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ABSTRACT

Objective: In this paper, different approaches to how the penetration of electric vehicles
(EV) can be modeled in power networks are reviewed. The performance of three probabilistic
electric vehicle charging load approaches considering four levels of penetration of EV is also
evaluated and compared.

Methodology: A detailed search of the state-of-the-art in charging load modeling strategies
for electric vehicles is carried out, where the most representative works on this subject were
compiled. A probabilistic model based on Monte Carlo Simulation is proposed, and two more
methods are implemented. These models consider the departure time of electric vehicles, the
arrival time, and the plug-in time, which were conceived as random variables.

Results: Histograms of the demand for charging of electric vehicles were obtained for the
three models contemplated. Additionally, a similarity metric was calculated to determine the
distribution that best fits the data of each model. The above was done considering 20, 200,
2.000, and 20.000 electric vehicles on average. The results show that, if there is a low
penetration of electric vehicles, it is possible to model the EV charging demand using a
gamma distribution. Otherwise, it is recommended to use a Gaussian or lognormal
distribution if there is a high EV penetration.

Conclusions: A review of the state of the art of the modeling of electric vehicles under a
G2V approach is presented, where three groups are identified: deterministic approaches,
methods that deal with uncertainty and variability, and data-driven methods. Additionally, it
was observed that EVCP model 3 and gamma distribution could be appropriate for modeling
the penetration of electric vehicles in probabilistic load flow analysis or for stochastic

planning studies for active distribution networks.
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RESUMEN

Objetivo: En este articulo se revisan diferentes enfoques sobre cémo modelar la penetracion
de los vehiculos eléctricos (EV) en los sistemas eléctricos de potencia. También se evalta y
compara experimentalmente el desempefio de tres enfoques probabilisticos de demanda de
carga de vehiculos eléctrico considerando cuatro niveles de penetracion de EV.
Metodologia: Se realiza una basqueda detallada del estado del arte de estrategias de
modelado de carga de carga para vehiculos eléctricos, donde se recopilaron los trabajos méas
representativos sobre este tema. Se propone un modelo probabilistico basado en la simulacion
de Monte Carlo y se implementan dos métodos méas. Estos modelos tienen en cuenta la hora
de salida de los vehiculos eléctricos, la hora de llegada y la hora que se conectan a la red, las
cuales fueron concebidas como variables aleatorias.

Resultados: Se obtuvieron histogramas de la demanda de carga de los vehiculos eléctricos
para los tres modelos contemplados. Adicionalmente, se calculé una métrica de similitud
para conocer la distribucion que mejor se ajusta a los datos de cada modelo. Lo anterior se
realiz6 considerando 20, 200, 2.000 y 20.000 vehiculos eléctricos en promedio. Si se tiene
una baja penetracion de vehiculos eléctricos, es posible modelar la demanda de estos usando
una distribucion gamma. De lo contrario, se recomienda usar una distribucion Gaussiana o
lognormal si se tiene una alta penetracion de EV.

Conclusiones: Se presenta una revision del estado del arte en el modelado de vehiculos
eléctricos bajo un enfoque G2V, donde se identificaron tres grupos: los enfoques

deterministas, los métodos que tratan la incertidumbre y la variabilidad y los métodos



basados en datos. Adicionalmente, se observo que el modelo EVCP 3 y la distribucion
gamma pueden ser apropiados para modelar la penetracion de vehiculos eléctricos en analisis
de flujo de carga probabilistico o para estudios de planeamiento estocéastico en redes de
distribucion activas.
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INTRODUCTION

Due to the current debate around global warming, many countries have created numerous
strategies to combat this issue. One of these strategies is the inclusion or penetration of
electric vehicles (EVs) to the power grid (Alahyari et al., 2019). Nevertheless, the inclusion
of this technology to the power grid is not only to fight against global warming; this
penetration can also achieve an efficient operation of the power grid (Alahyari et al.,2019).
All of this brings benefits to combat the aforementioned issue. However, this technology
introduces new challenges that must be addressed. For example, with the penetration of EVs,
it is not only evident that there is an increased electricity consumption in the power grid,
along with the introduction of new load variations, but impacts have also been identified on
transportation, manufacturing, and the economy (Li et al., 2019). These impacts depend on
when EVs are connected for charging, where they are connected, and at which charging
power (Grahn et al., 2011). Therefore, these factors must be considered in the operation,
planning, and analysis of modern power grids such as active distribution networks or grid-
connected microgrids (Alahyari et al., 2019). The penetration of EVs in studies on power
network analysis has been widely addressed (Alahyari et al., 2019; Li et al., 2019; Kongjeen

et al.,, 2019), and it can be supported by following several charging opportunities:



unidirectional charging, bidirectional charging, uncontrolled charging, external charging
strategies, and individual charging strategies (Grahn et al., 2011). Uncontrolled charging
(UCC) means that EV users travel and park as they choose and connect their EVs when there
is a need to recharge the battery. External charging strategies imply that the charging may
somehow be controlled externally, based on the information of the power grid. Finally,
individual charging strategies indicate that the individual can be seen within an UCC
approach, but also that individuals may adjust their charging behavior based on economic
incentives. For example, in the literature, it is commonly assumed that the penetration of EVs
is modeled as a UCC unidirectional charging approach, which only considers the power flow
in the grid-to-vehicle (G2V) direction. External charging strategies could be based on either
unidirectional or bidirectional charging, which can consider a power flow in the vehicle-to-
grid (V2G) direction. From the literature, one comes across reviews that organize their
analysis about of EV charging technologies, EVs standards, charging infrastructure, or the
impacts on power grid integration. However, there are few studies that focus on analyzing
the different methodologies that have emerged using the G2V philosophy. In this article, we
review different G2V approaches. Additionally, we perform an experimental comparison
with three probabilistic models and evaluate their performance considering four levels of EV

penetration.

EV CHARGING LOAD MODELING

Several approaches for modeling EV load have been proposed in the past. According to Yi
and Scoffield (2018), we can find, for example, deterministic EV load modeling techniques
(Kongjeen et al., 2019), Monte Carlo simulation approaches (MCS) (Li & Zhang, 2012),

fuzzy methods (Shahidinejad et al., 2012), hybrid Fuzzy-MCS methods (Ah-madian et al.,



2017) and many other techniques (Stiasny et al., 2021; Frendo et al., 2020) to model the EV
load. In this paper, we intend to classify these methods into three groups: deterministic, data-
driven, and uncertainty/variability approaches.

Deterministic approaches

In deterministic EV load modeling, several methods assume that EV parameters are known
(Y1 & Scoffield, 2018). For example, the available period, the arrival or departure times of
vehicles, and the travelling distance are already known or fixed by the power grid operator,
that is, EVs can be seen as stationary energy storage (Yi & Scoffield, 2018). On the other
hand, it is possible to find studies that have used measurement-based load modeling
approaches to estimate the load model for electric vehicle fast-charging stations (Gil-Aguirre
et al., 2019). Basically, the authors estimate the parameters of the ZIP or polynomial load
models, minimizing the discrepancy between the real measurement load and the simulated
load responses (Gil-Aguirre et al., 2019). Kongjeen et al. (2019) implemented a modified
backward and forward sweep method for analyzing the impact levels from EV load models
on the grid based on constant current load and voltage-dependent loads. These deterministic
EV load modeling approaches are also known as traditional methods.

Data-driven approaches

Due to the large amount of real-time driving data, by using these deterministic models, it is
difficult to accurately capture the driving patterns (Li et al., 2019). These patterns show the
usage behaviors of drivers and directly affect the energy consumption of EVs. Data-driven
models are constructed from large historical data to model the underlying realistic EV
charging behaviors. Based on these data-driven models, residential EV charging load profiles
can be generated with regard to different numbers of households and charging rates.

According to Li et al. (2019), these methods should be scalable and flexible frameworks.



Some data-driven methods have been proposed to describe EV charging patterns and analyze
EV driving data. For example, data mining methods such as clustering (Yi & Scoffield, 2018;
Lietal., 2019), correlation analysis (Xydas et al., 2016), stochastic prediction (Ashtari et al.,
2012), and time-series clustering (Zhou et al., 2017) are commonly employed to examine EV
driving data. Specifically, Zhou et al. (2017) developed a time-series clustering with variable
weights to analyze the driving cycle of hybrid-electric vehicles. On the other hand, Yi and
Scoffield (2018) used historical residential charging behavior data to construct probability
density functions for modeling the charging duration; and then they employed clustering
based on the k-nearest neighbors (KNN) algorithm for charging decision-making. Li et al.
(2019) proposed a two-level clustering model to determine the driving patterns of EVs. They
identified five daily driving patterns and four multifaceted driving patterns that affect the
daily load curve. However, the authors considered vehicle static parking patterns and did not
take weather conditions into account. Crozier et al. (2019) introduced a probabilistic model
based on K-means clustering for UCC of EVs to identify three distinct vehicle usage modes
in the United Kingdom. However, the cluster number was included as a model parameter. To
summarize, data-driven methods have a great potential for nonlinear system prediction, and
the EV charging load can be computed considering different numbers of households and
charging rates (Yi & Scoffield, 2018). However, these data-driven approaches have a weak
performance against real-time driving data in low dimension. Although many studies
mention differences between data-driven and machine learning techniques, we consider that
both can be included into data-based approaches. We have found several approaches that use
machine learning theory or concepts to model the EV load, charging behaviors, or driving
patterns (Gerossier et al., 2019; Godde et al., 2015; Stiasny et al., 2021). Specifically,

Gerossier et al. (2019) modeled the consumption profile of EVs from raw power



measurements. From these measurements, the authors detected five kinds of plugs and EV
batteries in order to determine the power drawn from the grid and the battery capacity using
the random forest algorithm. On the other hand, Godde et al. (2015) proposed an approach
for modeling the charging probability of electric vehicles as a Gaussian mixture model
(GMM). This GMM comprehensively captures the charging profiles, assuming underlying
assumptions about battery capacity, consumption, charging infrastructure, week day, and
settlement structure. Stiasny et al. (2021) also used a GMM to distinguish seven aspects with
respect to EV load modeling that influence the variables as flows and voltages in the grid.
Frendo et al. (2020) proposed a data-driven regression model for predicting the EV charging
demand from a large historical dataset of charging processes. Arias and Bae (2016) presented
a forecasting model to estimate the EV charging demand using big data technologies.
Specifically, the authors performed a cluster analysis to classify traffic patterns, a relational
analysis to identify influential factors affecting the traffic patterns, and a decision tree to
establish classification criteria, which determines the charging speed and power of an EV.
Uncertainty/variability approaches

After having discussed several deterministic, data-driven, and machine learning approaches,
we would like to present the probabilistic, possibilistic, and stochastic methods that have
been used to model the EV charging demand. We have decided to name them
uncertainty/variability approaches due to the fact that these techniques deal with these two
properties (uncertainty and variability) in the EV charging demand modeling process. In
many research areas, these two fields are confused about their meaning and use.

In probabilistic methods, it is possible to find many studies that have used individual
probabilistic distribution to model the EV charging demand. For example, these studies have

employed Gaussian (Sun et al., 2015), Weibull (Li & Zhang, 2012), lognormal (Khoo et al.,



2014), exponential distributions (Khoo et al., 2014), mixed probability distributions (i.e, a
mixture of Gaussian distributions) (Flammini et al., 2019), or non-parametric methods
(Chung et al., 2018; Chen et al., 2020) to determine the EV charging demand. However, the
most common and used technique is Monte Carlo Simulation (MCS), which is conducted for
a large number of samples generated using the probability density functions from several
input variables (Li & Zhang, 2012; Su et al., 2019). These input variables can be home
arrival/departure time, daily travelling distance/EV initial battery SoC, EV type, EV battery
capacity, or EV recharge probability (Su et al., 2019). Many MCS applications can be found
in the literature. For example, Grahn et al. (2011) analyzed the impact caused by the EV
charging demand based on uncontrolled and controlled charging scenarios on the distribution
transformer hot-spot temperature and loss of life by using a thermal model. Similarly,
Tekdemir et al. (2017) also evaluated the effects of EVs on distribution grids. The authors
used the MCS and Weibull probability distribution to model the EV charging demand, and
they also assumed correlated loads on the grid. Under different conditions, Ul-Haq et al.
(2018) employed MCS to develop an EV charging pattern model that considers the vehicle
class, battery capacity, SoC, driving habit/need, plug-in time, mileage, recharging frequency
per day, charging power rate, and dynamic EV charging price. In Ahmadian et al. (2015), a
probabilistic approach is proposed to model the EV load demand considering home arrival
time, home departure time, deriving distance, nonlinear characteristics of the battery charge,
and different vehicle types. The authors used historical information from the National
Household Travel Survey to obtain the probability distributions. On the other hand, in
possibilistic approaches, we can find that authors such as Tan and Wang (2014) have
proposed a load profile for EVs, which considers the arrival time, departure time, daily

distance travelled, and vehicle parameters in order to obtain a stochastic model of driving



patterns based on fuzzy logic theory. Hussain et al. (2019) introduced a fuzzy inference
mechanism to determine an appropriate charging, discharging, or withholding decision for
EVs. This scheme also considers the available power from the smart grid, arrival time,
departure time, SoC, and the required stay time of EVs. Ali et al. (2017) proposed a hybrid
fuzzy-MCS method where the parameters are modeled according to either probabilistic or
possibilistic approaches. For example, the travelling distance is modeled using a fuzzy
triangular membership function, while the arrival and departure times are modeled by
Weibull probability distributions using MCS.

Finally, in uncertainty and variability approaches, different stochastic methods have been
applied to model the EV charging demand. In these stochastic methods, we found approaches
such as auto-regressive integrated moving average (ARIMA) processes (Amini et al., 2016),
Markov chains (Sokorai et al., 2018), Poisson processes (Jiang et al., 2017), and queue
theory-based Poisson processes (Garcia-Valle & Vlachogiannis, 2009). A summary of these

approaches can be seen in Table I.



Table 1. EV charging load modeling summary.

(Khoo et al., 2014) distributions

Beta (Flammini et al., 2019) and
Gaussian (Stiasny et al., 2021)

mixture models

A non-parametric kernel density
estimation method (Chen et al.,

2020)

Stochastic

Markov chain (Sokorai et al., 2018)

and

Approach Method Advantage Disadvantage
Deterministic Voltage-Dependent model (Kongjeen et al., 2019) | Low computational | Uncertainty and driving
ZIP models (Gil-Aguirre et al., 2019) time. patterns are not
considered.
Uncertainty/Variability | Probabilistic | Gaussian (Sun et al., 2015), Weibull | Uncertainty is | They require
(Li & Zhang, 2012), and lognormal | appropriately modeled. | computational  effort,

experience, and many
input data samples to
determine the demand

for EVs.




ARIMA (Amini et al., 2016) Poisson

(Jiang et al., 2017) processes

Queue theory (Garcia-Valle &

Vlachogiannis, 2009)

Possibilistic | Fuzzy logic method (Shahidinejad et

al., 2012)

Fuzzy logic method with MCS

(Ahmadian et al., 2017)

Data-driven K-nearest neighbors (Li et al., 2019) They concentrate many | They need large
Linear regression (Frendo et al., 2020) of patterns associated | amounts of data to
Random forest (Gerossier et al., 2019) with the dynamics of the | generalize the behavior

EVs. of the demand for EVs.

Source: Authors



ELECTRIC VEHICLE CHARGING PROBABILISTIC (EVCP) MODELING

In cases where the output variables are requested and the system is complex and includes
uncertainty, probabilistic models of the system are advantageous to use in order to determine
the behavior of some random variables. In our context, probabilistic modeling can be defined
as a way of modeling a phenomenon that uses presumed probability distributions of certain
input assumptions or variables to compute the involved probability distribution for chosen
output variables (Pergler & Freeman, 2010). One way to achieve this probabilistic modeling
is using MCS, which is the most commonly used technique for probabilistic modeling. This
section presents three MCS-based EVCP models.

EVCP model 1

For model 1, we have considered the model presented by Su et al. (2019), where the authors

assumed that the daily travel distance d and the plug-in time ¢, of an EV are Gaussian and
lognormal random variables. The authors also assumed that the state of charge SOC;; after a
daily travel distance (D), can be computed from Equation (1) using the efficiency of battery

power in driving cycles in EVs (), as follows:

d 1)

For each EV, the authors calculated the charging duration (t;) to compute the total EV power

using Equation (2), which is given by

N )

5
PEV:ZZPEVU
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where



P,y = {PC ty <t <ty 3
U 0 other time

where P, in Equation (3) is the rated charging power, j is the MCS iteration, and i represents
the i-th EV in the specific predefined EV fleet, that is, where i = {1,2,3,4,5}, which
represents private EVs, utility EVs, commercial EVs (taxies), electric goods trucks, and
electric buses, respectively.

EVCP model 2

For model 2, we propose an EVCP model that depends on the leaving time from home t;, the
time that the EV user is away from home t,, and the charging efficiency n of EVs as random
variables to compute the energy consumption of EVs. t; and t, are modeled by Gaussian
distributions, and n is modeled as a uniform distribution. We also consider the five types of
EVs, similarly to EVCP model 1. For our model, we approximate the minimum charging

duration time t,,.4 as a function of the initial SOC:

i (n —S0C;;)Cyp (4)
tmcd - P
c

where C,,, is the battery capacity, and the connecting time ¢, and the fully charging time ¢,

are computed as

J_ gy
th=t +t] ()
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From the expressions shown in Equations (4) and (5), the total EV power is calculated from

Equations (6) and (7), that is,

5 N (6)
Pgy = Z z PEVl-j
i=1 j=1
where
_{PC t,<t<ty @)
EVij 0 other time
EVCP model 3

The third model was presented by Ahmadian et al. (2015), which we have modified to include
the specific predefined EV fleet of the EVCP model 1. For this model, the home arrival time
t,, home departure time t;, and travelled distance d are Gaussian random variables, and
battery efficiency is uniformly distributed. The SOC is initially computed as in Equation (1).
The rated charging power P, is modelled as a nonlinear function of the SOC, where the SOC

is recursively calculated as follows:

100P. 8)
Cap

SOC, = SOC,_, +

where 7 represents the efficiency of the EV during driving. Considering the random variables
mentioned above and Equation (8), the total EV power is calculated using Equations (9) and

(10).
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EXPERIMENTAL EVALUATION

In this section, we compare the three aforementioned MCS-based EVCP models following
the procedure shown in Figure 1. In the EV input data block, we use the information in Su et
al. (2019) as the battery capacity, EV types, charging power, and full endurance mileages.
On the other hand, for the sampling process block, we use the parameters of Table 2 to
generate samples for all random variables that feed the three MCS-based EVCP models, and
then to compute the total EV power. We repeat N = 5000 times the procedure shown in
Figure 1 to obtain the histogram for the EV electric energy consumption. We adopt some
assumptions about how to use the different EV types employed in Su et al. (2019). For
example, we consider that 80% of private EVs are plugged into the power grid from 18 to 7
h, and the remaining 20% is recharged during working hours, that is, from 9 h to 17 h. We
contemplate three penetration scenarios using 20, 200, 2.000 and 20.000 EVs. To determine

the number of EVs, we use a Poisson distribution with an expected value A. For each level



of penetration, we consider over 60% of private EVs, 20% of utility EVs, 10% of taxis, 5%

of electric goods trucks, and 5% of electric buses.

=)

:

( )
EV Input Data
\_ J

( )
Sampling Process
\_ J

4 )
Compute SOC,;
. J

[ EVCP Model J
N i=j+1 ]
[ End J

Figure. 1 Flowchart for comparing the EVCP Models

Source: Authors



Table 2. Charging EV parameters for probabilistic modeling (Su et al., 2019). V' (u, o) is a
Gaussian distribution with parameters u (mean) and o (standard deviation); LN (u, o) is

the lognormal distribution; and U(a, b) is a uniform distribution with parameters a and b.



EVCP EVCP model 2 EVCP model 3
EV type Period | Mod | Prob. d model 1
e ty t tq n tq ta

9h-17h | Slow |10 LN(3.2,092) | N(9,09) | N(72) | M(10,2) | U(0.88,9) | N(9,0.9) | N(7,2)
Private 18h - 1h | Slow | 80 N(18.5,0.1) N (18.5,0.1)

9h-17h | Fast |10 N(9,0.9) N(9,0.9)

9h-17h | Fast |30 LN (3.2,0.92) | N (18.5,0.1) | N(17,2)] N(12,2) | 1U(0.88,9) | M(18.5,0.1) | N (17,2)
Utility 18h-7h | Slow |70 N(12,0.9) | V(6,2) N(12,0.9) | N (6,2)

Oh-9h |Fast |70 N(195.49,49.99) N (4,2.5) | NM(16,2)] N(12,2) | U(0.73,9) | N(4,25) | N(16,2)
Commercial | 9h-16h | Fast |20 N(12,2.5) | 7 (0,2) N(12,25) | V(0,2)

16h - |Fast |10 N(18.5,0.1) | M(9,0.9 N(18.5,0.1) | M(9,0.9)

24h
Goods Oh-9h |Fast |60 N(201.894.42) | NM(3,1.5) |N(12,2)| M(10,2) | U(0.73,9) | N(3,1.5) | NV(12,2)
Trucks oh-24h | Fast |40 N(14.5,2.8) | NV'(4,2) N(14.5,2.8) | N (4,2)




Bus

22h - 7h

Fast

100

N(155,10)

N(22,0.5)

N(5,2)

N(12,2)

U(0.73,9)

N (22,0.5)

N(5,2)




Source: Authors

Figure 2 shows the results of the MCS applied to the three EVCP models considering a
penetration of 20, 200, 2.000, and 2.0000 expected EVs. Note that the EVCP models 1 and
2 present similar results. On the contrary, EVCP model 3 obtained significant differences in
the energy consumption of the EVs. On one hand, we observe that the EVCP models 1 and
2 keep coherence when the number of EVs increases. However, this can only be true if we
are analyzing similar EVs. On the other hand, from EVCP model 3, note that the energy
consumption gradually changes as the number of vehicles increases, but it is not consistent

between one scenario and the other. From the above, it is necessary to improve EVCP models
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(©) 1 = 2.000 (d) 1 = 20.000

Figure 2. Two histograms of the EV charging demand when we apply MCS to the three
EVCP models considering a penetration of 20, 200, 2.000, and 20.000 expected EVs
Source: Authors

We noticed that one of the great differences of models 1 and 2 with model 3 is that the latter,
in addition to considering the non-linear characteristics of the battery charge, ensures that the
battery is charged once it is connected to the power grid. From Figure 2, we also noticed that,
when there is when low EV penetration, the behavior of the energy demand can be modeled
using a probability distribution. However, when there is a high penetration of EVs, the
probability that best adjusts to the behavior of EV demand can be a Gaussian or lognormal
distribution. To this effect, we applied a similarity measure to determine how one probability
distribution is different from the other, that is, we computed this distance between the real
probability distribution (obtained by MCS) and a proposed distribution. Specifically, we
computed the Wasserstein distance (Carrillo & Toscani, 2005) in order to measure the
similarity between the true data distribution and some proposed distributions. We analyzed
the Gaussian, lognormal, gamma, and Weibull distributions. To compute this distance, we
repeated the experiment described above five times using only model 3, that is, we applied
five times the procedure shown in Figure 1. From the obtained data, we fit the previously
described distributions to the data. Then, we generated samples from these distributions and
compared them, using the distance, with the data obtained by applying the MCS of each
model. Table 3 shows the Wasserstein distance for modeling the EV demand considering the
previous distributions. We particularly noticed that the gamma distribution can be a different

modeling alternative for low EV penetration levels. On the other hand, note that the



lognormal and Gaussian distributions are adequate options for modeling the demand of EVs
when there is a high penetration.

Table 3. Wasserstein Distance applied between the real probability distribution and the
proposed distribution of the EV demand. As proposed distribution, the gamma, lognormal,

Gaussian, and Weibull distributions were analyzed.

Distribution Wasserstein distance

20 200 2.000 20.000
Gamma 17,928 + 3,2997 | 18,634 + 2,5456 | 58,565 + 2,3555 | 235,03 + 47,933
Lognormal 21,463 + 11,7000 | 26,194 + 10,059 | 60,434 + 18,760 | 160,02 + 42,010
Gaussian 49,735+ 6,1031 | 48,164 + 8,0598 | 69,243 + 17,408 | 169,34 + 27,718
Weibull 28,133 +1,5911 | 136,55 + 21,603 | 545,91 + 26,603 | 1913,2 + 83,372

Source: Authors

CONCLUSION

A review of the state of the art of the modeling of electric vehicles under a G2V approach
was presented, where three groups were identified: deterministic approaches, methods that
deal with uncertainty and variability, and data-driven methods. Additionally, an experimental
comparison was made with three probabilistic models based on Monte Carlo Simulation.
From this comparison, we observed that EVCP model 3 and the gamma distribution can be
appropriate for modeling the penetration of EVs in probabilistic load flow analysis or for
stochastic planning studies for active distribution networks. As future works, it would be
possible to consider smart charging strategies within these EVCP models, as well as to

include more realistic scenarios.
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