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Abstract

Objective: This work involves a convex-based mathematical reformulation of the optimal
power flow problem in DC networks. The objective of the proposed optimization model
corresponds to the minimization of the power losses throughout all the network branches
considering a convex conic model that ensures finding the global optimum solution.
Methodology: This work is split into three stages. The first stage presents the mathematical
model of optimal power flow for DC networks and all the geometric features that make it
non-convex. The second stage presents the convex reformulation from a second-order conic
relaxation. The third stage shows the main characteristics of the DC system under study, as
well as the optimal solution of the power flow problem and its comparisons with some
methods reported in the specialized literature.

Results: The numerical validations demonstrate that the proposed convex optimal power
flow model obtains the same solution as the exact model of the problem with an efficiency
of 100%, which is in contrast with the variability of the results that are presented by the
metaheuristic techniques reported as comparison methodologies.

Conclusions: The proposed second-order conic relaxation ensured the convexity of the
solution space and, therefore, the finding of the optimal solution at each execution, in addition
to demonstrating that, for optimal power flow problems in DC networks, the numerical
performance is better than most of the comparative metaheuristic methods and that the
solution provided by the proposed relaxation is equivalent to that provided by the exact
model.

Keywords: direct current networks, second-order conic relaxation, non-linear programming

model, convex optimization



Resumen

Objetivo: Este trabajo plantea una reformulacion matematica de naturaleza convexa del
problema de flujo de potencia éptimo en redes de corriente continua (DC). El objetivo del
modelo de optimizacion propuesto corresponde a la minimizacion de las pérdidas de potencia
en todas las ramas de la red considerando un modelo cénico convexo que garantice el
hallazgo de la solucién 6ptima global.

Metodologia: Este trabajo estd dividido en tres etapas: la primera presenta el modelo
matematico de flujo de potencia 6ptimo para redes DC y todas las caracteristicas geométricas
gue lo hacen no convexo; la segunda presenta la reformulacion convexa a partir de una
relajacion cénica de segundo orden; la tercera etapa presenta las principales caracteristicas
del sistema DC bajo estudio, ademas de la solucién 6ptima del problema de flujo de potencia
y sus comparaciones con algunos métodos reportados en la literatura especializada.
Resultados: Las validaciones numéricas demuestran que el modelo de flujo de potencia
Optimo convexo propuesto encuentra la misma solucién el modelo exacto del problema y
tiene una eficiencia del 100%, lo cual contrasta con la variabilidad de resultados que
presentan las técnicas metaheuristicas reportadas como métodos de comparacion.
Conclusiones: La relajacion conica de segundo orden propuesta garantizo la convexidad del
espacio de soluciones, y, por tanto, el hallazgo de la solucion optima en cada ejecucion.
Ademas, demostro que, para problemas de flujo de potencia éptimo en redes DC, tiene el
mejor desempefio numérico que la mayoria de los metodos metaheuristicos comparativos; y
que la solucion provista por la relajacion propuesta es equivalente a la proveida por el modelo

exacto.
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INTRODUCTION

For decades, distribution networks have been traditionally designed under the alternating
current (AC) paradigm (Starke et al., 2008; Gelani et al., 2019; Garces et al., 2014).
However, in recent years, the accelerated advance in power electronics, renewable
generation, and energy storage systems has steered these distribution networks towards the
direct current (DC) paradigm (Montoya et al., 2020a; Serra & De-Angelo, 2021). This shift
is mainly supported by the following advantages: (i) multiple generation and energy storage
technologies work directly with DC technologies (photovoltaic sources, batteries,
supercapacitors, and superconducting coils), which implies that the number of power
electronic interfaces can be reduced when these are connected to DC networks instead of AC
networks (Lotfi & Khodaei, 2017; Hidalgo-Mora et al., 2014); (ii) DC distribution feeders
are more efficient in terms of voltage profiles and power losses since reactive power and
frequency are non-existing concepts within these grids (Garcés, 2018; Gil-Gonzalez, et al.,
2020; Grisales-Norefia, et al. 2020); and (iii) DC networks are easily controllable since the
main goal is to control the voltage profile in all the buses of the grid without the need for
frequency synchronization (Parhizi, et al., 2015).

To analyze DC distribution networks, the literature has proposed multiple approaches
regarding power flow and optimal power flow analysis. Some of them are nonlinear analysis
of DC grids with constant power loads (Simpson-Porco et al., 2015) and convergence

analysis of the Newton-Raphson and Gauss-Seidel methods (Garcés, 2017, 2018). The most



common approaches in the field are based on second-order, semidefinite programming and
interior point methods under nodal representation of the DC network (Bahrami, et al., 2017;
Li, et al., 2018; Montoya & Gil-Gonzalez, 2021) and metaheuristic approaches based on
particle swarm and genetic algorithm methods (Grisales-Norefia, et al., 2019). It is worth
mentioning that, in the case of optimal power flow analysis, not all methods guarantee
optimum global finding, as is the case of nonlinear programming models and metaheuristics
(except semidefinite and second-order cone programming). Therefore, alternative methods
are required (convex optimization approaches) which find the optimum global by
transforming the non-convex solution space of the original model into a convex equivalent
model via conic representation. For this reason, in this research, we proposed an alternative
branch optimal power flow formulation for DC networks that has previously proposed for
AC networks in (Farivar & Low, 2012), with the advantage that, for a DC grid with n nodes
and | lines, the number of required variables is 2(n+l), whereas existing convex methods
require (n>+n) variables (Li et al., 2018). This contribution may significantly reduce the
efforts in terms of the processing time.

The remainder of this document is organized as follows: the Branch power flow formulation
section presents the exact formulation of the branch optimal power flow model for DC
distribution networks; Conic relaxation describes the second-order cone programming model
with the relaxed branch optimal power flow; Computational validation presents the test
system characteristics and the computational validation of the proposed convex model
regarding metaheuristics and exact methods; and, finally, Conclusions presents the main

concluding remarks of this research, as well as guidelines for future work.






BRANCH POWER FLOW FORMULATION

The power flow problem and its optimization variants (i.e., optimal power flow models) are
classically formulated via nodal representation (Garcés, 2017). In these formulations, it is
intended not to use current and branch power variables, which implies that these must be
calculated once all the voltage variables are known. However, the power flow problem can
be reformulated using branch and nodal variables at the same time by means of the branch-
based power flow formulation (Farivar & Low, 2012). Consider the second Tellegen theorem
applied to each node of the network except the slack node, which provides the following set

of expressions:

) , 1
Pjk — Riifi — z Prm = P VU, k) EE (1)
m:(k,m)€EE

where pj, (prm) is the power flow through the line that connects nodes j and k (k and m,
respectively), i, is the current flowing through the line that connects nodes j and k, py is the
power injection at node k defined as demand minus generation, and R;, represents the

resistive effect in line j-k. Note that E is the set that contains all the branches of the network.

Ohm's law applied at each branch results in

o= Uj — Vg
jk —
Rjy

V(j,k) EE (2)

with v; and v, being the voltage values at nodes j and k, respectively.
The power in the DC networks for each branch is defined as

pjk = vjijk,‘v’(]', k) €EE (3)



To formulate the optimal power flow model, the scientific literature widely uses the
minimization of power losses in all branches, which generates the following nonlinear
programming optimization model:

Obijective function:
. . 4a
min pyes = z Rjx ik (42)
(J,k)EE

Set of constraints:

. . 4b
pie—Rplfe= ) Pim =P V(0 €E (4t)
m:(k,m)€EE
Vi—7V
e = 2% v(j,k) €EE (4c)
Rix
pjk = vjijk'v(i' k) €E (4d)

Remark 1. The optimization model defined in (4) is known in the literate as the optimal
branch power flow model (Farivar & Low, 2012), which is nonlinear and non-convex due to
the square of the currents in (4b) and the product between voltages and currents in (4d).

Note that an equivalent optimization model can be obtained from (4) by making some

algebraic manipulations. To this effect, let us pre-multiply (4c) by v;, which produces
17]'2 - vjvk = Rjkvjijk,V(j, k) €eE (53.)

v:

]2 — R]kpjk = vjvk,V(]', k) €EE (5b)

Now, if we raise (4c) to the square in both sides, we have:
. 2 ..
Rjzkljzk = (v; —v) ", V(. k) €E (62)

Riifi = v — 2vjv + vi,V(j, k) EE (6b)



Note that, if Equation (6b) is substituted into Equation (5b) and some algebraic manipulations
are made, it yields

Vi = v} — 2Rypj + R5i5,V(j, k) €E (7
To obtain an equivalent model, let us define two auxiliary variables, ;, = ijzk and u; = vjz.
With these new variables, the optimal branch power flow model (4) can be rewritten as
follows:

Obijective function:

. 8a
MmN Pipss = Z Rjk ljk (82)
(j,k)EE
Set of constraints:
) 8b
Pjr — Rjljx — Z Prkm = Pr, V(j, k) EE (8b)
m:(k,m)€EE
Up = u]' - ZR]kp]k + R]'zkljk,V(i, k) €eE (8C)
pjzk = ujljk,V(]', k) €eE (8d)

Remark 2. The optimal branch power flow model defined in (8) is still non-convex due to the
presence of the product between auxiliary variables w; and [ in equality constraint (8d).
However, this complication can be dealt with by using a conic relaxation through its

hyperbolic representation, as presented in the next section.

CONIC RELAXATION
Conic optimization is a subfield of convex optimization that allows relaxing some class of
optimization problems using second-order cone constraints (Farivar & Low, 2012), which is

especially attractive when faced with products among continuous variables. Even if the cones



are nonlinear inequality constraints, they are convex since these constraints are in the interior
space of the cone (Benson & Sauglam, 2013). Then, the conic relaxation of the branch
optimal power flow model consists of rewriting (8) with its hyperbolic equivalent (Farivar &

Low, 2012). To do so, let us consider the following relation:

1 2 1 2 . 9
wile = 7 (w + Lie)” =7 (4 = i) VG k) € E 9)
Now, if we substitute (9) into (8d), then, we have
2 2 2 .
(pje)” = (w+ )" — (W — L), V(. k) EE (10a)
2 2 2 .
(2pj)” + (= )" = (w + L), Y(, k) €E (10b)
Observe that (10) can be rewritten using the Euclidean norm as follows:
2p; 11
p]’; = Uj + ljk! V(_], k) €E ( )
Y=Y

Remark 3. The structure of Equation (11) is still non-convex due to the equality sign.
However, as suggested by Farivar and Low (2012), this can be relaxed with a lower-equal

symbol, which allows (11) to become a second order conic constraint.

With the conic relaxation of (12), the branch optimal power flow model defined in (8) takes
the convex structure of (13).
Obijective function:

: 13a
min pipss = Z Rjk ljk (132)
(j,k)€EE

Set of constraints:



. 13b

Pjk — Rjxljx — Z Pkm = Pr, V(. k) EE (13b)
m:(k,m)€EE

uk = u] —_ ZR]kp]k + Rjzkljk,V(j, k) € E (13C)

2pj . (13d)

Remark 4. The most important characteristic of the second-order cone programming branch
optimal power flow model defined in (13) is that it guarantees finding the global optimum
with interior point methods under well-defined voltage and demand conditions (Li et al.,
2018). In addition, this convex relaxation creates a lower number of variables than the
classical convex models reported in the literature, such as semidefinite programming
(Bahrami et al., 2017) and SOCP models that only work with voltage variables (Li et al.,
2018).

It is worth mentioning that this research does not present the methodology for a solution,
since the main contribution of this research is indeed the convexification of the exact
nonlinear programming model (8) using second-order cone programming as presented in
(13). This implies that, due to the convexity of the solution space and of the objective function
with any convex optimizer (e.g., CVX for MATLAB or CVXPY for Python), it is possible

to reach the global optimum of the studied problem with a 100% of repeatability properties.

COMPUTATIONAL VALIDATION
To demonstrate the effectiveness and robustness of the proposed SOCP model presented in
(13), we considered a large-scale medium-voltage distribution network composed of 69

nodes and 68 lines (radial configuration) with the configuration depicted in Figure 1.
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Figure 1. Schematic connection among nodes for the 69-node test feeder

Source: Montoya et al. (2019a)

The 69-node test feeder operates at 12.660 V. All the numerical information of this test feeder
can be consulted in the work by Montoya et al. (2019a). For this test feeder, we considered
the likely dispatch of three distributed generators located at nodes 21, 61, and 64, with
maximum generation capabilities of 12 pu each (Montoya & Gil-Gonzalez, 2021). In
addition, to compare the performance of the proposed SOCP optimization model, we
considered different metaheuristic approaches, typically reported in the literature for optimal
power flow analysis in DC networks, namely black-hole optimization (BHO) (Velasquez et
al., 2019), elephant swarm water search algorithms (ESWSA) (Montoya et al., 2019b),
continuous genetic algorithms (GGA) (Montoya & Gil-Gonzalez, 2021), sine-cosine
algorithms (Giraldo, et al., 2019), vortex search algorithms (Montoya, et al., 2020b), and an
exact approach based on interior points available in the GAMS software (Montoya & Gil-
Gonzaélez, 2021).

Table 1 shows the numerical performance of all the comparative methodologies for optimal

power flow analysis in DC grids. It is worth mentioning that all the metaheuristic methods



were evaluated 100 times to determine the best possible solution reached by each one of

them.

Table 1. Numerical results in the OPF problem with different comparative approaches

Method Generation (kW) Power losses (kW)
BHO [460,21, 1170,28, 639,88] 5,025771
ESWSA [495,80, 1049,55, 699,62] 5,005033
CGA [401,31, 1191,55, 584,05] 4,982861
SCA [499,86, 1199,90, 564,26] 4,557555
VSA [455,47, 1200,00, 584,85] 4,454562
GAMS [453,21, 1200,00, 585,16] 4,454342
SOCP [453,22, 1200,00, 585,17] 4,454342

Source: Authors

The numerical results in Table 1 reveal that:

The best metaheuristic approach for dealing with optimal power problems in DC
distribution networks is to the VSA approach. Its variations regarding the optimal
solution are in the order of milliwatts, which constitutes an exact methodology from
the numerical point of view.

The worst behavior regarding metaheuristics for optimal power flow solution is the
result reported by the BHO. This is due to the fact that it is a simplification of the
classical particle swarm optimizer, which is easily stuck in local optimal solutions
(Gupta et al., 2016).

The proposed SOCP model for optimal power flow analysis in DC distribution
networks allows reaching the global optimum solution for this problem since its

solution matches with the interior point method available in GAMS. This is to be



expected, as the solution of the SOCP models has been elaborated with interior point

methods in the scientific literature (Benson & Sauglam, 2013).

Figure 2 presents the percentage of power losses minimization, considering that the base case

without distributed generation has an initial power loss of about 153,847557 kW.

98

97,04 97,1 97,1 97,1
96,73 96,75 96,76

Improvement [%]
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BHO ESWSA CGA SCA VSA GAMS SOCP

Figure 2. Improvement of the power losses reached by the proposed SOCP reformulation
and the comparative methods

Source: Authors

Note that the results in Figure 1 confirm that VSA, GAMS, and the proposed SOCP approach
are the best methodologies regarding power losses minimization via optimal power flow
analysis with distributed generation. Also, the most important implication of these results is
that, in the case of DC networks, the total power losses can be minimized by up to 90%,
which is not the case, with most of the results reported for the 69-nodes test feeder with

distributed generation around 60% (Kaur, 2014). This difference between both technologies



can be attributed the reactive effects inherent to AC networks, which do not arise in the case
of DC distribution.

CONCLUSION

A second-order cone programming model for optimal power flow analysis in DC distribution
networks that combines nodal and branch variables has been presented in this paper. The
exact nonlinear programming model was convexified via the relaxation of the power sent
from node j to node k, ie., pj = vjij, with its conic equivalent of hyperbolic
representation. The numerical results in the 69-node test feeder demonstrate that the proposed
SOCP model allows reaching the global optimal solution for the optimal power flow problem
in DC distribution networks with distributed generators, given that its results are better than
metaheuristic methods such as BHO, ESWSA, CGA, and SCA. In addition, numerically
speaking, the only metaheuristic method that can reach a near-optimal solution is the VSA
approach, which was compared with the proposed SOPC model and the interior point

methods available in the GAMS software.

Future work

As future work, it will be possible to embed the proposed SOCP model for the optimal power
flow method in a master-slave optimization algorithm guided by a discrete metaheuristic
method (master) to determine the optimal location and sizing of the distributed generators in
DC distribution networks, where the SOCP (slave) proposed model is entrusted with
determining the optimal sizes of these distributed generators for each possible location

provided by the master algorithm.
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