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Introduction

There are various models which are proposed to describe the pyrolysis of
biomass, such as single-reaction and multi-reaction models [1-6]. The most
authentic and accurate model considered in this study is the Distributed
Activation energy model (DAEM) [7-10]. While the aim of this study is mainly
concentrated around the parametric values relevant to the loose biomass, the
DAEM also applies to the pyrolysis of other conventional sources including
residual oils, resin chars [11], and kerogen [12]. Calculations of the solution
to this model may require iterative loops of double integral and rapidly
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varying functions which in turn create significant numerical complications.
To tackle this problem, some asymptotic methods have been adopted to
make an accurate approximation to the integral and therefore curtail the
computation time. Another main source of numerical difficulty is due to
the double exponential term (DExp) in the DAEM, which is investigated
for isothermal pyrolysis. The domain of DExp acts over a narrow range of
activation energies which changes as time progresses. In this study, the key to
our approach is to know the significance of the relative width of the DExp
term as compared with the width of the initial distribution.

In this study, the numerical solutions have been obtained by using the
asymptotic expansions. The derived results are used to determine the kinetic
parameters of the kinetic model. For predicting the realistic results, the
parameters affecting the behavior solution must be estimated. The effect of
these parameters on the single-reaction model is reviewed in literature [11].
The DAEM is very flexible, and it can successfully describe the pyrolysis of
different types of biomass. The main aim of this study is to focus on the
relevant parameters which affect the kinetics of pyrolysis. The DAEM is also
applicable to the pyrolysis of other conventional sources of energy as Coal,
residual oils, resin chars [12], and kerogen [13]. This analytical method is
not only used for thermal decomposition of plant or animal biomass [14, 15]
but also for other materials such as medical wastes [16], waste car tyres [17],
printed circuit board wastes [18], or sewage sludge [19, 20].

The purview of this paper is to use asymptotic techniques to make an accurate
approximation to the double as well as DExp terms and then predict the
behavior of the isothermal n t h order DAEM by involving the effect of some
relevant parameters on the numerical solution.

Materials and methods

Distributed Activation Energy Modeling:

This model includes a reaction time scale, which gained acceptance since it
is the significant part of biomass devolatilization [21, 22]. The complication
related to DAEM is that the function f (E) and k0 (E) are highly correlated,
hence it is very difficult to evaluate both the functions accurately. Therefore,
it has been assumed that all the frequency factors k0i to have the same value k0,
thus it makes analysis easy. The uncertainty of reactant distribution is highly
emphasized. The nonisothermal nth DAEM is expressed by equation (1)

264 Asymptotic Approximations using Gamma Distribution

Universitas Scientiarum Vol. 22 (3): 263-284 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum



1−X =























∫∞
0

exp
�

−
∫ t

0
k0 exp (−E

RT ) d t
�

f (E) d E (first order reaction)

∫∞
0

�

1−
�

1− n
∫ t

0
k0 exp (−E

RT ) d t
�� ( 1

1−n )f (E) d E for n 6= 1

(1)

where X is conversion, n is the order of reaction and f (E) is the Gamma
distribution function of activation energies.

The value of conversion is found with the help of TGA analysis of cedrus
deodara.

X =
mo −mt

mo −mr

(2)

where, mr is the residual mass, m0 is the mass of the sample at beginning of
decomposition, and mt is the mass of sample at given time.

Although in most of the study, the symmetrical function is assumed
(Gaussian), yet it would be advantageous to choose an asymmetric distribution
for modelling the kinetics of biomass pyrolysis, such as the Gamma
distribution over a symmetrical one [23]. In addition to that the chosen
function is mathematically flexible and can be expressed as:

f (E) =
E (λ−1)e−

E
η

ηλΓ (λ)
for E > 0 (3)

where λ is the scale parameter expressed in kJ/mol and η is dimensionless
positive shape parameter. The mean and the variance of distribution are given
by equation (4) and equation (5) respectively:

E0 =
λ

η
(4)

σ2 =
λ

η2
(5)

Approximation methodology

Equation (1) comprises of two terms. The first term is the DExp which varies
with time through temperature history experienced experimentally. The
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second part is the initial distribution function of activation energies that is
independent of time. Primarily, the temperature dependant part is considered
and thereafter one can derive approximations to solve the DExp.

The isothermal temperature profile only has been involved in this study. In the
nonisothermal, linear ramping temperature, the amount of released volatile
does not change until the critical time is attained when the two parts of
integrand overlap significantly, whereas the variation of volatile release begins
to change appreciably at very early times. In case of ramping temperature, the
mean value of DExp changes its location with time in a similar manner to the
isothermal temperature case, with logarithmic term replaced by a LambertW
function [24, 25]. However, the step width of DExp, Ew (= E0 yw), is narrow
at early times, which in turn leads to a major difference in the appearance
of the remaining mass fraction curves versus time, between the ramping and
constant temperature cases.

Systematic approximations to distributed activation energy model
(DAEM)

For approximation of double exponential term, the primal step is to assume
the typical values of dependent parameters and rapidly varying functions.
The frequency factors (k0) are in range of k0 ∼ 1010 — 1013 s−1, whereas the
activation lies in domain of 100 — 300 kJ/mol [24]. The double exponential
term is expressed as:

DExp= exp
�

−
∫ t

0
k0e−

E
RT d t

�

(6)

To demonstrate the simplification method, the constant temperature history
is assumed to be as follows:

T (l ) = To (7)

Here, l is any instant of time t.

After implementing the isothermal condition, DExp becomes

∼ e x p
�

− t k0e−
E

RTo
�

(8)

Assume typical values, E
RTo
∼10, while t k0∼1010. The large size of both these

parameters make function, DExp varies rapidly with E . The equation (8) can
be further illustrated as:
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∼ e x p
�

Es − E
Ew

�

(9)

Where Es ≡ RT 0 l n(t k0) and E w ≡ RT 0

When the value of E is much less than Es , the function approaches zero.
Whereas for E much greater than Es , DExp tends to one. The DExp varies in
domain of [0, 1] in a range of E with step width of Ew . The distribution can
either be wide or narrow distribution [24]. It depends on the width of DExp
as compared to the width of the initial distribution function f (E). In the
total integrand of equation (1), DExp is multiplied by the initial distribution
function f (E). The shape of the total integrand relies upon the applied limit.
When the initial distribution is relatively wide compared to Ew , the total
integrand is initially following the shape of the initial distribution function,
but as time proceeds, it is progressively truncated from the left by the step
function, DExp. The location of maximum can move significantly and the
shape becomes quite skewed. Conversely, the relatively narrow width of
initial as compare to DExp makes the shape of the total integrand similar to
the initial distribution, with amplitude that is progressively reduced by DExp
as time proceeds. The total integrand remains more symmetrical than that of
wide distribution. The location of maximum of total integrand does move in
the time-dependant manner.

But the scope of this paper is confined itself to the wide distribution case,
wherein the width of f (E) is wider than that of DExp.

Using equation (1) and (3), the remaining mass fraction can be expressed as:

1−X =
∫ ∞

0
e x p

�

− e x p
�

Es − E
Ew

��

E (λ− 1)e−
E
η

ηλΓ (λ)
d E (10)

Let

h(E) = −e x p
�

Es − E
Ew

�

− E
η

(11)

then

1−X =
∫ ∞

0
e x p (h(E))

E (λ−1)

ηλΓ (λ)
d E (12)

where Es and Ew are functions of t as mentioned earlier.
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Energy is now rescaled as y = E
E0

, so that the problem becomes

1−X =
α

Γ (λ)

∫ ∞

0
y (λ−1) e x p (h(y)) d y (13)

let, α = σ2λ

Eo
. For the practical purpose α� 1.

Time is also rescaled as τ = k0t .

For linear ramping temperature T = θt ,

ys =
RT0 l n(τ)

E0

, yw =
ys

l n(τ)
(14)

The wide distribution case

It is assumed that the initial distribution is wider than DExp. According to
this, DExp jumps from zero to one near y = ys in such a way that it has been
approximated by the step function [21, 22, 26, 27]. In order to adopt the
wide distribution method, the limit yw

2λ
p
α� 1 is considered. The Heaviside

function is written as

H (y − ys ) =
�

0, y < ys

1, y ≥ ys
(15)

Equation (13) can be written in the form:

1−X =
α

Γ (λ)

∫ ∞

0

�

e x p
�

−e x p
�

ys − y
yw

��

−H (y − ys )
�

(16)

y (λ−1)e x p
�

− (σpy)2
�

d y +
α

σ2λΓ (λ)
Γ (λσ2ys )

where Γ (λ,σ2 ys ) is the upper incomplete Gamma function.

The second term in equation (13) is complementary function, and hence
easily computed. In fact, in many previous simplification (the step-function
approximations) include just this term and neglect the remaining terms. The
first integral term is negligibly small everywhere except in a neighbourhood
of size yw about the point y = ys . Therefore, it can be expanded with the help
of Taylor expansion about y = ys .
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From equations (17) and (18), we have
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α
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We know that

Γ (λ,σ2yS)
Γ (λ)

= 1− P (λ,σ2ys ) (21)

where P (λ,σ2yS) =
γ (λ,σ2yS)
Γ (λ)

is the lower cumulative distribution.

Coefficient Li is independent of any parameters and the some few values are
evaluated as:

L0 ≈ −0.5772, L1 ≈−0.98906, L2 ≈−1.81496, L3 ≈−5.89037

The remaining integral terms are estimated by the expression

Ln ≡
∫ ∞

−∞
xn
�

e−e−x −H (x)
�

d x (22)

The equation (20) is the required expression for the first order reaction.

In the same manner, the approximations can be obtained for n t h order
reactions by invoking equation (1).

The equation (1) for nth order reactions is written as:

(1−X ) n t h ∼
∫ ∞

0

�

1− e x p
�

ys − y
yw

�

+
n
2

e x p
�

2
�

ys − y
yw

�

�

(23)

−
(2n− 1)

6
e x p

�

3
�

ys − y
yw

�

�

+ · · ·
�αy (λ−1)e x p(−(σpy)2

Γ (λ)
d y
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Using the wide distribution limit, the equation (23) can be expressed as:

(1−X ) n t h ∼
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The coefficients Pn, Mn and Nn values are evaluated as:

P0 ≈−0.36788, P1 ≈−0.23576, P2 ≈−0.17273, P3 ≈−0.13607,

M0 ≈−0.56767, M1 ≈−0.35150, M2 ≈−0.25250, M3 ≈−0.19642,

N0 ≈−0.68326, N1 ≈−0.41102, N2 ≈−0.29061, N3 ≈−0.22387,

The other integral terms can be evaluated as:

Pn ≡
∫∞
−∞ x i

�

e x p(−x)−U (x)
�

d x, i = 0,1,2,3....

Mn ≡
∫∞
−∞ x i

�

e x p(−2x)−U (x)
�

d x, i = 0,1,2,3....

Nn ≡
∫∞
−∞ x i

�

e x p(−3x)−U (x)
�

d x, i = 0,1,2,3....

Application of loose biomass and computation methodology

The sample of Cedrus deodar underwent isothermal pyrolysis. Elemental
composition is evaluated with the help of CHNS (O) analyser (Flash-EA 1112
series). TGA/DTA (Exstar 6300) analysis has been performed in the presence
of inert atmosphere of Nitrogen. An alumina crucible is used to hold the
sample. The purge flow rate is fixed to be 200 mL/min. Dulong’s formula
for estimating the calorific value of a solid fuel is used to evaluate the high
calorific value of sample [28]. Thermocouple ‘R’ type is used to measure the
furnace temperature.

It is to be noted that the results of this analysis are used for the prediction of
nth order DAEM using the Gamma distribution. Computation of equations
(20) and (25) are done with the help of MATLAB algorithm. Accurately
approximated results are obtained by minimizing the root mean square error
between experimental and predicted value. Iterative loops are used for lengthy
computation of DAEM equations. Fig. 6. demonstrates that the n t h order
Gamma DAEM provides the good fit with experimental data.
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Result and discussions

The numerical solution of equation (1) is carried out with the help of
asymptotic expansion. The parametric influence of upper limit (E∞) is
illustrated in Fig. 1. At the initial stage of the pyrolysis, the remaining mass
proportion (1−X ) must be close to one. While it has been observed in Figure 1
that the remaining mass fraction is less than one for E∞< 8.33 kJmol−1 values.
When more than 11.33 kJ is applied, the results are more accurate and closely
overlapped with each other. Therefore, 13.8 kJ mol−1 can be adopted as
an upper limit of the ‘dE’ integral. The behaviour of (1−X ) curves with
variation of frequency factor (A) on the numerical results is depicted in Fig. 2.
According to these curves, increment in A shifts the curves to the left direction.

The effect of scale parameters on the numerical solution is shown in Fig. 3.
Where it is visible that the remaining mass proportion curves shifted up
for the lower value of scale parameter (λ). Therefore, the initial value of
(1−X ) becomes more than one, which provides inaccuracy of the predictive
algorithm for the values of λ less than equal to 35.85 kJ mol-1. The effect
of shape parameter (η) on the numerical solution is depicted in Fig. 4. For
the values of η less than 13.36, the remaining mass curves shifted down and
become constant with time.

Thus, it is concluded that the converse rate of biomass becomes constant and
hence, the remaining mass fraction curves show the asymptotic behavior with
time as the shape parameter decreases. The effect of the reaction order (n)
values on the numerical results is illustrated in Fig. 5. from which it is seen
that increase in reaction order (n) causes (1−X ) curves to shift up.

274 Asymptotic Approximations using Gamma Distribution

Universitas Scientiarum Vol. 22 (3): 263-284 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

C % H% N% O% S% HHV* (MJ/kg)

47.68 7.6765 2.0285 32.511 0.000 21.318

           Table 1. Chemical composition of Cedrus deodara leaves *- Higher heating 
value.



Unlike Gaussian [29], Weibull [30] and Rayleigh [31] distribution functions,
Gamma distribution relatively converges at very low value of activation
energies. It also implies that sensitivity of Gamma distribution while
modeling the biomass pyrolysis is quite high. The sudden variation in relevant
parameters of biomass pyrolysis led to the drastic variation in the curvature
of the remaining mass fraction. Therefore, the variation of activation energies
in between different reactions is negligibly small.
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a)

b)

              

                    
     

Figure 1. The effect of upper limit (E∞) of ‘E’ integral on the numerical 
solution (T0 = 564 K, A = 1.2ms−1, η = 23.87, λ = 130 kJmol−1 and n = 11) 
(a. first order reaction, b. n t h order reaction).
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a)

b)

           

                 
        

Figure 2. The effect of frequency factors (A) on the numerical solution

(T0 = 564 K, E∞ = 7.33 kJmol−1, η = 23.87, λ = 130 kJmol−1  and  n = 11)
(a. first order reaction, b. n t h order reaction).
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a)

b)

             
                

        

Figure 3. The effect of scale parameter (λ) of the Gamma distribution on the

numerical solution (T0 = 564 K , E∞ = 7.33 kJmol−1, η = 23.87 and n = 11)
(a. first order reaction, b. n t h order reaction).
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Figure 4. The effect of shape parameter (η) of ’dE’ integral on the numerical 
solution (T0 = 564 K , A = 1.2ms−1, λ = 130 kJmol−1, E∞ = 7.33 kJmol−1 and 
n = 11) (a. first order reaction, b. n t h order reaction).
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Conclusions

Numerical solution of Gamma distribution is derived by using asymptotic
approximations to double exponential term. It has been found that the upper
limit of ‘dE’ provided a good curve fitting at 13.8 kJmol−1; whereas the
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Figure 5. The effect of reaction order (n) on the numerical solution 
(T0 = 564 K , A = 1.2 ms−1, η = 23.87, λ = 130 kJmol−1).

Figure 6. Comparison of thermoanalytical data with the predicted n t h order 
isothermal DAEM using the Gamma distribution.
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remaining mass fraction curves did not predict an accurate result for all the 
value of E∞ ≤ 11 kJmol−1. Furthermore, the effect of frequency factor, 
reaction order, and shape and scale parameters of Gamma distribution merely 
influenced attribute of (1−X ) curves. However, the remaining mass fraction 
curves did not simulate the mechanism of the reaction occurring at the 
high-temperature regime. If we replace the initial distribution function from 
some other multivariate function which bifurcates the behavior of biomass 
pyrolysis at lower as well as higher temperature regimes, it may provide a 
much more promising outcome than that of univariant function.
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Aproximações assintóticas à pirólise isotérmica de folhas 
de deodara com a distribuição gamma

Resumo. O objetivo principal deste artigo gira em torno da influência 
de certos parâmetros relacionados à pirólise de biomassa nas soluções 
numéricas do modelo de energia de ativação distribuída (MEAD) de ordem 
n, usando a distribuição Gamma. São estudados o limite superior da integral 
'dE', o fator de frequência, a ordem da reação, e os parâmetros de forma 
e velocidade da distribuição Gamma. A análise do modelo matemático é 
realizada com a ajuda de uma expansão assintótica.

Palavras-chave: expansão assintótica; distribuição gama; pirólise de 
biomassa; modelo de energia de ativação distribuída

Aproximaciones asintóticas a la pirólisis isotérmica de 
hojas de deodara usando la distribución gamma

Resumen. El propósito principal de este artículo gira en torno de la influencia 
que tienen ciertos parámetros relacionados con la pirólisis de biomasa sobre 
las soluciones numéricas del modelo de energía de activación distribuida 
(MEAD) de orden n, usando la distribución Gamma. Se estudian el límite 
superior de la integral 'dE', el factor de frecuencia, el orden de reacción, y 
los parámetros de forma y velocidad de la distribución Gamma. El análisis 
del modelo matemático es realizado con ayuda de una expansión asintótica.

Palabras clave: expansión asintótica; distribución Gamma; pirólisis de 
biomasa; modelo de energía de activación distribuida
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