 213.019 data collected over five years in the city of Pasto,
Colombia, with the Davis Vantage Pro 2.0 station); ii) pre-processing of data to remove
erroneous and unusual data; iii) definition of models based on recurrent and conventional
artificial neural networks according to an analysis of topologies, e.g. NNFIR and NNARX;
iv) training of the models and evaluation of the estimation efficiency through metrics such
as R%, RMSE, and MAE. To validate the model, a new dataset collected during the last year
was used, which was not included in the data training.

Results: The global solar radiation estimation models based on NNARX show the best
estimation efficiency compared to conventional neural networks. The NNARX221 model
has an RMSE of 54,32 and a MAE of 18,06 w/m?.

Conclusions: NNARX models are highly efficient at estimating global solar radiation, with
a coefficient of determination of 0,9697 in the best of cases. The most efficient models are
characterized by using two past times and the current UV index instant, and they feed from

two past times of their own estimated radiation output. Furthermore, the numerical results



show that the contribution of temperature and relative humidity is not relevant to improving
the efficiency of the estimation of global solar radiation. These models can be particularly
important since they only use measurements made with UV index sensors, which are less

expensive than solar radiation ones.

Keywords: recurrent neural network, Davis Vantage PRO 2.0, solar radiation model, solar

radiation, UV index

INTRODUCTION

Solar radiation data have become important due to the increase in the use of solar energy. In
general, solar radiation data are obtained from long-term monitoring stations, and they are
used for photovoltaic applications or thermal heating, cooling, or drying systems.

To design an accurate photovoltaic system according to a specific zone, it is necessary to
perform an irradiance study using radiation sensors such as pyranometers, pyrheliometers, or
sunphotometers. However, this kind of sensors are usually expensive, especially in cases
where a large number of them is necessary.

The literature has several models and studies used to detect radiation at lower costs (Cruz-
Colén et al., 2012). Chacon et al. (2008) and Ortiz et al. (2005) developed a low cost
irradiance sensor that describes the electric behavior of a photovoltaic module using an
exponential model applied to a solar cell. The maximum error between the estimated and
measured irradiance was 1,11%. Abe et al. (2020) proposed a sensor based on a
phototransistor. They used the arithmetic mean for the ungrouping data method (Viljoen &
Merwe, 2000). The results of the simulation showed a determination coefficient (R?) of

0,99099 with respect to the pyranometer. Mancilla-David et al. (2014) introduced a solar



irradiance sensor using a photovoltaic cell, a temperature detector, and a low-cost
microcontroller programmed with an artificial neural network to determine the irradiance.
Under ordinary operating conditions, simulation and experimental results showed that these
methods can obtain an accurate estimation. However, it is difficult to collect complete data
to train these soft sensors. In addition, as time passes, a solar cell will change its electrical
characteristics.

Sayago et al. (2011), Ruiz-Cérdenas et al. (2016), and Moreno et al. (2012) used neural
network models capable of estimating solar radiation through meteorological variables such
as temperature, relative humidity, wind speed, and rainfall. The results show determination
coefficients between 0,80 and 0,86 and root mean square errors values (RMSE) between 25
and 48%. Khan et al. (2013), Capizzi et al. (2012), and Aliberti et al. (2021) explored models
to estimate global solar radiation based on artificial neural networks (ANN), e.g. second-
generation Wavelets with ANN, Long Short-Term Memory (LSTM), Feed-Forward Neural
Networks (FFNN). The results show that the best models reached a correlation coefficient of
0,98 for Wavelet and ANN. The model based on LSTM obtained an RMSE equal to 113
wh/m? and a determination coefficient of 0,9744. Hernandez-Mora et al. (2013) developed a
statistical methodology to determine solar irradiance and the ambient temperature from real
measurement data, collected every hour from six in the morning to six in the afternoon. The
Anderson-Darling test (Anderson & Darling, 1952; Torres, 2002) was applied to these data,
thus achieving a correlation coefficient higher than 0,96 for each hour. Despite being a
reliable model, it is necessary to have a database of at least five years. Obando et al. (2019)
presented a literature review of ANN models for solar radiation estimation. It analyses
different ANN structures under several performance criteria, providing a decision

methodology to evaluate ANN models for solar radiation prediction.



Korachagaon et al. (2015) proposed several polynomial models to estimate global solar
radiation using variables such as, ratio of duration of sunshine to maximum sunshine hours,
mean temperature, and mean relative humidity. The models allow estimating radiation at any
location of the earth’s surface. Some results showed that the least RMSE is within 0,185, and
a correlation coefficient of the measured and estimated global solar radiation was found to
be 0,52494. Likewise, Eraso-Checa et al. (2018) proposed a polynomial to estimate global
radiation from the UV index, which is valid for Pasto, Colombia. The results showed a
correlation factor of 0,9642, and the RMSE is 30,90, which is acceptable for mid-range and
low-end measurement devices.

The main contribution of this paper is that it explores the relationship between the UV index
and solar radiation. The responses of these variables have a similar behavior, and the spectral
response curves denote similar characteristics. This work uses an ANN trained with radiation
and UV index data, and it determines the radiation based on UV index measurement and
time. This estimation model becomes relevant because UV sensors are cheaper than radiation
sensors, and generally they occupy less space.

This paper is organized as follows: first, it presents the theoretical aspects related to the UV
index and irradiance; second, the methodology is presented and described; third, all recurrent
neural networks based on NNARX models are presented; and finally, the results and

conclusions are presented.

METHODOLOGY
Solar radiation

The Sun is the Earth’s main energy source. This star emits electromagnetic radiation of

different frequency and wavelength in the electromagnetic spectrum. Solar radiation in the



atmosphere has a wavelength between 150 nm and 4.000 nm, where 7% corresponds to
ultraviolet radiation, 47% to visible radiation, and 46% to infrared radiation (Eraso-Checa et
al., 2017; Waurfel, 2009). However, the wavelength that reaches the Earth’s surface is
attenuated to a range between 380 and 780 nm (Narvdez & Hernandez, 2013) due to
absorption, reflection, and scattering phenomena. This also means that the global radiation
on the surface is composed of beam, diffuse, and reflected radiation (Jaguer et al., 2006).
Another parameter that attenuates solar radiation is the optical air mass, which is the path
length that sunlight follows through the atmosphere (Jaguer et al., 2014).

Figure 1 shows the power received per unit surface exposed to radiation for each wavelength
at the outer side of the Earth’s atmosphere. It shows that the visible part of the spectrum has
the large area between 400 nm and 700 nm, with a spectral irradiance peak around 2.000
W/m2.nm. Ultraviolet (UV) light occupies the high energetic part of the spectrum.

The integration of spectral irradiance over wavelength corresponds to the irradiance, which
is a power per unit area (W/m? or joules/m?sec). This is a magnitude scale that includes the
complete wavelength information. Radiation measuring equipment gives the solar radiation

response as irradiance (W/m?).
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Figure 1. Extra-terrestrial solar spectrum

Source: Wurfel (2009)

UV index
UV radiation is just a part of the solar spectrum at high frequencies (>10% Hz). This means
that it is very energetic and can ionize atoms by electrically charging them (Casal, 2010).
Photon energy ranges from 3,2 eV up to 1,2x10%eV (Bohorquez-Ballén & Pérez-Mogollon,
2007). UV radiation allows human beings to assimilate vitamin D and, in plants, it makes
photosynthesis possible. However, it also has negative effects if there is prolonged exposure,
especially in human health (it breaks biological molecules, damages the eyes and skin, it
causes cancer, etc.) (Bohorquez-Ballén & Pérez-Mogollén, 2007).
UV radiation is divided into three regions (Ryer, 1988):

e UV-A: (315-400 nm): It is the least harmful to human beings, and its intensity reaches

the terrestrial surface.



e UV-B (280-315 nm): It is toxic to life and can destroy it. Ozone absorbs this energy
(approximately 90%) and prevents it from reaching the Earth (Casal, 2010).
e UV-C (100-280 nm): Its collision with oxygen atoms causes 0zone generation, and it

does not reach the Earth. This radiation would destroy life.

According to Lucas et al. (2006), ambient UV radiation can be measured using a
representation of the wavelength variation in the production of skin erythema. The UV index
is an instance of this representation (the other are SED and MED). It is defined as the time-
weighted average effective UV irradiance multiplied by 40, and it is expressed as power per
unit area (W/m2).

Figure 2 shows the behavior of both spectral irradiance and the erythemal action spectrum in

the UV region.
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Figure 2. UV spectral irradiance and erythemal action spectrum

Source: National Services Centre (n.d.)



The UV index is categorized as shown in Table 1, and the values range from 0 on. The higher
the index value, the greater potential damage to the skin in the less time.

Table 1. UV index categorization

UV Index Danger Category
0-2 Low

3-5 Moderate

6-7 High

8-10 Very High

11+ Extreme

Source: based on National Services Centre (n.d.)

Methodological process

To develop and validate the estimation model, a methodological process was carried out,
which was adapted from Eraso-Checa et al. (2018). In this case, the methodology used is
composed of a typical process that increases estimation reliability. In Figure 3, the

methodological process is shown.
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A set of climatic variables (UV index, temperature, humidity, and solar radiation) was
extracted from the Davis Vantage PRO station. In this case, the dataset is made up of
approximately 305.000 data for each variable from 2013 to 2018. Since the first data are raw,
it was necessary to remove spurious and erroneous data using an inspection algorithm. This
process removes not-a-number data, data equal to infinity, and unusual data such as out-of-
range values that are physically impossible to reach. Finally, a training dataset of 213.019
data and a validation dataset of 91.696 were obtained.

After that, solar radiation was estimated with following steps: first, the estimation model
based on neural networks (NN) was defined, considering estimation structures and inputs;
secondly, the structure was trained using the dataset; then, there was an evaluation process
using the validation dataset, which calculated some predefined metrics such as mean absolute
error (MAE), root mean square error (RMSE), and the coefficient of determination (R?).
Estimation models based on ANNs

Different nonlinear models based on ANNs were used to estimate solar radiation. Mainly,
two different ANN structures were used to model the estimators: Neural Network Finite
Impulse Response (NNFIR) structure and Neural Network Autoregressive with Exogenous
Input (NNARX).

NNFIR is a simple model estimator fed with external excitations to make a prediction. Figure
4 shows, on the left side, a NNFIR that does not have feedback. NNARX is a recurrent neural
network. On the right side of Figure 4, the network uses external excitations and past instants

to make a prediction.
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more inputs (ul(-), s uj(-)), and past instants of the estimated output (37(-)) in case of the

NNARX structure. For more details on NNARX and NNFIR structures, see their description

in the referenced literature (Norgaard et al. 2000).

In addition, this paper proposes to use the temperature as part of the estimator, aiming to
compensate the lack of information of the reduced band in the UV index sensor. In that way,
it is possible to quantify the contribution of the temperature in the estimation of solar
radiation. To differentiate the models, models that use UV index and/or estimated radiation
are denoted with a at the end, and the estimation models that use temperature in addition to
the UV index and/or estimated radiation are denoted with b at the end. The definitions of

these models are shown below, and they are summarized in Table 2.

R(:) is the global solar radiation, UV () is the UV index, T(:) is the ambient temperature,
and k is the time instant. NNFIR and NNARX structures are configured as follows: one
hidden layer with 20 neurons, sigmoidal activation function, and Bayesian Regularization as

the training algorithm.



Table 2. Mathematical definition of the NNFIR and NNARX models

Model Mathematical definition

NNFIRa R(k) = f(UV(K))

NNFIRb R(k) = f(UV(k), T(k))
NNARX111a R(k) = f (R(k — 1), UV(k), UV (k — 1))
NNARX111b R() = f(RGk = 1), UV(K), UV (k —1),T(k), T(k — 1))
NNARX211a R(k) = f (R(k —1), R(k — 2), UV (k), UV (k — 1))

NNARX211b R(k) = f(R(k — 1), R(k —2), UV(k), UV(k — 1), T(k), T(k — 1))
NNARX221a  R(k) = f(R(k — 1), R(k —2), UV (k), UV (k — 1), UV(k — 2))
R(k) = f(R(k —1), R(k —2), UV(k), UV(k — 1),

NNARX221b
Uv(k —2), T(k), T(k — 1), T(k — 2))

Source: Authors

RESULTS

In this section, the first part describes the station that collected the raw data. The second one
describes the training and validation processes, and then the estimation results are presented

by figures and tables with the evaluation metrics.

Meteorological station and data set

Solar radiation, the UV index, temperature, and humidity data were collected from November
2013 to December 2018 using the DAVIS Vantage Pro 2.0 meteorological station. This
equipment uses the 6450 solar radiation sensor (Davis Instruments, 2014a) and the 6490 UV
sensor that measures the global solar UV index (Davis Instruments, 2014b).

After applying the methodological process to 305.172 data, a training dataset of 213.019
elements and a validation set of 91.696 data for each variable (30% of total data) were

obtained. There were 457 spurious and erroneous data, as shown in Figure 5.
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Figure 5. Use of data in the solar radiation estimation process

Source: Authors

Numerical results

The NN MATLAB toolbox was used to train the eight proposed estimation models. Each
model was trained using its corresponding dataset (inputs, outputs, and validation dataset).
The following Figures show the solar radiation estimation results using a random day from

the validation data set.
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Figure 6. Solar radiation estimation using NNFIR1 and NNFIR2 structures
Source: Authors
As shown in Figure 6, the radiation estimation with the NNFIRa and NNFIRD structures was

able to follow the general behavior of the measured radiation. However, the error increases



due to instant radiation changes. These models have an estimation error of i38.80% and

w .
+42.71—, respectively.
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The NNARX111a and NNARX111b structures improve the estimation of solar radiation

- \"'4 W - - - - - -
reducing the error to 126.605 and +28.61 — respectively (Figure 7). This optimization

occurs because these structures make a prediction using past and present data. Therefore,

they have a measurement radiation rate that is used to predict the next radiation value.
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Figures 8 and 9 show the NNARX211a, NNARX211b, NNARX221a, and NNARX221b
structures. These kind of structures reduce the error between i26.27% and +24.53 %

This is posssible because the network makes a prediction from two past instants. In the same
way, predictions with structures that include more than two past instants were developed.
Nevertheless, the error does not reduce its value significantly.

From Figures 7-9, it can be noticed that the differences between type a and b models are not
significant. Despite this, type b models use other variables (temperature, humidity) to
complement the estimation in contrast with type a models, which only use the input variable
and the past instants. These additional variables do not significantly reduce the error. In
contrast, the error increases in some cases.

According to the numerical results presented in Table 3, considering the validation data set
(91.696 elements), type a models have a similar behavior to type b ones. Type b models have
a smaller RMSE and a bigger R? coeficient in comparison with type a models. In contrast,
type a models have a smaller MAE than type b models. However, the differences between
models a and b are not significant.

Table 3. Numerical results of estimation models for the validation dataset



Structure/Metric RMSE MAE R?

NNFIRa 87,855 42,526  0,92294
NNFIRDb 86,863 41,301  0,92489
NNARX111a 55,835 18,624  0,96805
NNARX111b 55,532 18,643  0,96838
NNARX211a 55,066 18,314  0,96895
NNARX211b 54,809 18,347  0,96925
NNARX221a 54,710 17,905  0,96927
NNARX221b 54,321 18,069  0,96971

Source: Authors
Also, NNARX221a and NNARX221b have the best performance in terms of RMSE, MAE,

and R? compared to other estimation models.
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Figure 10. Comparison between estimation structures NNARX221a and NNARX221b for a
random day

Source: Authors

As seen in the Figure 10 and Table 3, the differences between estimation structures
NNARX221a and NNARX221b are not significant. Hence, the contribution of the auxiliary
variables (temperature and humidity) in the estimation of solar radiation is not relevant. In
this sense, the NNARX221a model has the best performance (based on R?) only using past
and present instants of solar radiation and the UV index.

CONCLUSIONS



This similarity in graphical patterns between the UV index information recorded with the
6490 Davis sensor and the solar radiation data recorded with the 6450 Davis sensor allow
estimating solar radiation based on UV index. For this process, there were two NNFIR and
eight NNARX-trained structures. The best performance corresponds to a NNARX221
structure that makes a prediction using two past instants that include the UV index and its
own outputs. It shows a determination coefficient (R?) of 0,9697, a RMSE equal to 54,32,
and a MAE of 18,06 w/m?. Because of that, the use of this structure allows the determination
of solar radiation in an accurate way using the UV index.

The numerical results show that the contribution of the auxiliary variables (temperature and
humidity) in the estimation of solar radiation is not relevant. The best estimations are made
only using past and present instants of solar radiation and the UV index. This is particularly
important since UV index measurement equipment usually has a lower cost than global
radiation ones.

For future work, it could be interesting to test other prediction techniques based on artificial
intelligence, such as random forests, decision trees, and short-term memories, among others.
This methodology and models can be generalized to be used with other variables or time

series.
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