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ABSTRACT 

Objective: In this paper, different approaches to how the penetration of electric vehicles 

(EV) can be modeled in power networks are reviewed. The performance of three probabilistic 

electric vehicle charging load approaches considering four levels of penetration of EV is also 

evaluated and compared. 

Methodology:  A detailed search of the state-of-the-art in charging load modeling strategies 

for electric vehicles is carried out, where the most representative works on this subject were 

compiled. A probabilistic model based on Monte Carlo Simulation is proposed, and two more 

methods are implemented. These models consider the departure time of electric vehicles, the 

arrival time, and the plug-in time, which were conceived as random variables.  

Results:  Histograms of the demand for charging of electric vehicles were obtained for the 

three models contemplated. Additionally, a similarity metric was calculated to determine the 

distribution that best fits the data of each model. The above was done considering 20, 200, 

2.000, and 20.000 electric vehicles on average. The results show that, if there is a low 

penetration of electric vehicles, it is possible to model the EV charging demand using a 

gamma distribution. Otherwise, it is recommended to use a Gaussian or lognormal 

distribution if there is a high EV penetration. 

Conclusions: A review of the state of the art of the modeling of electric vehicles under a 

G2V approach is presented, where three groups are identified: deterministic approaches, 

methods that deal with uncertainty and variability, and data-driven methods. Additionally, it 

was observed that EVCP model 3 and gamma distribution could be appropriate for modeling 

the penetration of electric vehicles in probabilistic load flow analysis or for stochastic 

planning studies for active distribution networks. 
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RESUMEN 

Objetivo:  En este artículo se revisan diferentes enfoques sobre cómo modelar la penetración 

de los vehículos eléctricos (EV) en los sistemas eléctricos de potencia. También se evalúa y 

compara experimentalmente el desempeño de tres enfoques probabilísticos de demanda de 

carga de vehículos eléctrico considerando cuatro niveles de penetración de EV. 

Metodología: Se realiza una búsqueda detallada del estado del arte de estrategias de 

modelado de carga de carga para vehículos eléctricos, donde se recopilaron los trabajos más 

representativos sobre este tema. Se propone un modelo probabilístico basado en la simulación 

de Monte Carlo y se implementan dos métodos más. Estos modelos tienen en cuenta la hora 

de salida de los vehículos eléctricos, la hora de llegada y la hora que se conectan a la red, las 

cuales fueron concebidas como variables aleatorias. 

Resultados: Se obtuvieron histogramas de la demanda de carga de los vehículos eléctricos 

para los tres modelos contemplados. Adicionalmente, se calculó una métrica de similitud 

para conocer la distribución que mejor se ajusta a los datos de cada modelo. Lo anterior se 

realizó considerando 20, 200, 2.000 y 20.000 vehículos eléctricos en promedio. Si se tiene 

una baja penetración de vehículos eléctricos, es posible modelar la demanda de estos usando 

una distribución gamma. De lo contrario, se recomienda usar una distribución Gaussiana o 

lognormal si se tiene una alta penetración de EV. 

Conclusiones: Se presenta una revisión del estado del arte en el modelado de vehículos 

eléctricos bajo un enfoque G2V, donde se identificaron tres grupos: los enfoques 

deterministas, los métodos que tratan la incertidumbre y la variabilidad y los métodos 



basados en datos. Adicionalmente, se observó que el modelo EVCP 3 y la distribución 

gamma pueden ser apropiados para modelar la penetración de vehículos eléctricos en análisis 

de flujo de carga probabilístico o para estudios de planeamiento estocástico en redes de 

distribución activas. 

Financiamiento: Institución Universitaria Pascual Bravo 

Palabras clave: demanda de carga de vehículos eléctricos, simulación de Monte Carlo, 

modelado probabilístico 

INTRODUCTION 

Due to the current debate around global warming, many countries have created numerous 

strategies to combat this issue. One of these strategies is the inclusion or penetration of 

electric vehicles (EVs) to the power grid (Alahyari et al., 2019). Nevertheless, the inclusion 

of this technology to the power grid is not only to fight against global warming; this 

penetration can also achieve an efficient operation of the power grid (Alahyari et al.,2019). 

All of this brings benefits to combat the aforementioned issue. However, this technology 

introduces new challenges that must be addressed. For example, with the penetration of EVs, 

it is not only evident that there is an increased electricity consumption in the power grid, 

along with the introduction of new load variations, but impacts have also been identified on 

transportation, manufacturing, and the economy (Li et al., 2019). These impacts depend on 

when EVs are connected for charging, where they are connected, and at which charging 

power (Grahn et al., 2011). Therefore, these factors must be considered in the operation, 

planning, and analysis of modern power grids such as active distribution networks or grid-

connected microgrids (Alahyari et al., 2019). The penetration of EVs in studies on power 

network analysis has been widely addressed (Alahyari et al., 2019; Li et al., 2019; Kongjeen 

et al., 2019), and it can be supported by following several charging opportunities: 



unidirectional charging, bidirectional charging, uncontrolled charging, external charging 

strategies, and individual charging strategies (Grahn et al., 2011). Uncontrolled charging 

(UCC) means that EV users travel and park as they choose and connect their EVs when there 

is a need to recharge the battery. External charging strategies imply that the charging may 

somehow be controlled externally, based on the information of the power grid. Finally, 

individual charging strategies indicate that the individual can be seen within an UCC 

approach, but also that individuals may adjust their charging behavior based on economic 

incentives. For example, in the literature, it is commonly assumed that the penetration of EVs 

is modeled as a UCC unidirectional charging approach, which only considers the power flow 

in the grid-to-vehicle (G2V) direction. External charging strategies could be based on either 

unidirectional or bidirectional charging, which can consider a power flow in the vehicle-to-

grid (V2G) direction. From the literature, one comes across reviews that organize their 

analysis about of EV charging technologies, EVs standards, charging infrastructure, or the 

impacts on power grid integration. However, there are few studies that focus on analyzing 

the different methodologies that have emerged using the G2V philosophy. In this article, we 

review different G2V approaches. Additionally, we perform an experimental comparison 

with three probabilistic models and evaluate their performance considering four levels of EV 

penetration. 

 

EV CHARGING LOAD MODELING 

Several approaches for modeling EV load have been proposed in the past. According to Yi 

and Scoffield (2018), we can find, for example, deterministic EV load modeling techniques 

(Kongjeen et al., 2019), Monte Carlo simulation approaches (MCS) (Li & Zhang, 2012), 

fuzzy methods (Shahidinejad et al., 2012), hybrid Fuzzy-MCS methods (Ah-madian et al., 



2017) and many other techniques (Stiasny et al., 2021; Frendo et al., 2020) to model the EV 

load. In this paper, we intend to classify these methods into three groups: deterministic, data-

driven, and uncertainty/variability approaches. 

Deterministic approaches 

In deterministic EV load modeling, several methods assume that EV parameters are known 

(Yi & Scoffield, 2018). For example, the available period, the arrival or departure times of 

vehicles, and the travelling distance are already known or fixed by the power grid operator, 

that is, EVs can be seen as stationary energy storage (Yi & Scoffield, 2018). On the other 

hand, it is possible to find studies that have used measurement-based load modeling 

approaches to estimate the load model for electric vehicle fast-charging stations (Gil-Aguirre 

et al., 2019). Basically, the authors estimate the parameters of the ZIP or polynomial load 

models, minimizing the discrepancy between the real measurement load and the simulated 

load responses (Gil-Aguirre et al., 2019). Kongjeen et al. (2019) implemented a modified 

backward and forward sweep method for analyzing the impact levels from EV load models 

on the grid based on constant current load and voltage-dependent loads. These deterministic 

EV load modeling approaches are also known as traditional methods. 

Data-driven approaches 

Due to the large amount of real-time driving data, by using these deterministic models, it is 

difficult to accurately capture the driving patterns (Li et al., 2019). These patterns show the 

usage behaviors of drivers and directly affect the energy consumption of EVs. Data-driven 

models are constructed from large historical data to model the underlying realistic EV 

charging behaviors. Based on these data-driven models, residential EV charging load profiles 

can be generated with regard to different numbers of households and charging rates. 

According to Li et al. (2019), these methods should be scalable and flexible frameworks. 



Some data-driven methods have been proposed to describe EV charging patterns and analyze 

EV driving data. For example, data mining methods such as clustering (Yi & Scoffield, 2018; 

Li et al., 2019), correlation analysis (Xydas et al., 2016), stochastic prediction (Ashtari et al., 

2012), and time-series clustering (Zhou et al., 2017) are commonly employed to examine EV 

driving data. Specifically, Zhou et al. (2017) developed a time-series clustering with variable 

weights to analyze the driving cycle of hybrid-electric vehicles. On the other hand, Yi and 

Scoffield (2018) used historical residential charging behavior data to construct probability 

density functions for modeling the charging duration; and then they employed clustering 

based on the k-nearest neighbors (KNN) algorithm for charging decision-making. Li et al. 

(2019) proposed a two-level clustering model to determine the driving patterns of EVs. They 

identified five daily driving patterns and four multifaceted driving patterns that affect the 

daily load curve. However, the authors considered vehicle static parking patterns and did not 

take weather conditions into account. Crozier et al. (2019) introduced a probabilistic model 

based on K-means clustering for UCC of EVs to identify three distinct vehicle usage modes 

in the United Kingdom. However, the cluster number was included as a model parameter. To 

summarize, data-driven methods have a great potential for nonlinear system prediction, and 

the EV charging load can be computed considering different numbers of households and 

charging rates (Yi & Scoffield, 2018). However, these data-driven approaches have a weak 

performance against real-time driving data in low dimension. Although many studies 

mention differences between data-driven and machine learning techniques, we consider that 

both can be included into data-based approaches. We have found several approaches that use 

machine learning theory or concepts to model the EV load, charging behaviors, or driving 

patterns (Gerossier et al., 2019; Godde et al., 2015; Stiasny et al., 2021). Specifically, 

Gerossier et al. (2019) modeled the consumption profile of EVs from raw power 



measurements. From these measurements, the authors detected five kinds of plugs and EV 

batteries in order to determine the power drawn from the grid and the battery capacity using 

the random forest algorithm. On the other hand, Godde et al. (2015) proposed an approach 

for modeling the charging probability of electric vehicles as a Gaussian mixture model 

(GMM). This GMM comprehensively captures the charging profiles, assuming underlying 

assumptions about battery capacity, consumption, charging infrastructure, week day, and 

settlement structure.  Stiasny et al. (2021) also used a GMM to distinguish seven aspects with 

respect to EV load modeling that influence the variables as flows and voltages in the grid. 

Frendo et al. (2020) proposed a data-driven regression model for predicting the EV charging 

demand from a large historical dataset of charging processes. Arias and Bae (2016) presented 

a forecasting model to estimate the EV charging demand using big data technologies. 

Specifically, the authors performed a cluster analysis to classify traffic patterns, a relational 

analysis to identify influential factors affecting the traffic patterns, and a decision tree to 

establish classification criteria, which determines the charging speed and power of an EV. 

Uncertainty/variability approaches 

After having discussed several deterministic, data-driven, and machine learning approaches, 

we would like to present the probabilistic, possibilistic, and stochastic methods that have 

been used to model the EV charging demand. We have decided to name them 

uncertainty/variability approaches due to the fact that these techniques deal with these two 

properties (uncertainty and variability) in the EV charging demand modeling process. In 

many research areas, these two fields are confused about their meaning and use. 

In probabilistic methods, it is possible to find many studies that have used individual 

probabilistic distribution to model the EV charging demand. For example, these studies have 

employed Gaussian (Sun et al., 2015), Weibull (Li & Zhang, 2012), lognormal (Khoo et al., 



2014), exponential distributions (Khoo et al., 2014), mixed probability distributions (i.e, a 

mixture of Gaussian distributions) (Flammini et al., 2019), or non-parametric methods 

(Chung et al., 2018; Chen et al., 2020) to determine the EV charging demand. However, the 

most common and used technique is Monte Carlo Simulation (MCS), which is conducted for 

a large number of samples generated using the probability density functions from several 

input variables (Li & Zhang, 2012; Su et al., 2019). These input variables can be home 

arrival/departure time, daily travelling distance/EV initial battery SoC, EV type, EV battery 

capacity, or EV recharge probability (Su et al., 2019). Many MCS applications can be found 

in the literature. For example, Grahn et al. (2011) analyzed the impact caused by the EV 

charging demand based on uncontrolled and controlled charging scenarios on the distribution 

transformer hot-spot temperature and loss of life by using a thermal model. Similarly, 

Tekdemir et al. (2017) also evaluated the effects of EVs on distribution grids. The authors 

used the MCS and Weibull probability distribution to model the EV charging demand, and 

they also assumed correlated loads on the grid. Under different conditions, Ul-Haq et al. 

(2018) employed MCS to develop an EV charging pattern model that considers the vehicle 

class, battery capacity, SoC, driving habit/need, plug-in time, mileage, recharging frequency 

per day, charging power rate, and dynamic EV charging price. In Ahmadian et al. (2015), a 

probabilistic approach is proposed to model the EV load demand considering home arrival 

time, home departure time, deriving distance, nonlinear characteristics of the battery charge, 

and different vehicle types. The authors used historical information from the National 

Household Travel Survey to obtain the probability distributions. On the other hand, in 

possibilistic approaches, we can find that authors such as Tan and Wang (2014) have 

proposed a load profile for EVs, which considers the arrival time, departure time, daily 

distance travelled, and vehicle parameters in order to obtain a stochastic model of driving 



patterns based on fuzzy logic theory. Hussain et al. (2019) introduced a fuzzy inference 

mechanism to determine an appropriate charging, discharging, or withholding decision for 

EVs. This scheme also considers the available power from the smart grid, arrival time, 

departure time, SoC, and the required stay time of EVs. Ali et al. (2017) proposed a hybrid 

fuzzy-MCS method where the parameters are modeled according to either probabilistic or 

possibilistic approaches. For example, the travelling distance is modeled using a fuzzy 

triangular membership function, while the arrival and departure times are modeled by 

Weibull probability distributions using MCS. 

Finally, in uncertainty and variability approaches, different stochastic methods have been 

applied to model the EV charging demand. In these stochastic methods, we found approaches 

such as auto-regressive integrated moving average (ARIMA) processes (Amini et al., 2016), 

Markov chains (Sokorai et al., 2018), Poisson processes (Jiang et al., 2017), and queue 

theory-based Poisson processes (García-Valle & Vlachogiannis, 2009). A summary of these 

approaches can be seen in Table I. 

 

 



Table 1. EV charging load modeling summary. 

 

Approach  Method Advantage Disadvantage  

Deterministic Voltage-Dependent model (Kongjeen et al., 2019) Low computational 

time. 

Uncertainty and driving 

patterns are not 

considered. 

ZIP models (Gil-Aguirre et al., 2019) 

Uncertainty/Variability Probabilistic Gaussian (Sun et al., 2015), Weibull 

(Li & Zhang, 2012), and lognormal 

(Khoo et al., 2014) distributions 

Uncertainty is 

appropriately modeled. 

They require 

computational effort, 

experience, and many 

input data samples to 

determine the demand 

for EVs. 

Beta (Flammini et al., 2019) and 

Gaussian (Stiasny et al., 2021) 

mixture models 

A non-parametric kernel density 

estimation method (Chen et al., 

2020) 

Stochastic  Markov chain (Sokorai et al., 2018) 

and 



ARIMA (Amini et al., 2016) Poisson 

(Jiang et al., 2017) processes  

Queue theory (García-Valle & 

Vlachogiannis, 2009) 

Possibilistic Fuzzy logic method (Shahidinejad et 

al., 2012) 

Fuzzy logic method with MCS 

(Ahmadian et al., 2017) 

Data-driven K-nearest neighbors (Li et al., 2019) They concentrate many 

of patterns associated 

with the dynamics of the 

EVs. 

They need large 

amounts of data to 

generalize the behavior 

of the demand for EVs. 

Linear regression (Frendo et al., 2020) 

Random forest (Gerossier et al., 2019) 

 

Source: Authors



ELECTRIC VEHICLE CHARGING PROBABILISTIC (EVCP) MODELING 

In cases where the output variables are requested and the system is complex and includes 

uncertainty, probabilistic models of the system are advantageous to use in order to determine 

the behavior of some random variables. In our context, probabilistic modeling can be defined 

as a way of modeling a phenomenon that uses presumed probability distributions of certain 

input assumptions or variables to compute the involved probability distribution for chosen 

output variables (Pergler & Freeman, 2010). One way to achieve this probabilistic modeling 

is using MCS, which is the most commonly used technique for probabilistic modeling. This 

section presents three MCS-based EVCP models. 

EVCP model 1 

For model 1, we have considered the model presented by Su et al. (2019), where the authors 

assumed that the daily travel distance 𝑑 and the plug-in time 𝑡𝑝 of an EV are Gaussian and 

lognormal random variables. The authors also assumed that the state of charge SOC𝑖𝑗 after a 

daily travel distance (𝐷), can be computed from Equation (1) using the efficiency of battery 

power in driving cycles in EVs (𝜂), as follows: 

𝑆𝑂𝐶𝑖𝑗 = 1 −
𝑑

𝐷𝜂
 

(1) 

 

For each EV, the authors calculated the charging duration (𝑡𝑑) to compute the total EV power 

using Equation (2), which is given by 

𝑃𝐸𝑉 = ∑ ∑ 𝑃𝐸𝑉𝑖𝑗

𝑁

𝑗=1

5

𝑖=1

 

(2) 

 

where 



𝑃𝐸𝑉𝑖𝑗
= {

𝑃𝑐 𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑑

0 𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒
 

(3) 

 

 

where 𝑃𝑐 in Equation (3) is the rated charging power, 𝑗 is the MCS iteration, and 𝑖 represents 

the i-th EV in the specific predefined EV fleet, that is, where 𝑖 = {1,2,3,4,5}, which 

represents private EVs, utility EVs, commercial EVs (taxies), electric goods trucks, and 

electric buses, respectively. 

EVCP model 2 

For model 2, we propose an EVCP model that depends on the leaving time from home 𝑡𝑙, the 

time that the EV user is away from home 𝑡𝑎, and the charging efficiency 𝜂 of EVs as random 

variables to compute the energy consumption of EVs. 𝑡𝑙 and 𝑡𝑎 are modeled by Gaussian 

distributions, and 𝜂 is modeled as a uniform distribution. We also consider the five types of 

EVs, similarly to EVCP model 1. For our model, we approximate the minimum charging 

duration time 𝑡𝑚𝑐𝑑 as a function of the initial SOC: 

𝑡𝑚𝑐𝑑
𝑗

=
(𝜂 − 𝑆𝑂𝐶𝑖𝑗)𝐶𝑎𝑝

𝑃𝑐
 

(4) 

 

, 

where 𝐶𝑎𝑝 is the battery capacity, and the connecting time 𝑡𝑐 and the fully charging time 𝑡𝑓𝑐 

are computed as 

𝑡𝑐
𝑗

=  𝑡𝑙
𝑗

+ 𝑡𝑙
𝑗
 

𝑡𝑓𝑐
𝑗

= 𝑡𝑐
𝑗

+ 𝑡𝑚𝑐𝑑
𝑗

 

(5) 

 



From the expressions shown in Equations (4) and (5), the total EV power is calculated from 

Equations (6) and (7), that is, 

𝑃𝐸𝑉 = ∑ ∑ 𝑃𝐸𝑉𝑖𝑗

𝑁

𝑗=1

5

𝑖=1

 

(6) 

 

where 

𝑃𝐸𝑉𝑖𝑗
= {

𝑃𝑐 𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑑

0 𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒
 

(7) 

 

 

EVCP model 3 

The third model was presented by Ahmadian et al. (2015), which we have modified to include 

the specific predefined EV fleet of the EVCP model 1. For this model, the home arrival time 

𝑡𝑎, home departure time 𝑡𝑑, and travelled distance 𝑑 are Gaussian random variables, and 

battery efficiency is uniformly distributed. The SOC is initially computed as in Equation (1). 

The rated charging power 𝑃𝑐 is modelled as a nonlinear function of the SOC, where the SOC 

is recursively calculated as follows: 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 +
100𝑃𝑐𝜂

𝐶𝑎𝑝
 

(8) 

 

 

where 𝜂 represents the efficiency of the EV during driving. Considering the random variables 

mentioned above and Equation (8), the total EV power is calculated using Equations (9) and 

(10). 



𝑃𝐸𝑉 = ∑ ∑ 𝑃𝐸𝑉𝑖𝑗

𝑁

𝑗=1

5

𝑖=1

 

(9) 

 

, 

where 

𝑃𝐸𝑉𝑖𝑗
= {

𝑃𝑐 𝑡𝑝 ≤ 𝑡 𝑎𝑛𝑑 𝑆𝑂𝐶 = 100

0 𝑜𝑡ℎ𝑒𝑟 𝑡𝑖𝑚𝑒
 

(10) 

 

 

 

EXPERIMENTAL EVALUATION  

In this section, we compare the three aforementioned MCS-based EVCP models following 

the procedure shown in Figure 1. In the EV input data block, we use the information in Su et 

al. (2019) as the battery capacity, EV types, charging power, and full endurance mileages. 

On the other hand, for the sampling process block, we use the parameters of Table 2 to 

generate samples for all random variables that feed the three MCS-based EVCP models, and 

then to compute the total EV power. We repeat 𝑁 = 5000 times the procedure shown in 

Figure 1 to obtain the histogram for the EV electric energy consumption. We adopt some 

assumptions about how to use the different EV types employed in Su et al. (2019). For 

example, we consider that 80% of private EVs are plugged into the power grid from 18 to 7 

h, and the remaining 20% is recharged during working hours, that is, from 9 h to 17 h. We 

contemplate three penetration scenarios using 20, 200, 2.000 and 20.000 EVs. To determine 

the number of EVs, we use a Poisson distribution with an expected value 𝜆. For each level 



of penetration, we consider over 60% of private EVs, 20% of utility EVs, 10% of taxis, 5% 

of electric goods trucks, and 5% of electric buses. 

 

Figure. 1 Flowchart for comparing the EVCP Models 

Source: Authors 

 

 

 



Table 2. Charging EV parameters for probabilistic modeling (Su et al., 2019). 𝒩(𝜇, 𝜎) is a 

Gaussian distribution with parameters 𝜇 (mean) and 𝜎 (standard deviation); ℒ𝒩(𝜇, 𝜎) is 

the lognormal distribution; and 𝒰(𝑎, 𝑏) is a uniform distribution with parameters 𝑎 and 𝑏. 



 

EV type 

 

Period 

 

Mod

e 

 

Prob. 

 

𝒅 

EVCP 

model 1 

EVCP model 2 EVCP model 3 

𝑡𝑝 𝑡𝑙 𝑡𝑎 𝜂 𝑡𝑎 𝑡𝑑 

 

Private 

9h - 17h Slow 10 ℒ𝒩(3.2,0.92) 𝒩(9,0.9) 𝒩(7,2) 𝒩(10,2) 𝒰(0.88,9) 𝒩(9,0.9) 𝒩(7,2) 

18h - 1h Slow 80 𝒩(18.5,0.1) 𝒩(18.5,0.1) 

9h - 17h Fast 10 𝒩(9,0.9) 𝒩(9,0.9) 

 

Utility 

9h - 17h Fast 30 ℒ𝒩(3.2,0.92) 𝒩(18.5,0.1) 𝒩(17,2) 𝒩(12,2) 𝒰(0.88,9) 𝒩(18.5,0.1) 𝒩(17,2) 

18h - 7h Slow 70 𝒩(12,0.9) 𝒩(6,2) 𝒩(12,0.9) 𝒩(6,2) 

 

Commercial 

0h - 9h Fast 70 𝒩(195.49,49.99) 𝒩(4,2.5) 𝒩(16,2) 𝒩(12,2) 𝒰(0.73,9) 𝒩(4,2.5) 𝒩(16,2) 

9h - 16h Fast 20 𝒩(12,2.5) 𝒩(0,2) 𝒩(12,2.5) 𝒩(0,2) 

16h - 

24h 

Fast 10 𝒩(18.5,0.1) 𝒩(9,0.9) 𝒩(18.5,0.1) 𝒩(9,0.9) 

Goods 

Trucks 

0h - 9h Fast 60 𝒩(201.8,94.42) 𝒩(3,1.5) 𝒩(12,2) 𝒩(10,2) 𝒰(0.73,9) 𝒩(3,1.5) 𝒩(12,2) 

9h - 24h Fast 40 𝒩(14.5,2.8) 𝒩(4,2) 𝒩(14.5,2.8) 𝒩(4,2) 



Bus 22h - 7h Fast 100 𝒩(155,10) 𝒩(22,0.5) 𝒩(5,2) 𝒩(12,2) 𝒰(0.73,9) 𝒩(22,0.5) 𝒩(5,2) 



Source: Authors 

Figure 2 shows the results of the MCS applied to the three EVCP models considering a 

penetration of 20, 200, 2.000, and 2.0000 expected EVs. Note that the EVCP models 1 and 

2 present similar results. On the contrary, EVCP model 3 obtained significant differences in 

the energy consumption of the EVs. On one hand, we observe that the EVCP models 1 and 

2 keep coherence when the number of EVs increases. However, this can only be true if we 

are analyzing similar EVs. On the other hand, from EVCP model 3, note that the energy 

consumption gradually changes as the number of vehicles increases, but it is not consistent 

between one scenario and the other. From the above, it is necessary to improve EVCP models 

1 and 2. 

 

(a) 𝜆 = 20 

 

(b) 𝜆 = 200 

  



(c) 𝜆 = 2.000  (d) 𝜆 = 20.000 

 

Figure 2. Two histograms of the EV charging demand when we apply MCS to the three 

EVCP models considering a penetration of 20, 200, 2.000, and 20.000 expected EVs 

Source: Authors 

We noticed that one of the great differences of models 1 and 2 with model 3 is that the latter, 

in addition to considering the non-linear characteristics of the battery charge, ensures that the 

battery is charged once it is connected to the power grid. From Figure 2, we also noticed that, 

when there is when low EV penetration, the behavior of the energy demand can be modeled 

using a probability distribution. However, when there is a high penetration of EVs, the 

probability that best adjusts to the behavior of EV demand can be a Gaussian or lognormal 

distribution. To this effect, we applied a similarity measure to determine how one probability 

distribution is different from the other, that is, we computed this distance between the real 

probability distribution (obtained by MCS) and a proposed distribution. Specifically, we 

computed the Wasserstein distance (Carrillo & Toscani, 2005) in order to measure the 

similarity between the true data distribution and some proposed distributions. We analyzed 

the Gaussian, lognormal, gamma, and Weibull distributions. To compute this distance, we 

repeated the experiment described above five times using only model 3, that is, we applied 

five times the procedure shown in Figure 1. From the obtained data, we fit the previously 

described distributions to the data. Then, we generated samples from these distributions and 

compared them, using the distance, with the data obtained by applying the MCS of each 

model. Table 3 shows the Wasserstein distance for modeling the EV demand considering the 

previous distributions. We particularly noticed that the gamma distribution can be a different 

modeling alternative for low EV penetration levels. On the other hand, note that the 



lognormal and Gaussian distributions are adequate options for modeling the demand of EVs 

when there is a high penetration. 

Table 3. Wasserstein Distance applied between the real probability distribution and the 

proposed distribution of the EV demand. As proposed distribution, the gamma, lognormal, 

Gaussian, and Weibull distributions were analyzed. 

 

Distribution Wasserstein distance 

20 200 2.000 20.000 

Gamma 17,928 ± 3,2997 18,634 ± 2,5456 58,565 ± 2,3555 235,03 ± 47,933 

Lognormal 21,463 ± 1,7000 26,194 ± 10,059 60,434 ± 18,760 160,02 ± 42,010 

Gaussian 49,735 ± 6,1031 48,164 ± 8,0598 69,243 ± 17,408 169,34 ± 27,718 

Weibull 28,133 ± 1,5911 136,55 ± 21,603 545,91 ± 26,603 1913,2 ± 83,372 

Source: Authors 

CONCLUSION 

A review of the state of the art of the modeling of electric vehicles under a G2V approach 

was presented, where three groups were identified: deterministic approaches, methods that 

deal with uncertainty and variability, and data-driven methods. Additionally, an experimental 

comparison was made with three probabilistic models based on Monte Carlo Simulation. 

From this comparison, we observed that EVCP model 3 and the gamma distribution can be 

appropriate for modeling the penetration of EVs in probabilistic load flow analysis or for 

stochastic planning studies for active distribution networks. As future works, it would be 

possible to consider smart charging strategies within these EVCP models, as well as to 

include more realistic scenarios. 
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