
Abstract

In this paper, we study the correspondence between a �eld theory in de Sitter
space in D-dimensions and a dual conformal �eld theory in a euclidean space
in (D − 1)-dimensions. In particular, we investigate the form in which this
correspondence is established for a system of interacting scalar and a vector
�elds propagating in de Sitter space. We analyze some necessary (but not
su�cient) conditions for which conformal symmetry is preserved in the dual
theory in (D − 1)-dimensions, making possible the establishment of the
correspondence. The discussion that we address in this paper is framed on the
context of in�ationary cosmology. Thusly, the results obtained here pose some
relevant possibilities of application to the calculation of the �elds’s correlation
functions and of the primordial curvature perturbation ζ , in in�ationary models
including coupled scalar and vector �elds.

Keywords: In�ation; vector �elds; de Sitter symmetries; parity violation.

Introduction

The study of the symmetries is very important when we look for fundamental
descriptive features of a particular physical system and solve its dynamics. For
example, it is well known that through the Noether theorem we can identify
conserved quantities related to the symmetries, which allows us to discover
intrinsic fundamental characteristics that will be re�ected on the dynamics of
the system. It is also well known that the geometry of the in�ationary period
of our universe is described with great accuracy by the de Sitter space.

This spacetime is similar to the Minkowski spacetime in the sense that it is a
maximally symmetric space, which means that in D dimensions, the number
of symmetry generators is D(D + 1)/2. This fact de�nes and restricts the
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form of the kinematic features and the evolution of a system on this space.
During the in�ationary period, the symmetries of the de Sitter group play
an essential role on the description of the primordial perturbations and their
statistical properties.

In particular, by using the correspondence between the de Sitter symmetry
group in D-dimensions and the conformal group in an euclidean (D − 1)-
dimensional “boundary” space (Strominger, 2001), it is possible to calculate
general important features of the system, such as the correlations functions
of the �elds that govern the dynamics of the in�ationary Universe (Biagetti et
al., 2013), which are necessary to calculate the statistical descriptors of the
primordial curvature perturbation by using, for example, the δN formalism
(Sasaki & Stewart, 1996; Nakamura & Stewart, 1996; Starobinsky, 1985; Lyth
et al., 2005; Dimopoulos et al., 2009) or cosmological perturbation theory
(Gumrukcuoglu et al., 2010; Bartolo et al., 2013). To do that, we need �rst
to calculate one of the fundamental quantities of the conformal �eld theory
description: the conformal weights of the �elds.

The correspondence between a �eld theory in de Sitter space and a dual theory
in a euclidean boundary space (one dimension less than the de Sitter space)
is what we shall refer to as dS/CFT correspondence and it is at the core of
the approach that we are pursuing here. This correspondence was proposed
initially for free non interacting single �elds propagating on de Sitter space
(Bousso et al., 2002) but some considerations about the interacting case was
discussed in the literature (Spradlin & Volovich, 2002)

In this paper, we follow the approach proposed by (Biagetti et al., 2013) to
study the case of a coupled scalar-vector system. In the context that we are
framing our discussion, the scalar �eld is responsible for the in�ationary
expansion and the vector �eld is partly responsible of the generation of the
primordial curvature perturbation ζ . The inclusion of vector �elds on the
in�ationary dynamics permits the study of several interesting possibilities
such as the presence of statistical anisotropies, parity violating patterns, the
origin of primordial magnetic �elds, etc. (see for instance Caprini & Sorbo,
2014; Maleknejad et al., 2013; Soda, 2012; Dimastrogiovanni et al., 2010, and
references therein) . For concreteness, we will settle the discussion in four
dimensional de Sitter space but the results obtained can be generalised straight-
forwardly to any dimensions.

This paper is organized as follows. In section II, we review the symmetries and
some basics of de Sitter space. Next, in sections III and IV, we shall describe
the transformation laws imposed by these symmetries over the conformal
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�elds on the dual theory and we calculate the associated conformal weights
of those �elds. In section V, we brie�y review the results for the scalar and
the vector �eld separately and then, in section VI, we consider the coupled
scalar-vector system. Finally, in section VII, we present our conclusions and
discuss some possible applications of the results obtained.

Symmetries of the de Sitter Space

The de Sitter spacetime can be described in several useful coordinate systems
(for reviews see for instance Spradlin et al., 2001 and Leblond et al., 2002), but
for our interests, we will chose the 4D conformal planar coordinates in which
the line element is written as

ds2 =
1

(Hτ)2

(
−dτ 2 + d~x2

)
, (1)

where H is the Hubble parameter and τ is the conformal time. In this coordi-
nate system, it is easy to see that the line element (1) is invariant under spacial
translations and rotations on τ = constant sections:

x′i = ai +Rijxj, (2)

where ai is a 3-dimensional constant vector and Rij is an O(3) matrix satis-
fying the conditionRikR

kj = δji and representing a three dimensional rotation.
We have a total of six symmetry generators included in the transformation (2)
and they a�ect only the spacial sections of the spacetime.

Also, notice that we allow the possibility of spacial re�exion xi → −xi in
this group of transformations. Spacial re�exion is an explicit symmetry of
the line element (1) and we will pay attention to this speci�c transformation,
when we consider the possibility of introducing parity violating models in
the presence of vector �elds. There are two additional transformation which
mixes the time and the spacial coordinates, the spacetime dilatation:

x′µ = λxµ → x′i = λxi, τ → τ ′ = λτ, (3)

where λ is a constant factor and the special conformal transformation:

x′µ =
xµ + bµx2

1 + 2~b · ~x+ b2x2
, (4)

or

x′i =
xi + bi (−τ 2 + ~x2)

1 + 2~b · ~x+ b2 (−τ 2 + ~x2)
,

and
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τ ′ =
τ

1 + 2~b · ~x+ b2 (−τ 2 + ~x2)
,

with bµ = (0, bi) a three dimensional vector which generates the transforma-
tion.

In the last expressions we use the notation x2 = ηµνxµxν , ηµν = diag(−1, 1, 1,  
1), ~x2 = δij xixj and ~x · ~b = δij bixj . Together, the transformations (2), (3) 
and (4) tell us that de Sitter space has ten symmetry generators. This is a 
maximally symmetric spacetime. It can be seen that (4) is constructed out by 
the composition of three consecutive transformations, namely, an inversion, 
written as

x′µ =
xµ

x2
, (5)

or

x′i =
xi

−τ 2 + ~x2
, τ ′ =

τ

−τ 2 + ~x2
, (6)

then a translation (τ ′ → τ ′′ = τ ′ and x′i → x′′i = x′i+bi) and then an inversion
again. Actually, the special conformal transformation (4) can be expressed as:

x′µ

x′2
=
xµ

x2
+ bµ. (7)

It becomes useful in the following to have the Jacobian matrices associated to
the coordinate transformations of the de Sitter isometries. Particularly, we
will need the Jacobian for the dilatation and for special conformal transfor-
mation (3) and (4). Nevertheless, as we said before, the special conformal
transformation can be obtained by composing translations and inversions,
allowing us to use the transformation (6) instead of (4).

The Jacobian matrix of the inversion, can be derived directly for (6) obtaining

∂x′µ

∂xν
=

1

x2

(
δνµ − 2

xµηναx
α

x2

)
=

1

x2
Jµν , (8)

where Jνµ satis�es the orthogonality relation JσµJ
ν
σ = δνµ. The associated

Jacobian determinant of the above transformation is

det

(
∂x′µ

∂xν

)
= − 1

(x2)4 . (9)

Using (6), we can also calculate the Jacobian of the inverse transformation
x′ → x, obtaining
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∂xµ

∂x′ν
= x2Jµν , det

(
∂xµ

∂x′ν

)
=
(
x2
)4
. (10)

On the other hand, for the dilatations we have:

x′µ = λxµ , (11)
∂x′µ

∂xν
= λδµν , det

(
∂x′µ

∂xν

)
= λ4, (12)

∂xµ

∂x′ν
=

1

λ
δµν , det

(
∂xµ

∂x′ν

)
= λ−4. (13)

Then, with the previous results, we can also calculate the change in the volume
element, which reads:

dτ ′d3x′ =

∣∣∣∣det

(
∂x′µ

∂xν

)∣∣∣∣ dτd3x. (14)

In next sections, we will exploit the correspondence between the de Sitter
isometry group represented by the transformations below and the conformal
group in R3. In the essence of this correspondence lies the idea that de Sitter
isometries act as the conformal group transformations in R3, a fact that we
will show on next section. Particularly, we will consider the asymptotic region,
where in�ationary perturbations are frozen, after horizon crossing at supper
Hubble scales which in these coordinates happens for −τ � |~x|. Then, in
the following section, we will recall some basis of the conformal group and
introduce the relevant terminology that will allow us to construct a conformal
�eld theory representation of the �elds in de Sitter space.

An important part of the following discussion is devoted to the conformal
weight of the �elds in the conformal �eld theory representation. The confor-
mal weight of the �eld is a crucial element for expressing the transformation
rules of the �elds and the symmetries of their correlation functions which
are the meaningful objects constructed in the theory because they encode the
statistical properties of the theory.

Conformal group basics and relation with de Sitter group 
symmetries

In an Euclidean space, the conformal group is de�ned as the set of coordinate
transformations x→ x′ that leave invariant the angles between two vectors in
this space, or, equivalently, the group of transformations that leave invariant
the metric up to a factor

gµν(x)→ g′µν(x
′) = ω(x)gµν(x), (15)
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where ω(x) is an arbitrary function of the coordinates. It is easy to see that
the transformations (2), (3) and (4) act as conformal transformations on R3 for
the euclidean metric, i.e. gij = δij , in (15) with the corresponding conformal
factor ω:

x′i = ai +Rijxj → ω = 1, (16)

x′i = λxi → ω = λ−2, (17)

x′i =
xi + bi~x

2

1 + 2~b · ~x+ b2 (~x2)
→ ω = (1 + 2~b · ~x+ b2~x2)2. (18)

Then, we can see explicitly that the de Sitter symmetry group in four dimen-
sions induces a conformal group in the three dimensional space. In few words,
we can interpret the symmetries (16) to (18) as the asymptotic symmetry group
of the boundary region of the four dimensional de Sitter space time. In our
context, the asymptotic region is located at super horizon scales when the
in�ationary perturbations evolve classically and carry the information of the
physical mechanism that drives the in�ationary expansion. In the coordinates
employed here, and in the previous expressions, we have used that the super
horizon limit which constitutes our asymptotic euclidean space lies in the
region |τ | � |~x|. It its worth to notice that we obtain ten symmetry group
generators as we expect for the conformal group acting on three dimensional
space.

Additionally, or equivalently to the expression (18) we can write the inversion
transformation and its associated conformal factor as:

x′i =
xi

(~x2)
→ ω = (~x2)2. (19)

So far, we were talking about the symmetries and the geometry of the space-
time, and now we turn to the �elds on the theory. The relevant objects that
we need for the conformal �eld theory description, are the ones that we shall
call a primary �eld. A primary �eld is an object which transforms according
to the following rule under conformal transformations

Ti1...in(x)→ T ′i1...in(x′) =

∣∣∣∣det

(
∂x′l

∂xk

)∣∣∣∣
n−∆T
d

×

∂xj1

∂x′i1
...
∂xjn

∂x′in
Tj1...jn(x), (20)

where n is the order of the tensor, d is the dimension of the spacetime and ∆T

is the conformal weight of the �eld (Biagetti et al., 2013). When dealing with
the conformal dual theory to the theory in de Sitter space, we will consider

224 de Sitter symmetries

Universitas Scientiarum Vol. 21 (3): 219-243 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

the Euclidean space R3.



By using the above transformation, we can �nd the conformal dimension ∆T

of di�erent �elds that are involved in the theory. It is beyond the scope of this
short article to enter in the details of the conformal �eld theory machinery, so
we will just restrict to the introduction of the fundamental elements necessary
for our purpose. A complete study of conformal �eld theory can be found for
instance in (Ginsparg, 1988)

Fields on de Sitter space

Now, we will study of �elds propagating on de Sitter space. With the results
obtained in the previous section, we can evaluate the conformal weight, which
is an essential quantity necessary for the conformal �eld theory description
of the �elds. We are interested in the coupled scalar vector system, but, before
that, and mainly for illustrative reasons and for developing the technique
introducing the necessary elements, we study the single scalar �eld and the
single vector �eld cases separately. After that and invoking the results from
the single �eld case, we will face the coupled system.

Single scalar �eld. The action for a single massive scalar �eld propagating 
on de Sitter space in the coordinates (1) is given by

Sφ = −1
2

∫
d4x
√
−g
{
∂µφ∂

µφ+m2
φφ

2
}

(21)

= −1
2

∫
dτd3x
H2τ2

{
ηµν∂µφ∂νφ+

m2
φφ

2

H2τ2

}
,

wheremφ is the mass of the �eld. Now, we study the symmetries of the theory
in order to learn about the transformation of the �elds. To emphasise the
di�erence between the properties of the scalar �eld in de Sitter space and
in R3, let us suppose that we write the transformation law for a scalar in de
Sitter as in (20):

φ′ =

∣∣∣∣det

(
∂x′µ

∂xν

)∣∣∣∣−
∆φ
4

φ, (22)

and for the action

S ′φ = −1

2

∫
dτ ′dx′3

1

H2τ ′2

{
ηµν∂′µφ

′∂′νφ
′ +

m2
φφ
′2

H2τ ′2

}
.

Under the inversion (6) we have: φ′ = (x2)∆φφ and
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S ′φ =

∫
dτdx3 1

H2τ 2

{
− 4∆2

φ(x2)2∆φφ2

−4∆φ(x2)2∆φ−1φxµ∂µφ− (x2)2∆φ

×
[
ηµν∂µφ∂νφ+

m2
φφ

2

H2τ 2

]}
,

where we have used ∂′µ = x2Jνµ∂ν .

Demanding invariance of the action Sφ = S ′φ we see that it is necessary to set
∆φ = 0, and then φ′ = φ. It is easy to arrive to the same result if we apply
the dilatation (3) and it is trivial for the translations and three dimensional
rotations (2) because the transformation matrix is orthogonal. Certainly, this
result does not come as a surprise at all, since we are talking about of a scalar
�eld. Nevertheless it is worth to stress this fact because we are going to see
that asymptotically, in the super horizon limit the dual �eld associated to the
scalar transform according with (20) with a conformal weight di�erent than
∆φ = 0.

Now, we study the behaviour of the associated conformal �eld of the scalar
�led in the three dimensional space R3. To this end, it is necessary to solve the
equation of motion and go to super horizon scales. The equation of motion
derived from (21) is

φ̈− 2

τ
φ̇−∇2φ+

m2
φφ

H2τ 2
= 0. (23)

To solve this equation, we go to momentum space. Using the Fourier transform
of the �eld, F (τ, ~x) =

∫
d3x

(2π)3/2 F̃ (τ,~k)e i
~k·~x, the resulting equation is:

¨̃φ− 2

τ
˙̃φ+ k2φ̃+

m2
φφ̃

H2τ 2
= 0, (24)

which can be fully solved analytically in terms of Bessel functions Jν and Yν :

φ̃(τ,~k) = τ 3/2
(
C1(~k)Jh(kτ) + C2(~k)Yh(kτ)

)
, (25)

where C1 and C2 are constants which depends on boundary initial conditions
and

h =

√
9

4
−
m2
φ

H2
. (26)
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Now, we need the behaviour of the solution (25) at super horizon scales,
which in momentum space are achieved when −kτ � 1 (Tanhayi, 2014). By
expanding the Bessel functions in that regime and going back to (τ, ~x) space,
we arrive to

φ(τ, ~x) ≈ τ
3
2

+hσ+(~x) + τ
3
2
−hσ−(~x), (27)

where we have separated explicitly the time depending part. The precise
interpretation of the previous result depends on the value of the discriminant
(26) because depending if mφ <

3
2
H or mφ >

3
2
H . We can provide a unitary

interpretation of the conformal �eld theory associated, we don’t enter into
this discussion here which is beyond the scope of this paper and address the
attention of the reader to Strominger (2001), Bousso et al. (2002) and Spradlin
& Volovich (2002). In the following, we restrict ourselves to the casemφ <

3
2
H .

The dominant solution for super horizon regime in this case is τ 3
2
−h, so we

have that

lim
|τ |→0

φ(τ, ~x) = τ
3
2
−hσ−(~x). (28)

The �eld σ is the one that we need to construct the dual conformal theory for
late times after horizon crossing, so, we need to determine if it behave as a
conformal �eld by deriving its transformation under conformal transforma-
tions in R3, actually, as we comment before, we just need the transformation
for dilatations (3) and inversions (6) in 3D. Before that, we need to take the
super horizon limit |τ | � |~x| of the inversion (6): τ ′ = τ

|~x|2 , x
′
i = xi

|~x|2 . Using
φ′ = φ, and (3) we obtain

φ′(τ ′, x′i) = τ ′
3
2
−hσ′(~x′) = λ

3
2
−hτ

3
2
−hσ′(~x′)

= τ
3
2
−hσ(~x) = φ(τ, xi), (29)

which implies:

σ′(~x′) = λ−( 3
2
−h)σ(~x). (30)

On the other hand, for inversions in the super horizon regime

φ′(τ ′, x′i) = τ ′
3
2
−hσ′(~x′) =

τ
3
2
−h

|~x|2( 3
2
−h)

σ′(~x′)

= τ
3
2
−hσ(~x) = φ(τ, xi), (31)

which implies

σ′(~x′) = |~x|2( 3
2
−h)σ(~x). (32)
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When we compare (30) and (32) with (20) (with n = 0 and d = 3) we conclude
that the �eld σ behaves as a conformal �eld with conformal weight

∆σ =
3

2
−h =

3

2
−

√
9

4
−
m2
φ

H2
. (33)

This is an important result given that the correlating functions of a conformal
�eld theory can be calculated if we know the conformal weight of the primary
�elds. In this case, we expect that the 2 point correlating function of the dual
theory of a scalar �eld on de Sitter space behave like

〈Oσ(~x)Oσ(~y)〉 =
A

|~x− ~y|∆σ
, (34)

with A a constant. For an detailed analysis of the two point correlation
functions in the dual theory see e.g. Strominger (2001) and Leblond et al.
(2003).

Single vector �eld. Now, we turn to the vector �eld case. We consider a 
massive vector �eld with Lagrangian

SA =

∫
dτd3x

√
−g
{
−1

4
FµνF

µν −m2
AAµA

µ

}
, (35)

where Fµν = ∂µAν − ∂νAµ and mA is the mass of the vector �eld. This model
have been studied with some detail in Ackerman et al. (2007) and (allowing
for non-minimal coupling) Golovnev et al. (2008) and in that time, it sparked
some interest in the study of in�ationary models with vector �elds. In de
Sitter conformal coordinates (1) we have the action

SA =

∫
dτd3x

{
−1

2
ηµαηβν∂νAµ (∂βAα − ∂αAβ)

−m
2
Aη

µνAµAν
H2τ 2

}
. (36)

Again, as we did in the scalar case, we will consider that Aµ transforms as in
(20) in the following way

A′µ = (x2)∆AJνµAν , (37)

and using inversion we get the transformation of the action with respect to
the change of coordinates
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S ′A =

∫
dτd3x

(x2)2+2∆A

(x2)4

{
−2

(∆A − 1)2

(x2)2
AµAν

×
(
x2ηµν − xµxν

)
− 2

(∆A − 1)

(x2)2
xµAαη

αν ×

(∂µAν − ∂νAµ)− 1

2
ηµαηνβ∂νAµ(∂αAβ − ∂βAα)

−m
2
Aη

µνAµAν
H2τ 2

}
,

from which we deduce that invariance under inversions implies that ∆A = 1.
Again, this is not surprising since this is precisely the transformation law for
a vector in four dimensional de Sitter space.

Now, we look if there is an associated three dimensional vector which trans-
forms as a conformal vector �eld in R3. We begin by solving the equations of
motion derived from the action (36)

ηβλ∂λ (∂βAν − ∂νAβ)− m2
AAν

(Hτ)2
= 0. (38)

The system before propagate three degrees of freedom due to the presence
of the mass term, two transverse terms perpendicular to the propagation
axis, and a longitudinal term for the equation of the component A0. It is well
known that the longitudinal mode in this model is problematic due to the
presence of ghost instabilities (Himmetoglu et al., (2009a); Himmetoglu et al.,
(2009b)) , but it is also known that this problem can be solved by introducing
a time dependent coupling in the Maxwell term f(τ)F 2 and a time dependent
mass term m(τ) (Dimopoulos et al., (2010a); Dimopoulos et al., 2010b)).

We avoid the analysis of the longitudinal mode which is not relevant for our
main objectives here, we refer the reader to the references mentioned before
and in the following we just focus on the transverse components that can be
obtained from the divergence free spacial components (∂iAi = 0) 1:

Äi − δkl∂k∂lAi +
m2
AAi

(Hτ)2
= 0. (39)

Again, in a similar way that in the scalar case, we solve the equation for the
transverse component in momentum space

Ãi(τ,~k) =
√
τ (D1Jp(kτ) +D2Yp(kτ)) T̃i(~k), (40)

where Ãi is the Fourier transform of the vector �eld, and
1In general, we always can separate a vector �eld in a transverse and a longitudinal part: Aµ = A⊥µ +A

‖
µ with

∂µA⊥µ = 0.
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p =

√
1

4
− m2

A

H2
. (41)

Going to super horizon scales at |kτ | � 1 and going back to coordinates
space we get the asymptotic expansion

Ai(τ, ~x) ≈ τ
1
2

+pVi(~x) + τ
1
2
−pUi(~x). (42)

For late times, again we have that the dominant term is τ 1
2
−p, then:

lim
|τ |→0

Ai(τ, ~x) = τ
1
2
−pUi(~x). (43)

And we consider the asymptotic symmetries of dilatations and inversion. The
result is the same for both symmetries as in the scalar �eld, and then we only
show the transformation law of the boundary �eld Ui under dilatations.

Taking into account the transformation law for the vector �eld:

A′i =
∂xj

∂x′i
Aj, (44)

which for dilatations become A′i = λ−1Ai. Then we can see that

A′i = τ ′
1
2
−pU ′i(~x

′) = λ
1
2
−pτ

1
2
−pU ′i(~x

′)

= λ−1Ai = λ−1τ
1
2
−pUi(~x), (45)

so, Ui transforms as

U ′i(~x
′) = λ−1−( 1

2
−p)Ui(~x), (46)

which, comparing with (20) implies that Ui ful�l our expectations and behave
precisely as a conformal vector �eld in R3 under the asymptotic symmetries
of de Sitter group with conformal weight

∆U = 1 + (
1

2
− p) =

3

2
− p =

3

2
−
√

1

4
− m2

A

H2
. (47)

We learned in previous sections that in the spirit of the so called dS/CFT
correspondence, free �elds propagating on de Sitter admit a dual conformal
�eld theory representations in the boundary of the space which we take to
be a R3 space placed at the super horizon limit, this is at |τ | � |~x|. We
have calculated the conformal weight of the corresponding conformal �elds
correspondence which are essential for the calculation of correlation functions
and to describe the statistical properties of the theory. Although the results
presented in the previous sections where obtained for free �elds, there are
several discussions in the literature which points towards of an extension of
this correspondence also in the presence of self interactions and for coupled
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systems involving several �elds. In next section we discuss coupled system
involving a scalar and a vector �eld which results useful for applications in
in�ationary cosmology and analyse in which conditions it is possible to extend
the ideas explored in previous sections and if it is possible to �nd a conformal
�eld theory representation of the theory aiming to calculate the properties of
in�ationary perturbations by using the conformal �eld theory machinery.

Vector-scalar coupled system. In this section we study a system of inter-
acting scalar and vector �elds which results useful for several applications to 
in�ationary cosmology (Ratra, 1992; Dimopoulos et al., 2010a; Watanabe et 
al.,2010; Dimopoulos et al., 2010b; Wagsta� & Dimopoulos, 2011; Barnaby et 
al., 2011; Sorbo, 2011; Dimopoulos & Karciauskas, 2012; Anber & Sorbo, 2012; 
Bartolo et al., 2013; Lyth & Karciauskas, 2013; Shiraishi et al., 2013; Cook & 
Sorbo, 2013; Nurmi & Sloth, 2014; Caprini & Sorbo, 2014; Chen et al., 2014; 
Bartolo et al., 2015; Namba et al., 2016). The model that we consider here is 
described by the action

SφA = −1

4

∫
d4x
√
−g [f1(φ)F µνFµν +f2(φ)F̃ µνFµν

]
. (48)

In the second term, F̃ µν is the Hodge dual of the �eld strength Fµν and is
de�ned by

F̃ µν =
1

2
√
−g

εµναβFαβ, (49)

where εµναβ is the four dimensional Levi-Civita symbol and f1(φ) and f2(φ)

are coupling functions which depend only of the scalar �eld. This model
introduces explicitly parity violation through the term f2(φ)F̃ µνFµν . We
assume the results obtained previously for the conformal weight of the scalar
and the vector �eld in four dimensional de Sitter ∆φ = 0 and ∆A = 1, so
the action (48) is manifestly invariant under de Sitter group transformations.
Additionally, assuming ∆φ = 0 imply that if we assign some conformal weight
∆fi to the coupling functions

f ′i(φ
′) =

∣∣∣∣det

(
∂x′µ

∂xν

)∣∣∣∣−
∆fi

4

fi(φ),

we get that ∆fi = 0 in order to preserve de Sitter invariance.
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Now, we solve the equations of motion and study its super horizon evolution.
In the context that we frame the discussion we consider that the scalar �eld
drives the in�ationary dynamics and that the vector �eld is an auxiliary
subdominant �eld which a�ects the primordial curvature perturbation and can
leave an imprint on the in�ationary evolution. The scalar a�ect the evolution
of the vector �eld through the coupling functions fi(φ). The equations of
motion for the vector �eld derived from the action (48) are:

∇µ

(
f1(φ)F µν + f2(φ)F̃ µν

)
= 0, (50)

which must be complemented with the Bianchi identity:

∇µF̃
µν = 0. (51)

We don’t solve the dynamics of the scalar �eld, we just assume some features
of its solutions due to the fact that this �eld drives the in�ationary expansion.
Accordingly, we further assume that the in�ationary dynamics homogenise
the scalar perturbations, so that we can approximate the scalar �eld as a
time dependent function, this is ∂iφ = 0. Accordingly, this implies that on
the solutions of the in�ationary scalar �eld f1(φ) = f1(φ(τ)) and f2(φ) =

f2(φ(τ)), then ∂if1 = ∂if2 = 0. With this approximation, the temporal and
spacial components of the equation (50) in de Sitter conformal coordinates (1)
becomes respectively

f1∂iFi0 = 0, (52)

and

(∂0f1)F0i − (∂0f2)ε0ijk∂jAk − f1 (∂jFji − ∂0F0i) = 0. (53)

Given that this theory is manifestly gauge invariant because it only depend of
the �eld strength Fµν and its dual F̃ µν , we choose the Coulomb gauge and set
A0 = 0 and ∂iAi = 0. With this choice, the temporal equation (52) cancels
and the spatial part (53) reduces to:(

∂2

∂τ 2
−∇2 +

1

f1

∂f1

∂τ

∂

∂τ
+

1

f1

∂f2

∂τ
∇×

)
~A(τ, ~x) = 0. (54)

So far, we don’t have any restriction over the form of the coupling functions fi,
and now we impose some conditions mainly, to preserve conformal invariance
on the asymptotic region. Let’s apply the dilatation τ ′ = λτ and ~x′ = λ~x

to the previous equation and demand invariance under this transformation.
We further assume that the coupling functions are homogeneous functions
of time, this is f1(λτ) = λnf1(τ), f2(λτ) = λmf2(τ), so that the equation of
motion transforms as:
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(
∂2

∂τ 2
−∇2 +

1

f1(τ)

∂f1(τ)

∂τ

∂

∂τ
+ λm−n

1

f1(τ)

∂f2(τ)

∂τ
∇×

)
~A(τ, ~x) = 0.

In this way we see that a necessary condition for getting scaling invariance
is that the coupling functions are homogeneous functions of the same order
n = m. This is achieved if the couplings are power law functions proportional
to each other:

f1(τ) = c2
1(−Hτ)n and f2(τ) = c2

2(−Hτ)n,

which implies that

f1(τ) = γf2(τ) with γ = c2
2/c

2
1.

In the previous expression, we restored the Hubble constant for dimensional
analysis. Let us reuse n = −2α because the function f1 must be positive due
to hamiltonian stability. In order to avoid strong coupling at super horizon
evolution, we assume that α < 0

f1(τ) = c2
1(−Hτ)−2α, f2(τ) = c2

2(−Hτ)−2α. (55)

Now, let’s follow the analysis in terms of the normalized canonical �eld ai
de�ned as

Ai(τ, xi) ≡
ai(τ, xi)√

f1

. (56)

For the canonical �eld ai, the equation of motion (54) is written as{
∂2

∂τ 2
−∇2 +

1

2

[
1

2

(
∂τf1

f1

)2

− ∂2
τf1

f1

]

+
1

f1

∂f2

∂τ
∇×

}
~a(τ, ~x) = 0, (57)

and using (55) gives:(
∂2

∂τ 2
−∇2 − α(α + 1)

τ 2
− 2αγ

τ
∇×

)
~a(τ, ~x) = 0. (58)

Now, we go to Fourier space. Choosing ~k = (k, 0, 0) and de�ning the trans-
verse polarizations as

a± =
ay ± iaz√

2
,

we get(
∂2

∂τ 2
+ k2 − α(α + 1)

τ 2
± 2αγk

τ

)
ã±(τ,~k) = 0. (59)
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The equation (59) can be solved analytically in terms of regular and irregular
Whittaker functions W and M :

ã±(τ,~k) = C1±(k)Wα+1/2(−iξ, 2ikτ)

+C2±(k)Mα+1/2(−iξ, 2ikτ), (60)

where the parameter ξ = −αγ de�ned in Caprini & Sorbo (2014) determine
the relative size of the parity violation signals in the model. Reference Caprini
& Sorbo (2014) study in full detail the features of the model with f1 = γf2 and
describe analytically its asymptotic behaviour. For scales in which |kτ | � ξ,
theW function dominates and we will consider only its contribution. Morover,
if we take |kτ | � ξ in (59) we have solutions in terms of modi�ed Bessel
functions of the �rst kind Iν :

ã±(τ,~k) ≈ C1±(k)
√
−2ξkτI−(1+2α)(

√
−8ξkτ)

+C2±(k)
√
−2ξkτI(1+2α)(

√
−8ξkτ).

Which, in particular, for super horizon scales in which |8ξkτ | � 1 we have

ã±(τ,~k) ≈
[
C1±(k)(−2ξkτ)α+1Γ(−1− 2α)

+C2±(k)(−2ξkτ)−αΓ(1 + 2α)
]
. (61)

We can write the last equation as

ã±(τ,~k) ≈ ũ±(k)(−ξHτ)α+1 + ṽ±(k)(−ξHτ)−α, (62)

in which we restored H and absorbed further dependence of k, ξ, α in the ũ
and ṽ functions. At this point, we go back to coordinates space obtaining the
asymptotic form:

a±(τ, ~x) ≈ u±(~x)(−ξHτ)α+1 + v±(~x)(−ξHτ)−α. (63)

We have succeed on separating the time and space coordinates for super
horizon scales, so, we can assign a conformal boundary �eld in this case as
in the previous cases studied. This situation is nevertheless a bit di�erent
given that the dominant term depends on the value of the exponent α, if
α > −1/2 the term v± dominates, while, if α < −1/2 the term u± is the one
that dominates. If α > −1/2, we demand that

lim
|τ |→0

a±(τ, ~x) = τ−αv±(~x), (64)

while, if α < −1/2 we take the boundary condition

lim
|τ |→0

a±(τ, ~x) = τα+1u±(~x). (65)
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Now, we can calculate the conformal weight of those boundary �elds applying
the same procedure of previous sections. We only consider the dilatation
transformation, the inversion is entirely analogous. We see that the canonical
�eld a± transforms under four dimensional dilatations τ ′ = λτ , x′ = λx,
x′± = λx± as a four dimensional vector with weight ∆a = 1:

a′± =
∂x±
∂x′±

a± = λ−∆aa± = λ−1a±. (66)

Applying dilatation over (64) we have:

a′± = (τ ′)−αv′±(~x′) = λ−α(τ)−αv′±(~x′)

= λ−1a± = λ−1(τ)−αv±(~x), (67)

which implies

v′±(~x′) = λα−1v±(~x), (68)

and comparing with (20) with n = 1 and d = 3 we conclude that the boundary
�eld v± behave as a conformal �eld of weight:

∆v = 1− α. (69)

Following the same procedure we �nd that the boundary �eld (65) behaves as
a conformal boundary �eld of weight

∆u = α + 2. (70)

To summarise, we have obtained that the interacting system (48) admit a
conformal �eld theory representation at super horizon scales through the
boundary vector �elds u±, v±. A remarkable fact of this results is that they
coincide with the case studied in Biagetti et al. (2013), where they studied the
model without parity violation term, this is

SφA = −1

4

∫
d4x
√
−gf1(φ)F µνFµν . (71)

Naively, we could think that both cases, the parity conserving and the parity
violating models have the same conformal boundary �eld associated and that
the statistical features of the theories given by the correlating functions are
the same. Nevertheless, there is a crucial di�erence implied by the fact that
the super horizon boundary symmetry group allow the spacial re�ection
~x′ = −~x as an element of the symmetry group. In this case, the correlating
functions allow for antisymmetric terms in its structure, for instance, the
power spectrum of a boundary �eld would be

〈ui(~k)uj(−~k)〉 = (β1(k)δij − β2(k)k̂ik̂j + β3(k)εijaka), (72)
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where the form of the βi functions can be determined by using the asymptotic
symmetries of the theory (Biagetti et al., 2013). It is important to see that the
functions β2(k) and β3(k) are related to anisotropic and to parity violating
e�ects respectively. In the parity conserving case (β3 = 0), the above equation
can be written as

〈ui(~k)uj(−~k)〉 = β1(k)(δij − k̂ik̂j) . (73)

If we assume that the vector �eld points along the direction of some unit
vector n̂ and the wave vector k points along the unit vector k̂, the power
spectrum can be written as (Ackerman et al., 2007):

β(k) = β(k)(1 + g(k)(k̂ · n̂)2) , (74)

where β(k) is the isotropic power spectrum and g(k) is a function measuring
the amount of statistical anisotropy. If g(k) is scale invariant, recent data
analysis gives an upper bound on that: g ≤ 10−2 (Kim & Komatsu, 2013; Ade
et al., 2016).

A further development of this ideas on the calculation of the correlation
functions using conformal �eld theory techniques exploiting the asymptotic
symmetries as presented in Biagetti et al. (2013) for the case of parity violating
theories have enough interests and we expect to pursue this possibility in
future work.

Conclusions

In this paper, we have comprehensively studied the symmetry properties
of the scalar and vector �elds solutions on de Sitter space. We study their
asymptotic limit at super horizon scales and we found that, in this limit, free
�elds behave as conformal �elds on a constant time surface. We study the
free scalar and the free vector �elds for pedagogical purposes, to illustrate the
technique and then study an in�ationary model with interacting scalar and
vector �elds.

The coupled system is studied because it is interesting for its cosmological im-
plications, in particular this kind of model can explain some observable CMB
anomalies such as broken of inversion and rotational invariance. The super
horizon scales are important in our context because in�ationary expansion
freeze the perturbations at this scales and the correlation functions, evaluated
at this scales, carry information from the in�ationary dynamics. In this sense,
the use of the asymptotic conformal symmetries of de Sitter space o�ers a
powerful technique to uncover the structure of the correlations, which relies
only of the conformal weight of the boundary asymptotic �elds.
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Regarding the speci�c scalar-vector model studied, we can mention two
important aspects, the �rst one is that the coupling functions f1(φ) and f2(φ)

in Eq. (48) ful�ll the condition f2(φ)/f1(φ) = constant and the second one is
that if we assume that the functions are a power law on Hτ (which is a good
choice because we are looking for an homogeneous universe), the conformal
weight of the vector �elds on super horizon scales depend only of that power
(see Eqs. (69) and (70)). This result is according with the one obtained by
Biagetti et al. (2013), who studied the parity conserving case with f2(φ) = 0.
Our next step is to use the conformal weight of the boundary vector �eld to
calculate the shape of the correlation functions following the procedure given
by Biagetti et al. (2013) and identify the signals of parity violation.
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Simetrías en el espacio de De Sitter y modelos inflacionarios escalar-vector

Resumen. En este artículo se estudia la correspondencia entre una teoría de campos en el 
espacio de De Sitter en D-dimensiones y una teoría dual conforme en un espacio euclidiano en 
(D - 1)-dimensiones. En particular, se investiga la forma en la que se establece esta correspondencia 
para un sistema compuesto por un campo escalar y un campo vectorial acoplados propagándose 
en el espacio de De Sitter. Se analizan algunas condiciones necesarias (pero no suficientes) en las 
cuales la simetría conforme se preserva en la teoría dual en (D - 1)-dimensiones y hace posible el 
establecimiento de la correspondencia. La discusión presentada aquí se enmarca en el contexto de 
la cosmología inflacionaria, así que los resultados obtenidos plantean algunas posibilidades relevantes de 
aplicación en el cálculo de funciones de correlación de los campos y de la perturbación de la curvatura 
primordial ζ en modelos inflacionarios que incluyen campos escalares y vectoriales acoplados.

Palabras clave: inflación; campos vectoriales; simetrías de De Sitter; violación de paridad.

Simetrias de De Sitter e modelos inflacionarios escalar-vetors

Resumen. Neste artigo, é estudada a correspondência entre uma teoria de campos no espaço de De 
Sitter em D-dimensões e uma teoria dual conforme num espaço euclidiano em (D – 1)-dimensões. 
Em particular, é pesquisado o caminho no qual se estabelece esta correspondência para um sistema 
de interação composto dum campo escalar e um vetorial, propagando-se no espaço de De Sitter. São 
analisadas algumas condições necessárias (mas não suficientes) para as quais a simetria conforme é 
preservada na teoria dual em (D-1)-dimensões, fazendo viável o estabelecimento da correspondência. 
A discussão apresentada aqui, está situada no contexto da cosmologia inflacionária. Portanto, os resultados 
obtidos representam algumas possibilidades relevantes para sua aplicacão no cálculo de funções de 
correlação dos campos e da perturbação da curvatura primordial ζ em modelos inflacionários incluindo 
campos acoplados escalares e vetoriais.

Palabras clave: inflação; campos vetoriais; simetrias de de Sitter; violação da paridade.
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