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Innermost stable circular orbits and epicyclic
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Abstract

A full-relativistic approach is used to compute the radius of the innermost stable circular orbit
(ISCO), the Keplerian, frame-dragging, precession and oscillation frequencies of the radial and
vertical motions of neutral test particles orbiting the equatorial plane of a magnetized neutron
star. The space-time around the star is modelled by the six parametric solution derived by Pachón
et al. (2012) It is shown that the inclusion of an intense magnetic field, such as the one of a neutron
star, have non-negligible effects on the above physical quantities, and therefore, its inclusion is
necessary in order to obtain a more accurate and realistic description of physical processes, such
as the dynamics of accretion disks, occurring in the neighbourhood of this kind of objects. The
results discussed here also suggest that the consideration of strong magnetic fields may introduce
non-negligible corrections in, e.g., the relativistic precession model and therefore on the predictions
made on the mass of neutron stars.
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Introduction

Stellar models are generally based on the Newto-nian 
universal law of gravitation. However, consid-ering 
the size, mass or density, there are five classes of 
stellar configurations w here o ne c an recognize 
significant d eviations f rom t he N ewtonian theory, 
namely, white dwarfs, neutron stars, black holes, su-
permassive stars and relativistic star clusters (Misner 
et al. 1973). In the case of magnetized objects, such as 
white dwarfs (∼ 105 T) or neutron stars (∼ 1010 T), 
the Newtonian theory not only fails in describing 
the gravitational field g enerated b y t he m atter dis-
tribution, but also in accounting for the corrections 
from the energy stored in the electromagnetic fields. 
Despite this fact and due to the sheer complexity of 
an in-all-detail calculation of the gravitational and 
electromagnetic fields i nduced b y t hese astrophysi-
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64 Innermost stable sircular orbits

cal objects, one usually appeals to approaches based
on post-Newtonian corrections (Aliev & Özdemir
2002, Preti 2004), which may or may not be enough
in order to provide a complete and accurate descrip-
tion of the space-time around magnetized astrophys-
ical objects. In particular, these approaches consider,
e.g., that the electromagnetic field is weak compared
to the gravitational one and therefore, the former
does not affect the space-time geometry (Aliev &
Özdemir 2002, Preti 2004, Mirza 2005, Bakala et al.
2010, 2012). That is, it is assumed that the electro-
magnetic field does not contribute to the space-time
curvature, but that the curvature itself may affect the
electromagnetic field. Based on this approximation,
the space-time around a stellar source is obtained
from a simple solution of the Einstein’s field equa-
tions, such as Schwarzschild’s or Kerr’s solution, su-
perimposed with a dipolar magnetic field (Aliev &
Özdemir 2002, Preti 2004, Mirza 2005, Bakala et al.
2010, 2012). Although, to some extend this model
may be reliable for weakly magnetized astrophysical
sources, it is well known that in presence of strong
magnetic fields, non-negligible contributions to the
space-time curvature are expected, and consequently
on the physical parameters that describe the physics
in the neighbourhood of these objects.

In particular, one expects contributions to the ra-
dius of the innermost stable circular orbit (ISCO)
(Sanabria-Gómez et al. 2010), the Keplerian fre-
quency, frame-dragging frequency, precession and os-
cillation frequencies of the radial and vertical mo-
tions of test particles (Stella & Vietri 1999, Bakala et 
al. 2010, 2012), and perhaps to other physical prop-
erties such as the angular momentum of the emitted 
radiation (Tamburini et al. 2011), which could reveal 
some properties of accretion disks and therefore of 
the compact object (Bocquet et al. 1995,  Konno et 
al. 1999, Broderick et al. 2000, Cardall et al. 2001). 
In other words, to construct a more realistic theo-
retical description that includes purely relativistic ef-
fects such as the modification of the gravitational in-
teraction by electromagnetic fields, it is necessary to 
use a complete solution of the full Einstein-Maxwell 
field equations that takes into account all the possi-
ble characteristics of the compact object. In this pa-
per, we use the six parametric solution derived by 
Pachón et al. (2006) (hereafter PRS solution), which 
provides an adequate and accurate description of the 
exterior field of a rotating magnetized neutron star 
(Pachón et al. 2006, 2012), to calculate the radius of 
the ISCO, the Keplerian, frame-dragging, precession 
and oscillation frequencies of neutral test-particles 
orbiting the equatorial plane of the star. The main 
purpose of this paper is to show the influence of  the

magnetic field on these particular quantities.
The paper is organized as follows. In section De-

scription of the space-time around the source, we briefly
describe the physical properties of the PRS solution,
the general formulae to calculate the parameters that
characterize the dynamics around the star are pre-
sented in section Characterization of the dynamics
around the source. Sections Influence of the dipolar
magnetic field in the ISCO radius and Keplerian and
epicyclic frequencies are devoted to the study of the
influence of the magnetic field on the ISCO radius
and on the Keplerian and epicyclic frequencies, re-
spectively. The effect of the magnetic field on the en-
ergy E and the angular momentum L are outlined in
section Energy and angular momentum. Finally, the
conclusions of this paper are given in the Concluding
remarks.

Description of the space-time around the 
source

According to Papapetrou (1953), the metric ele-
ment d s2 around a rotating object with stationary 
and axially symmetric fields can be cast as

d s2 =− f (d t −ωdφ)2

+ f −1[e2γ (dρ2+ d z2)+ρ2dφ2],

where f , γ and ω are functions of the quasi-
clyndrical Weyl-Papapetrou coordinates (ρ, z). The
non-zero components of metric tensor, which are re-
lated to the metric functions f ,ω and γ , are

gφφ =
ρ2

f (ρ, z)
− f (ρ, z)ω(ρ, z)2,

gt t =− f (ρ, z),
(1)

and

gtφ = f (ρ, z)ω(ρ, z),

gz z = gρρ =
e2γ (ρ,z)

f (ρ, z)
=

1

g z z =
1

gρρ
.

(2)

By using the Ernst procedure and the line ele-
ment in equation (1), it is possible to rewrite the
Einstein- Maxwell equations in terms of two com-
plex potentials E (ρ, z) and Φ(ρ, z) [see Ernst (1968)
for details]

(ReE + |Φ|2)∇2E =(∇E + 2Φ∗∇Φ) · ∇E ,

(ReE + |Φ|2)∇2Φ=(∇E + 2Φ∗∇Φ) · ∇Φ ,
(3)

where ∗ stands for complex conjugation. The above
system of equations can be solved by means of
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Gutiérrez-Ruiz et al. 65

the Sibgatullin integral method (Sibgatullin 1991,
Manko & Sibgatullin 1993), according to which the
Ernst potentials can be expressed as

E (z,ρ) =
1

π

1
∫

−1

e(ξ )µ(σ)dσ
Æ

1−σ2
,

Φ(z,ρ) =
1

π

1
∫

−1

f (ξ )µ(σ)dσ
Æ

1−σ2
,

where ξ = z + iρσ and e(z) = E (z,ρ = 0) and
f (z) = Φ(z,ρ = 0) are the Ernst potentials on the
symmetry axis. As shown below, these potentials
contain all information about the multipolar struc-
ture of the astrophysical source [see also Pachón &
Sanabria-Gómez (2006) for a discussion on the sym-
metries of these potentials]. The auxiliary unknown
function µ(σ) must satisfy the integral and normal-
ization conditions

−
1
∫

−1

µ(σ)[e(ξ )+ ẽ(η)+ 2 f (ξ ) f̃ (η)]dσ

(σ −τ)
Æ

1−σ2
= 0,

1
∫

−1

µ(σ)dσ
Æ

1−σ2
=π.

(4)

Here η = z + iρτ and σ ,τ ∈ [−1,1], ẽ(η) = e∗(η∗),
f̃ (η) = f ∗(η∗).

For the PRS solution (Pachón et al. 2006), the
Ernst potentials were chosen as:

e(z) =
z3− z2(m+ ia)− k z + i s

z3+ z2(m− ia)− k z + i s
,

f (z) =
q z2+ iµz

z3+ z2(m− ia)− k z + i s
.

(5)

The electromagnetic and gravitational multipole mo-
ments of the source were calculated by using the
Hoenselaers & Perjés method (Hoenselaers & Perjés
1990) and are given by (Pachón et al. 2006):

M0 = m, M2 = (k − a2)m, ...

S1 = a, S3 =−m(a3− 2ak + s), ...
(6)

Q0 = q , Q2 =−a2q − aµ+ kq , ...

B1 =µ+ aq , ... B3 =−aµ+µk − a3q
+ 2akq − q s , ...

(7)

where the Mi s denote the moments related to the
mass distribution and Si s to the current induced by
the rotation. Besides, the Qi s are the multipoles re-
lated to the electric charge distribution and the Bi s to
the magnetic properties. In the previous expressions,
m corresponds to the total mass, a to the total angu-
lar moment per unit mass (a = J/M0, being J the
total angular moment), q to the total electric charge.
In our analysis, we set the electric charge parameter
q to zero because, as it is case of neutron stars, most
of the astrophysical objects are electrically neutral.
The parameters k , s and µ are related to the mass
quadrupole moment, the current octupole, and the
magnetic dipole, respectively.

Using Eqs. (4) and (5), the Ernst potentials ob-
tained by Pachón et al. (2006) are

E =
A+B

A−B
, Φ=

C

A−B
, (8)

which leads to the following metric functions:

f =
AĀ−BB̄ +C C̄

(A−B)(Ā− B̄)

e2γ =
AĀ−BB̄ +C C̄

KK̄
6
∏

n=1

rn

(9)

ω =
Im[(A+B)H̄ − (Ā+ B̄)G−C Ī ]

AĀ−BB̄ +C C̄
. (10)

The analytic expressions for the functions A, B , C ,
H , G, K , and I can be found in the original reference
(Pachón et al. 2006) or in Appendix of Pachón et al.
(2012). A Mathematica 8.0 script with the numeri-
cal implementation of the solution can be found at
http://gfam.udea.edu.co/∼lpachon/scripts/nstars.

Characterization of the dynamics around
the source

In the framework of general relativity, the dynam-ics 
of a particle may be analyzed via the Lagrangian 
formalism as follows. Let us consider a particle of
rest mass m0 = 1 moving in a space-time character-
ized by the metric tensor gµν , thus the Lagrangian of
the particle is given by

L =
1

2
gµν ẋ

µ ẋν , (11)

where the dot denotes differentiation with respect to
the proper time τ, xµ(τ) are the coordinates. Since
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66 Innermost stable sircular orbits

the fields are stationary and axisymmetric, there are
two constants of motion related to the time coordi-
nate t and azimuthal coordinate φ [see Ryan (1995)
for details], these are given by:

E =−
∂L
∂ ṫ
=−gt t

�

d t

dτ

�

− gtφ

�

dφ

dτ

�

, (12)

L=
∂L

∂ φ̇
= gtφ

�

d t

dτ

�

+ gφφ

�

dφ

dτ

�

, (13)

where E and L are the energy and the canonical an-
gular momentum per unit mass, respectively. For
real massive particle, the four velocity is a time-like
vector with normalization gµνu

µuν =−1. If the mo-
tion takes place in the equatorial plane of the source
z = 0, this normalization condition leads to

gρρ

�

dρ

dτ

�2

=−1+ gt t

�

d t

dτ

�2

+ gφφ

�

dφ

dτ

�2

+ 2gtφ

�

d t

dτ

��

dφ

dτ

�

. (14)

From equation (14), one can identify an effective
potential that governs the geodesic motion in the
equatorial plane [see e.g. Bardeen et al. (1972)]

Veff(ρ) = 1−
E2 gφφ+ 2E Lgtφ+ L2 gt t

g 2
tφ− gφφ gt t

. (15)

For circular orbits, the energy and the angular mo-
mentum per unit mass, are determined by the condi-
tions Veff(ρ) = 0 and dVeff/dρ = 0. Based on these
conditions, one can obtain expressions for the en-
ergy and the angular momentum of a particle that
moves in a circular orbit around the star [see e.g.
Stute & Camenzind (2002)], namely,

E =

p

f
Æ

1− f 2χ 2/ρ2
, L= E(ω+χ ), (16)

χ =

§

ρ[−ω,ρ f 2−
q

ω2
,ρ f 4+ f,ρρ(2 f − f,ρρ)

ª

�

f (2 f − f,ρρ)
� ,

(17)

where the colon stands for a partial derivative respect
the lower index. The radius of innermost stable cir-
cular orbit (ISCO’s radius) is determined by solving
numerically for ρ the equation

d 2Veff/dρ2 = 0,

which arising from the marginal stability condition.
This condition together with the equations (16) and
(17) can be write in terms of the metric functions as
[see Stute & Camenzind (2002)]

ω,ρω,ρρ f 5ρ(2 f − f,ρρ)

+ω2
,ρ f 4
�

2 f 2+( f,ρρ f − f,ρ)ρ
2
�

+ωρ f 2
q

ω2
,ρ f 4+ f,ρ(2 f − f,ρρ)

×
�

2 f 2− f ρ(4 f,ρ+ f,ρρρ)+ 2 f 2
,ρ

�

+ρ(2 f − f,ρρ)
�

3 fρ f 2− 4 f 2
,ρ f ρ+ f 3

,ρρ
2

+ f 2
�

fρρρ−ω,ρρ f
q

ω2
,ρ f 4+ f,ρ(2 f − f,ρρ)

�

�

= 0. (18)

As is usual in the literature, the physical ISCO
radius reported here corresponds to evaluation of
pgφφ at the root of equation (18). This equation is
solved for fixed total mass of the star M , the dimen-
sionless spin parameter j = J/M 2 (being J the angu-
lar momentum), the quadrupole moment M2 and the
magnetic dipolar moment µ [see Table VI of Pappas
& Apostolatos (2012)].

Keplerian, oscillation and precession frequencies
The Keplerian frequency ΩK at the ISCO can be ob-
tained from the equation of motion of the radial co-
ordinate ρ. This equation is easily obtained by using
the Lagrangian (11),

gρρρ̈−
1

2

�

− gρρ,ρρ̇
2+ gφφ,ρφ̇

2

+ gt t ,ρ ṫ 2+ gtφ,ρ ṫ φ̇
�

= 0. (19)

By imposing the conditions of circular orbit or con-
stant orbital radius, dρ/dτ = 0 and d 2ρ/dτ2 = 0
and taking into account that dφ/dτ = ΩKd t/dτ,
one gets [see e.g. Ryan (1995)]

ΩK =
dφ

d t
=
−gtφ,ρ±
q

(gtφ,ρ)
2− gφφ,ρ gt t ,ρ

gφφ,ρ
, (20)

where “+” and “−” denotes the Keplerian frequency
for corotating and counter-rotating orbits, respec-
tively.
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Gutiérrez-Ruiz et al. 67

The epicyclic frequencies are related to the oscilla-
tions frequencies of the periastron and orbital plane
of a circular orbit when we apply a slightly radial
and vertical perturbations to it. According to Ryan
(1995), the radial and vertical epicyclic frequencies
are given by the expression

να =
1

2π

¨

−
gαα

2

�

(gt t + gtφΩk)
2

� gφφ
ρ2

�

,αα

− 2(gt t + gtφΩk)(gtφ+ gφφΩk)
� gtφ

ρ2

�

,αα

+ (gtφ+ gφφΩk)
2

�

gt t

ρ2

�

,αα

�«

,

where α = {ρ, z}. The periastron νp
ρ

and the nodal
νp

z frequencies are defined by:

νp
α
=
Ωk

2π
− να, (21)

which are the ones with an observational interest
(Stella & Vietri 1999). The radial oscillation fre-
quency vanishes at the ISCO radius and therefore,
the radial precession frequency equals to the Keple-
rian frequency.

Finally, the frame dragging precession frequency
or Lense–Thirring frequency νLT is given by [see e.g.
Ryan (1995)]

νLT =−
1

2π

gtφ

gφφ
. (22)

νLT is related to purely relativistic effects only (Mis-
ner et al. 1973). In this phenomenon, the astro-
physical source drags the test particle into the di-
rection of its rotation angular velocity. In absence
of electromagnetic contributions, as in the case of
the Kerr solution, the frame dragging comes from
the non-vanishing angular momentum of the source.
In the presence of electromagnetic contributions in
non-rotating sources, it was shown by Herrera et al.
(2006) that the non-zero circulation of the Poynting
vector is able to induced frame dragging, in which
case it is electromagnetically induced. In the cases dis-
cussed below, due to the presence of fast rotations
and magnetic fields, the frame dragging will be in-
duced by a combination of these two processes.

Influence of the dipolar magnetic field in 
the ISCO radius

As discussed in the Introduction, contributions 
from the energy stored in the electromagnetic fields

come via equivalence between matter and energy,
E = mc2. For the particular case of a magnetar (∼
1010 T), the electromagnetic energy density is around
4× 1025 J/m3, with an E/c2 mass density 104 times
larger than that of lead. Hence, the relevant physi-
cal quantities should depend upon the magnetic field,
and in particular on the magnetic dipole moment µ.

Table 1. Realistic numerical solutions for rotat-
ing neutron stars derived by Pappas & Apostolatos
(2012). Here, M0 is the total mass of the star, j is the
dimensionless spin parameter: j = J/M 2

0 (being J
the angular momentum), M2 is the quadrupole mo-
ment and S3 is the current octupole moment [see
Table VI of Pappas & Apostolatos (2012)].

Model M0 [km] j M2 [km3] S3 [km4]
M17 4.120 0.588 -51.8 -210.0
M18 4.139 0.635 -62.6 -279.0
M19 4.160 0.682 -74.9 -365.0
M20 4.167 0.700 -79.8 -401.0

Table 1:

0 1 2 3 4 5 6
µ [km2 ]

19.10

19.15

19.20

19.25

19.30

R
IS
C
O
 [k

m
]

M20

M19

M18

M17

Fig. 1. ISCO radius as a function of magnetic
dipole parameter µ. The physical parameters for
the star correspond to the models M17-M20 listed
in Table 1. An increase of µ leads to a decrease of
the ISCO radius.

Figure 1 shows the ISCO radius as a function of 
the parameter µ for four particular realistic numer-
ical solutions for rotating neutron stars models de-
rived by Pappas & Apostolatos (2012). The models 
used coincide with the models 17,18,19 and 20 of Ta-
ble VI in that reference and correspond to results 
for the Equation of State L (see Table 1). The low-
est multipole moments of the PRS solution, namely, 
mass, angular moment and mass quadrupole were 
fixed t o t he n umerical o nes o btained by Pappas & 
Apostolatos (2012) (see Table 1). Since the main ob-
jective here is to analyze the influence o f t he mag-
netic dipole, the current octupole parameter s was 
set to zero. Note that this does not mean that the 
current octupole moment vanishes (see in Eq. (6).
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68 Innermost stable sircular orbits

The parameter µ was varied between 0 and 6.4 km2,
which corresponds to magnetic fields dipoles around
0 and 6.3× 1031 Am2, respectively. In all these cases,
the ISCO radius decreases for increasing µ, this can
be understood as a result of the dragging of iner-
tial frames induced by the presence of the magnetic
dipole, we elaborate more on this below.

Keplerian and epicyclic frequencies

Some of the predictions from General Relativ-ity 
(RG) such as the dragging of inertial systems 
(frame-dragging or Lense-Thirring effect) (Everitt 
et al. 2011), the geodesic precession (geodesic effect 
or de Sitter precession) (Everitt et al. 2011) or the 
analysis of the periastron precession of the orbits 
(Lucchesi & Peron 2010) have been experimental 
verified. However, since they have observed in the 
vicinity of the Earth, these observations represent 
experimental support to RG only in the weak field 
limit. Thus, it is fair to say that the RG has not been
checked in strong field limit [see e.g. Psaltis (2008)].
In this sense, the study of compact objects such as
black holes, neutron stars, magnetars, etc., is cer-
tainly a topic of great interest, mainly, because these
objects could be used as remote laboratories to test
fundamental physics, in particular, the validity of
general relativity in the strong field limit yet (Stella
& Vietri 1999, Pachón et al. 2012).

The relevance of studying the Keplerian, epicyclic
and Lense-Thirring frequencies relies on the fact that
they are usually used to explain the quasiperiodic
oscilation phenomena present in some Low Mass
X-ray Binaries (LMXRBs). In this kind of systems
a compact object accretes from another one (which
is usually a normal star) and the X-ray emissions
could be related to the relativistic motion of the
accreted matter e.g. rotation, oscillation and pre-
cession. Stella & Vietri (1999) showed that in the
slow rotation regime, the periastron precession and
the Keplerian frequencies could be related to the
phenomena of the kHz quasiperiodic oscillations
(QPOs) observed in many accreting neutron stars
in LMXRBs (Stella & Vietri 1999). This model is
known as the Relativistic Precession Model (RPM)
(Stella & Vietri 1999) and identifies the lower and
higher QPOs frequencies with the periastron pre-
cession and the Keplerian frequencies respectively.
The RPM model has been used to predict the values
of the mass and angular momentum of the neutron
stars in this kind of systems [see e.g. Stella & Vietri
(1999) and Stella et al. (1999), for details].

0 1 2 3 4 5 6
µ [km2 ]

1140

1142

1146

1148

Ω
k
 [H

z]

M20

M19

M18

M17

(a)

0 1 2 3 4 5 6
µ [km2 ]

1074

1077

1085

1082

1088

1091

ν z
[H
z]

M20

M19

M18

M17

(b)

0 1 2 3 4 5 6
µ [km2 ]

142

156

170

175

ν L
T
[H
z]

matplotlib

M20

M19

M18

M17

(c)

Fig. 2. Keplerian frequency (a), nodal precession
frequency (b) and, Lense-Thirring frequency (c) as
a function of the µ parameter. All the frequencies
increase for increasing µ.

In the framework of the RPM, it is assumed that
the motion of the accretion disk is determined by
the gravitational field alone and thereby, it is nor-
mal to assume that the exterior gravitational field
of the neutron star is well described by the Kerr
metric. However, most of the neutron stars have
(i) quadrupole deformations that significantly differ
from Kerr’s quadrupole deformation (Laarakkers &
Poisson 1999) and (ii) a strong magnetic field. The in-
fluence of the non-Kerr deformation was discussed,
e.g., by Johannsen & Psaltis (2010) and Pachón et al.
(2012). Based on observational data, it was found
that non-Kerr deformations dramatically affect, e.g.,
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Gutiérrez-Ruiz et al. 69

predictions on the mass of the observed sources. Be-
low, we consider the influence of the magnetic field
and find that it introduces non-negligible corrections
in the precession frequencies and therefore, on the
predictions made by the Kerr-based RPM model.

In the previous section, it was shown that the
magnetic field affects the value of the ISCO radius
of a neutral test particle that moves around the exte-
rior of a magnetized neutron star. Below, it is shown
that other physicals quantities such as the Keplerian
and epicyclic frequencies, which are used to describe
the physics of accretion disk, are also affected. The
influence on the Lense-Thirring frequency is also dis-
cussed.

Figure 2 shows the influence of the magnetic field 
in the Keplerian [Fig. 2(a)], nodal precession [Fig. 
2(b)] and Lense-Thirring [Fig. 2(c)] frequencies. 
In all cases, the frequencies are plotted as a 
function of the parameter µ while fixing the others 
free param-eters (mass, angular moment and mass 
quadrupole) according to the realistic numerical 
solutions in Table 1. As it is expected for 
shorter ISCO radius (see previous section), all 
frequencies increase with increasing µ. The changes 
in the Lense-Thirring fre-quency come from the 
electromagnetic contribution discussed above.

Energy and angular momentum

In order to understand the results presented 
above, we consider that it is illustrative to consider 
first the effect that the magnetic field has on the en-
ergy E and the angular momentum L needed to de-
scribed marginally stable circular orbits [see equa-
tions (16) and (17)]. In doing so, we fix t he total 
mass M0, the spin parameter j and the quadrupole 
moment M2, according to the values in Table 1. Fi-
gures 3(a) and 3(b) show E and L at the ISCO as a 
function of the dipolar moment µ. By contrast to 
the case of the Keplerian frequency, an increase of 
µ decreases the value of the energy and the angular 
momentum needed to find an ISCO.Complementa-
rily, in figures 4(a) and 4(b), E and L are depicted as a 
function of ρ for various values of the dipolar mo-
ment. Since the energy and the angular momentum 
associated to the ISCO correspond to the minima  of
the curves E(ρ) and L(ρ) (indicated by triangles), 
figure shows that an increase of the magnetic dipole 
moment induces a decrease of the ISCO radius (see 
Fig. 1 above) and simultaneously a decrease of the 
energy and the angular momentum.

At a first sight, for an increasing magnetic field, it
may seem conspicuous that the angular momentum,
of co-rotating test particles, decreases [see Fig. 4(b)]

whereas the Keplerian frequency increases [see Fig.
2(a)]. However, this same opposite trend is already
present in the dynamics around a Kerr source when
the angular momentum of the source is increased
[cf. equations (2.13) for the angular momentum and
(2.16) for the Keplerian frequency in Bardeen et al.
(1972)]. In Kerr’s case, the co-rotating test parti-
cles are dragged toward the source thus inducing a
shorter ISCO radius [cf. equation (2.21) in Bardeen
et al. (1972)], and since the leading order in the Ke-
plerian frequency goes as ∼ 1/ρ2, a larger frequency
is expected. By contrast, the contra-rotating test par-
ticles are “repelled” by the same effect thus resulting
in an increase of the ISCO radius and in a decrease
of the Keplerian frequency [see also Fig. 2 in Pachón
et al. (2012)].
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Fig. 3. Energy (a) and angularmomentum (b) of
a test particle at the ISCO radius versus magnetic
dipole parameter µ given by the PRS solution. We
can see that reduction of the energy and angular
momentum of the particle while the the magnetic
dipole of the star is increased.

Having in mind the situation in Kerr’s case and
by noting that the frame dragging can be induced by
current multipoles of any order (Herrera et al. 2006),
the goal now is to compare the characteristics of
the contributions from the angular momentum and
the dipole moment to the Keplerian frequency based
on the approximate expansions derived by Sanabria-

Universitas Scientiarum Vol. 19 (1): 63–73 www.javeriana.edu.co/scientiarum/web

http://www.javeriana.edu.co/scientiarum/web


70 Innermost stable sircular orbits

Gómez et al. (2010) and appeal then the general the-
ory of multipole moments to track the contribu-
tion of dipole moment to the current multipole mo-
ments. If the expression for the Keplerian frequency
[Eq. (21)] and for the angular momentum [Eq. (23)]
in Sanabria-Gómez et al. (2010) are analyzed in de-
tail, one finds that the signs of the contributions of
the angular momentum and the magnetic dipole of
the source coincide, this being said, one could argue
that the contribution of the dipole moment is related
to an enhancement of the current multipole moment
of the source. This remark is confirmed by the gen-
eral multipole expansion discussed by Sotiriou &
Apostolatos (2004). In particular, the influence of
the dipole moment in the higher current-multipole
moments is clear from Eq. (23)–(25) of this reference.
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Fig. 4. Energy (a) and angular momentum (b) of
a test particle at the ISCO radius versus magnetic
dipole parameter µ given by the PRS solution. We
can see that reduction of the energy and angular
momentum of the particle while the the magnetic
dipole of the star is increased.

Hence, the role of the dipole moment of the
source in the dynamics of neutral test particles is
qualitatively analogous to the role of the angular mo-
mentum, albeit it induces corrections of higher or-
ders in the multipole expansion of the effective po-
tential. This is a subject that deserves a detailed dis-
cussion and will be explained somewhere else.

Conclusion

The influence of weak electromagnetic fields on the 
dynamics of test particles around astrophysical 
objects has mainly been studied for the case of or-
biting charged particles. Based on a analytic solu-
tion of the Einstein-Maxwell field equations, here it 
is shown that a strong magnetic field, via the energy 
mass relation, modifies the dynamics of neutral test 
particles. In particular, it is shown that an intense 
magnetic field induces corrections in the Keplerian, 
precession and oscillation frequencies of the radial 
and vertical motions of the test particles as well as in 
the dragging of inertial frames.

In particular, it was shown that if the angular mo-
mentum and the dipole moment are parallel (note
that j and µ have the same sign), then the ISCO
radius of co-rotating orbits decreases for increasing
dipole moment, this leads to an increase of the Kep-
lerian, and precession and oscillation frequencies of
the radial and vertical motions frequency. The angu-
lar momentum and the energy of the ISCO decrease
for increasing dipole moment as a consequence of
the dragging of inertial frames.

The kind of geodetical analysis performed here
is widely used for instance, in the original RPM
model (Stella & Vietri 1999, Stella et al. 1999), and
int its subsequent reformulations, of the HF QPOs
observed in LMXBs. However, Lin et al. (2011) and
Török et al. (2012) have concluded that although
these models of HF QPOs, which neglect in the in-
fluence of strong magnetic fields, are qualitatively sat-
isfactory, they do not provide satisfactory fits to the
observational data. Hence, in order to improve (i)
the level of physical description of these models and
(ii) the fit to observational data, a more detailed anal-
ysis on the role of the extremely strong magnetic
field in the structure of the spacetime is necessary
and will be performed in the future.
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