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ABSTRACT

Background: Breast cancer is the second cause of death in women in developed and undeveloped 
countries, including Colombia. A high percentage of these tumors is estrogen dependent, for which the 
hormonal treatment is the most used therapy in breast cancer. Currently, the first line treatment for 
breast tumor in postmenopausal women is the letrozole, an aromatase enzyme inhibitor that avoids the 
transformation of androgens to estrogens. Since letrozole produced adverse effects on patients, there is a 
requirement for new alternative treatments. Furthermore, omega fatty acids (ω-FA), essential as they are 
obtained from the normal diet or from dietary supplements, have demonstrated nutraceutical potential 
because of their anti-inflammatory or pro-inflammatory activity. Nonetheless, there is controversy in in 
vitro, in vivo and epidemiologic reports regarding their preventive or inducing activities of carcinogenesis 
in animals and humans, depending on the structure of the ω-FA. Objectives: This review aims to 
show the main in vitro, in vivo and epidemiologic evidences of the chemotherapeutic potential of ω-3 
and ω-6 FA in different types of neoplasm, particularly in breast cancer, in individual or combined 
treatments with diverse antineoplastics. Methods: PubMed and Science Direct databases revealed the 
most representative studies, published during the last two decades, about ω-3 and ω-6 FA, breast cancer 
and the principal therapeutic strategies for this neoplasm. Findings were presented in separated topics to 
provide an overview of ω-FA and their potential in treatments for breast cancer. Results: Patients treated 
with estrogens and progesterone derivate have shown predisposition to develop breast cancer after two 
years of continued therapy. Furthermore, ω-FA with known nutraceutical potential have demonstrated 
their potential as adjuvants in the treatment against different neoplasms, like hepatic and colon cancer. 
Conclusions: Current therapies for breast cancer and their low efficacy in the long term led to explore 
new alternative treatments with ω-FA. These essential fatty acids in daily consumption could enhance 
the antineoplastic agent effect. Nevertheless, metabolism of the ω-FA must be considered for this use.
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RESUMEN

Antecedentes: el cáncer de mama es la segunda causa de muerte de mujeres en países desarrollados 
y no desarrollados, incluido Colombia. La mayoría de estos tumores son dependientes de estrógeno 
por esa razón, la terapia más utilizada es la hormonal. Actualmente, el tratamiento de primera línea en 
mujeres posmenopáusicas es el letrozol, inhibidor de la enzima aromatasa, que evita la conversión de 
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andrógenos en estrógenos. El letrozol causa efectos adversos en las pacientes, lo cual motiva la búsqueda 
de nuevas alternativas que disminuyan estos efectos. Los ácidos grasos omega, esenciales en la dieta 
regular o suplementaria, han mostrado su potencial nutracéutico ambivalente, como antiinflamatorios 
o proinflamatorios. Debido a esto, existe controversia en distintos reportes a nivel in vitro, in vivo y 
epidemiológicos sobre la actividad preventiva o quimioterapéutica de los ω-3 y ω-6 AGOs. Objetivos: el 
aporte de este artículo, es mostrar las principales evidencias in vitro, in vivo y epidemiológicas del potencial 
quimioterapéutico de los AGOs en tratamientos individuales y combinados con antineoplásicos, en distintos 
tipos de cánceres, particularmente en el cáncer de mama. Métodos: se revisaron las bases de datos PubMed 
y Science Direct y se seleccionaron los estudios más representativos de las dos últimas décadas sobre ω-3 
y ω-6 AGOs y las principales estrategias usadas en el cáncer de mama. Los hallazgos se presentan en 
temas separados, primero una visión general de los AGOs y luego su potencial bioactivo en tratamientos 
contra el cáncer de mama. Resultados: la mayoría de los estudios en pacientes con cáncer de mama, 
tratadas con estrógenos y derivados de progesterona, han mostrado predisposición a desarrollar cáncer 
de mama después de dos años de terapia continua. De otro lado, los AGOs han demostrado su potencial 
como adyuvantes en el tratamiento en diferentes cánceres como el de colon y hepático. Conclusiones: las 
terapias actuales para el cáncer de mama y su baja eficacia a largo plazo exigen explorar nuevas alternativas 
de terapias, que incluyen los AGOs podrían potenciar fármacos, no obstante, es necesario tener en cuenta, 
el metabolismo de los AGOs, para uso.

Palabras clave: Ácidos grasos insaturados, tratamiento hormonal, aceites de pescado, antiinflamatorios.

INTRODUCTION

This work analyzed the most relevant 
publications on the results of the evaluation of 
the preventive or therapeutic potentials of omega 
fatty acids (ω-FA), such as, omega-3 (ω-3), 
omega-6 (ω- 6) and omega-9 (ω-9) and some of 
its derivatives in the control of cancer, particularly 
of breast carcinoma. The used key words related 
to the topic were, among others, breast tumor cell 
lines, viability, cell cycle and apoptosis, and the 
most recent information was reviewed in PubMed 
and ScienceDirect databases, through the digital 
platform of Universidad Nacional de Colombia, 
in the period 2012-2018.

From the articles to which we had access, we 
also reviewed older references that supported the 
in vitro, in vivo or epidemiological evidences of the 
biological effects of the ω-FA in animal and human 
cellular models. In addition, some treatments used 
in combination with these ω-FA in cancer patients 
were reviewed to contextualize the state of the 
art for breast cancer and its potential alternative 

therapies to reduce the side effects of conventional 
hormonal treatments.

Polyunsaturated fatty acids (PUFAs) are large 
hydrocarbon molecules with different number of 
unsaturated bonds. The presence of the first double 
bond in the position 3, 6 or 9 from the terminal 
-CH3 group of the hydrocarbon chain classifies 
them as fatty acids (FA) of the omega series and 
are of special interest for their benefits in health. 
Further, they are named as ω-3, ω-6 and ω-9, and 
their main characteristics are described in Table 1. 

ω-3 FA, as cis-5,8,11,14,17-eicosapentaenoic 
( E PA ,  C 2 0 :5)  a nd  c i s- 4 ,7,10 ,13 ,16 ,19 -
docosahexaenoic (DHA, C22:6) acids are 
important at dietary level and are found in cold-
water fishes. Similarly, cis-9,12,15-octadecatrienoic 
acid (α-linolenic, ALA, 18:3), found in linseed, 
colza and nuts, is also important in certain diets 
(Figure 1). In some genetically modified plants the 
ω-3 cis-6,9,12,15-stearidonic acid (SDA, C18:4), 
besides from producing EPA from SDA (1,2), can 
be synthesized.
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Moreover, the ω-9 acid, monounsaturated 
9-octadecanoic or oleic (OA, C18:1), present in 
foods of the Mediterranean diet, such as olive oil 
(80-85%), avocado (70-75%), grape (15-20%) and 
pork meat (38%) (3), has demonstrated its preventive 
potential in human breast (4-6) and early colorectal 
carcinogenesis (7-9), and in animals it avoids the 
development of colon cancer (10-12). Furthermore, 
in breast tumor cell lines MDA-MB-231, it 
stimulated cell migration by AA metabolism (13), 
further to avoiding the development of colon cancer 
in animals (Figure 2). The OA has been used as a 
treatment for the prevention of cancer development, 
but there are no studies that reveal its potential as a 
chemotherapeutic agent.

Figure 2. Metabolic pathway of the ω-9 fatty acid, oleic 
acid (OA). Adapted from (14).

Table 1. Classification of ω-3, ω-6 and ω-9 fatty acids according to the number of carbon atoms and to the number 
of unsaturated bonds.

Omega fatty acid (ω) Common name Initials IUPAC name # of carbon atoms/ 
#unsaturation

Chemical 
formula

ω-3 Docosahexaenoic acid DHA cis-4,7,10,13,16,19-Docosahexaenoic acid C22:6 C22H32O2

ω-3 Eicosapentaenoic acid EPA cis-5,8,11,14,17-Eicosapentaenoic acid C20:5 C20H30O2

ω-6 Arachidonic acid AA cis-5,8,11,14-Eicosatetraenoic acid C20:4 C20H32O2

ω-3 α-Linolenic acid ALA cis-9,12,15-Octadecatrienoic acid C18:3 C18H30O2

ω-6 Linoleic acid LA cis-9,12-Octadecadienoic acid C18:2 C18H32O2

ω-9 Oleic acid OA cis-9-Octadecenoic acid C18:1 C18H34O2

Figure 1. Chemical structure of ω-3, ω-6 and ω-9 fatty acids. DHA: docosahexaenoic acid, EPA: eicosapentaenoic 
acid, AA: arachidonic acid, ALA: α-linolenic acid, LA: linoleic acid, OA: oleic acid.
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Despite PUFAs are essential cell components, 
there are more studies for ω-3 FA concerning their 
biological activities than for ω-6 FA regarding their 
benefic potential. For instance, some epidemiologic 
evidences associate the low incidence of different 
types of cancer with the fish oil consumption 
(15,16), and studies performed with animals 
show the antitumor potential of DHA (16-18). 
Furthermore, DHA and lauric acid (SLA, saturated) 
have demonstrated to activate the TLR4 receptor of 
T lymphocytes (18) and the inflammatory response 
(19). Additionally, tumor progression was promoted 
in 20% of all neoplasms (20, 21).

In animal models, the inhibition of TLRs 
activation caused by ω-3 acids and anti-
inflammatory phytochemicals is well documented 
(22-24). Also, it has been demonstrated that 
reactive oxygen species (ROS) induce the SLA 
dimerization and the TLR4 recruitment in the lipid 
rafts of the plasmatic membrane (25). Additionally, 
expression of cytokines, chemokines and growing 
factors, activation of the TLR4, stimulation of the 
progression and metastasis of tumor and stromal 
cells and dependent promoters of the enzyme 
cyclooxygenase-2 (COX-2) were evidenced (25). 
Moreover, COX-2 enzyme, the most studied in 
the metabolic pathways of ω-3 and ω-6 FA, is 
considered a therapeutic target and is also expressed 
from inducible gene (25).

Likewise, saturated fatty acids activate the TLR2 
and TLR4 receptors, which increases the risk of 
developing tumors while it has been demonstrated 
that ω-3 acids inactivate TLRs, reducing the risk 
of developing cancer (26-30). Despite some genic 
variants of TLR4 have reduced the risk of suffering 
from prostate, gastric, colorectal cancer and 
lymphoma (26-31), other polymorphic receptors, 
as TLR6-TLR1-TLR10, increase the risk of suffering 
from prostate cancer (32) or of developing prostate 
tumors (33-35), as TLR2 polymorphisms.

ω-3 fatty acids

The ω-3 DHA and EPA acids with recognized 
and diverse biological activities (36) are synthesized 
in the peroxisomes by sequential enzymatic 
reactions. Furthermore, 𝛽-oxidation from ALA 
acid (37) produced intermediaries as cis,cis-9,12-
octadecadienoic or linoleic acid (LA C18:2) with 
low efficiency, which are very common metabolites 
in occidental diets (38).

At intracellular compartments, 𝜔-3 EPA and 
DHA acids produce potent anti-inf lammatory 
molecules, as resolvins and protectins, while ω-6 
cis-5,8,11,14-eicosatetraenoic or arachidonic acid 
(AA, C20:4) produces powerful pro-inflammatory 
molecules, such as prostaglandins and leukotrienes 
catalyzed by metabolic pathways of common 
enzymes of ω-3 and ω-6 FA (39-42) (Figure 3). 

Figure 3. Metabolic pathways of ω-3 and ω-6. Adapted from (46, 47).
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In vivo studies show that in animals supplemented 
with EPA and DHA in the form of free acids, or fish 
or algae oil, in the transgenic mouse ( fat-1) model, 
which expresses the desaturase of Caenorhabditis 
elegans and wherein great quantities of ω-3 from 
ω-6 acids are produced, it has been promising to 
eliminate some confounding factors, characteristic 
in these studies. These results could explain the 
significant differences with the responses found 
for animals supplemented with a specific diet (43). 
Moreover, such studies have shown that DHA is 
the largest ω-3 acid found in biological systems (44) 
that exhibits antitumor activity (45).

Dietary high doses of ω-3 FA have been studied 
in most animal models, in which the clinical 
development of cancer is simulated (49-51). The 
results obtained are then compared with studies 
of human populations (52), and there are slight 
associations between the development of the illness 
and the FA consumption (48). Notwithstanding, 
the extrapolation of these studies is generally based 
on incomplete descriptions of the experimental 
conditions, dosimeter or purity of the ω-3 acids 
used in the evaluated diets (53).

In animal models with colon cancer or intestinal 
mucosa inflammation (54, 55), ω-3 acids inhibited 
the neoangiogenesis and the IL-8 production in 
HUVEC cells stimulated by IL-1𝛽 (55). These ω-3 
FA induced the α-TNF factor by the UVB radiation 
on HaCaT keratinocyte cells (56) or reduced the 
NF-𝜅B factor produced in the inflammatory process 
or during the growth of human tumors (57). 

In animal models transfected with hepatoma 
cells, ω-3 FA stimulated the expression of c-myc 
and TGF-𝛼 mutated genes, decreased the levels 
of NF-𝜅B and the tumor development (58). In rat 
embryo cells, EPA avoided the invasion and tumor 
metastasis by TNF-𝛼 induced metalloprotein 9 
(MMP-9) (59), and in breast cells inhibited the 
EGFR signaling (60, 61) and reduced the tumor 
growth in ovary cells by TGF-𝛽1 and other cell 
signaling modulators (62). 

In humans, DHA and EPA consumption from 
marine sources has shown therapeutic benefits 
in health (63, 64) as there is robust evidence of 
common and specific functions of ω-3 PUFAs 
in tumor cells of different tissues (54, 65-67). In 
colon cancer cells and melanoma, these ω-3 FA 
cause antineoplastic effects by incorporation in 
cellular membranes, phospholipid concentration 

and changes in the functions of some membrane 
proteins (55) through the 𝛽-catenin protein (68, 69). 

Additionally, ω-3 FA regulate the production of 
pro-inflammatory eicosanoids derived from ω-6 
AA acid and the production of pro-inflammatory 
regulators as cytokines and reactive oxygen 
species (ROS) (70). For instance, EPA reduces the 
expression of cytokines in patients with advanced 
tumors, and the diet high in ω-3 FA improves the 
carcinogenesis induced by UVB radiation (71-74). 
In pancreatic AR42J tumor cells, ω-3 FA inhibit 
the expression of IL-1𝛽 and IL-6 cytokines (75), 
and fish oil reduces IL-8 expression in the colonic 
mucosa of rats with carcinogenesis induced by 
1,2-dimethylhydrazine. Additionally, it increases 
the expression of tumor necrosis factor TGF-𝛽 
(76, 77).

Despite controversial results of the effects of 
PUFAs in humans, an observational study showed 
a correlation between high levels of DHA in plasma 
of Caucasian patients (78) and the low incidence of 
neuroblastoma and Hodgkin lymphoma (79, 80). 
The high correlation between the serum levels of 
ω-3 FA and their cancer incidence was shown in 11 
different types of cancer compared in 20 cohorts of 
patients in 10 studies (80). On the contrary, other 
study showed low association between fish intake 
and the risk of carcinogenesis (81).

Some benefic effects of the combination EPA/
DHA have been demonstrated in the suppression 
of colon sporadic polyposis in patients with high 
risk of suffering colorectal cancer (82). Huang et 
al (1996) (83), showed that fish oil intake reduces 
the colonic epithelium proliferation in patients 
with high risk of developing a second tumor (84). 
Other report showed that in patients with familial 
adenomatous polyps and EPA treated, the number 
of such polyps and their diameter was reduced 
(84). Moreover, fish intake was associated with the 
decrease of hepatomas development (85).

ω-6 fatty acids

Some evidences show that the precursor of ω-6 
cis, cis-9,12-octadecadienoic or linoleic acid (LA, 
C18:2), abundant in seeds and plant oils, stimulates 
the proliferation of human breast (BT-474) and 
lung (A-549) cancer cell lines. It also promotes 
tumorigenesis and colon and prostate cells growth 
(61, 86-90), and high doses of LA inhibited the 
colon tumor line Caco-2 proliferation (48).



28 Vitae m.e. Márquez-Fernández et al.

In addition, conjugated linoleic acids (CLAs), 
produced by biohydrogenation in bacteria from the 
gastrointestinal tract (91-93), show the antitumor 
effect in breast, MCF-7 (94-96); colon, HT-29, 
DLD-1 and Caco-2 (97, 98); prostate, PC-3 and 
DU-145 (96, 98-100), and gastric SGC-7901 (101) 
human cell lines, among others. In animal models, 
the LA daily intake protects from carcinogenesis 
(102) and some of its derivatives, like prostaglandin 
PE2, produced by the inducible COX-2 enzyme, 
promote the development of cancer (88, 103-106). 

Arachidonic acid (AA), the most abundant of 
the ω-6 FA, is associated with adverse and benefic 
effects in human health. In this regard, studies on 
animals and humans have correlated their high 
intake with elevated incidence of breast, prostate 
and colon cancer. In addition, the consumption rate 
of ω-6/ω-3 is considered as a risk prognostic factor 
for carcinogenesis (107-111). There is controversial 
evidence of cancer development caused by AA 
derivatives, such as prostaglandins and leukotrienes, 
and also, some reports, antitumor effect of other 
metabolites, like γ-linoleic (GLA) and dihomo-γ-
linolenic (DGLA) acids (48, 85, 112-122) (Figure 
3). From GLA and DGLA and the COX-2 enzyme 
can be produced prostaglandins PE1 and PE2, 
respectively, and free radicals that might cause 
adverse effects (85, 104-111, 113).

Evidence showed that ω-6 dietary FA can 
modify the composition of cell membranes and 
have anti-proliferative effects by the expression 
of proteins in the cell cycle progression or the 
apoptosis induction. For instance, GLA alters the 
triacylglycerol content in the cellular membrane 
of the WRC256 rat tumor model (120). Further, 
GLA also increases the triglycerides and polyenoic 
acids, and decreases the monoenoic acids in human 
neuroblastoma cell line (101, 112).

Additionally, GLA causes metabolism changes 
and mitochondrial structure alterations. Moreover, 
it induces apoptosis and cytochrome c release in rat 

sarcoma cells LLC-WRC25 (120). CLAs stopped 
the cells in phase G1 by the p21 inhibitor and the 
decrease of cyclins A and D in prostate and colon 
tumor cell lines, DU-145 (117) and HT-29 (99) , 
respectively. It also promoted apoptosis in colon 
(Caco-2 and HT-29), prostate (PC-39), gastric 
(SGC-7901) and hepatic (dRLH-84) cancer cell 
lines (97-101, 124-126).

Furthermore, prostaglandins PE1, PE2 and AA 
production can be stimulated by lipid peroxidation 
of ω-6 FA mediated by COX-2. While PE2 derived-
DGLA is a proinf lammatory cancer inductor, 
PE1 inhibits the in vitro growth of HeLa cells 
(113, 127) and cellular invasion, it stimulates the 
differentiation and diminishes the metalloproteins 
MMP-2 and MMP-9 levels in murine melanoma 
metastatic cells B16-F10 (106). In addition, in rats 
treated with cisplatin/PE1 combination decreases 
tumors and renal cytotoxicity (128).

AA reduces the dependent proliferation of 
the dose in colon tumor cell line Caco-2 with 
overexpression of the COX enzyme (48, 51), 
effect that can be partially countered with a COX 
inhibitor (127), and in some tumor lines, it can be 
potentiated by GLA (127, 129). Furthermore, free 
radicals derived from ω-6 FA can inhibit HeLa cells 
proliferation, which can be reverted by vitamin 
E (113), similarly to partial growth reduction 
of human neuroblastoma cell lines treated with 
GLA/antioxidants (112). Moreover, increase of 
lipoperoxidation species and ROS can inhibit rat 
sarcoma cells LLC-WRC256 proliferation (120, 
130).

The Table 2 summarizes the main evidences 
in vitro and in vivo of biological effects of ω-3 and 
ω-6 FA, related with the seven cancer biomarkers: 
the influence in growth factors, the insensibility to 
inhibitor signals of growth, the evasion of apoptosis 
and inflammation, decrease of replicative potential 
of tumors, invasion and metastasis of tumor tissue 
and the angiogenesis.
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Table 2. Evidences in vitro and in vivo of the biological effects of PUFAs (ω-3 and ω-6) on cellular markers of 
cancer. Taken from (47).

Studies in ω-3 
PUFAs/Hallmarks

In vitro evidences In vivo evidences

ω-3 PUFAs and 
growth signals

↓ EGFR in lipid rafts and ↓ growth in EPA and DHA 
treated breast cancer cell lines MDA-MB-231.

ω-3 PUFAs inhibit protein kinases PKC-𝛽2, Ras and 
NF-κB. 
DHA modulates chaperones Hsp and steroidal 
receptors in human tumor cell lines.

NO ↑ tumor cells invasiveness and ↑ PGE2 in the 
progression and growth of the tumor.

↓ NO in EPA and DHA dose-dependent macrophage 
cell lines.

↓ Cell density compared to LA treated cells in EPA or 
DHA treated human colon cancer cell line Caco-2.

References: (131-142)

COX-2 overexpression in 90% of tumors and colonic 
adenomas.

COX-2 overregulation in growth signals, prostaglandins, 
angiogenesis, apoptosis and cell-cell interaction.

ω-3 PUFAs ↓ COX-2 and PGE2 levels.

In xenotransplants of a prostate cancer rat model.

↓ COX-2 and PGE2 levels.

↓ Growth rate and tumor volume and PSA levels in serum.

In colon carcinogenesis: hyper-proliferation by PKC-𝛽2 
blocking.

In rats fed with fish oil, induction of autocrine growth 
factors, cancer promotion and epithelial hyper-proliferation.

References: (143-151)

ω-3 PUFAs and 
tumor insensitivi-
ty to growth inhi-
bition signals

EPA ↓ cellular proliferation in cell lines HRT-18, HT-
29 and Caco-2.

DHA ↓ cellular proliferation in SIC transformed cell 
line.

EPA and DHA ↓ proliferation of cell line HT -29 and 
other cell lines.

References: (142, 146, 152-155)

In breast cancer murine model.

DHA ↓breast tumors and overregulates 60% of the suppres-
sor gene of BRCA1 tumor.

Reference: (156)

ω-3 PUFAs 
and evasion of 
apoptosis tumor

ω-3 PUFAs ↑ apoptosis in cell line HT-29.

DHA induces dose and cytochrome c release dependent 
apoptosis in tumor cells.

DHA modulates the expression of the PPAR receptor 
and induces Syndecan-1- mediated apoptosis.

EPA and DHA deregulate pro-apoptotic proteins Bcl-2 
and Bcl-xL and ↑ the levels of Bak and Bcl-xS proteins.

↑ NF𝜅𝛽 in murine macrophages, ω-3 PUFAs stren-
gthen tumor survival and ↓apoptosis.

↓ COX-2 expression restores apoptosis.

References: (79, 153, 154, 157-172)

Colon carcinogenesis rat models, ω-3 PUFAs

↑ Apoptosis via COX-2. Repress anti-apoptotic Bcl-2.

In normal conditions, Bad displaces BAX from Bcl-2 and 
induces death. Phosphorylated Bad inhibits Bax and Bcl-2 
and affects cell survival.

Prostate tumors in knockout mice in PTEN supplemen-
ted with ω-3 PUFAs.

↓ Phosphorylated Bad and ↑apoptosis in ω-6 PUFA-supple-
mented mice.

↓ Tumor growth, slow histopathologic progression and ↑sur-
vival rates.

References: (144, 163, 172-177)

ω-3 PUFAs and 
limitation of 
the replication 
potential of the 
tumor

AA promotes tumor growth via PKC activation, mitosis 
stimulator.

In colonocytes and JB-6 rat epidermal cells.

ω-3 PUFAs promote growth via Ras and ↓ AP1.

AA metabolites stimulate mitosis.

EPA-derived metabolites ↓ growth in human breast 
cancer cell lines.

References: (178-181)

ω-3 PUFAs in colon cancer animal models.

↓ Tumor growth.

In rat colon, ω-3 PUFAs

↓ Ras expression in the membrane.

↓ Adducts formation in DNA.

↑ DNA repair.

↓Colon cancer beginning.

References: (22, 182-191)

Dietary fatty acids 
in inflammation 
and tumorigenesis

Anticancer effects of ω-3 PUFAs can be independent 
from COX.

DHA is not a COX substrate and suppresses the expres-
sion of pro-inflammatory TLR genes.

References: (123, 192)

Epidemiology: association between saturated fat intake and 
↑ risk of suffering some cancers.

Inverse association between fish oil intake and colon cancer.

Clinic with ω-3 PUFAs in fish oil

↓ Intestinal hyper-proliferation in patients with colorectal 
cancer risk.

Colon cancer prevention in ω-3 PUFAs-treated animals.

EPA, low specificity substrate of COX and competitive inhi-
bitor of AA, displaces AA in membrane lipids.

↓ Substrate availability for COX.

References: (50, 52, 53, 80, 81, 123, 192-202)
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ω-3 PUFAs and 
angiogenesis

ω-3 PUFAs ↓ angiogenesis, ↓VEGF, ↑ proliferation, mi-
gration and formation in endothelial cells. ↓expression 
in VEGF-1 (FIK-1).

↓ Formation of human umbilical cord and migration of 
endothelial cell.

EPA ↓ proliferation of the bovine carotid artery cell.

EPA inhibited the binding of PDGF and its receptor.

↓ Expression of c-fos mRNA.

EPA and DHA ↓ VEGF, COX-2 and PGE2 levels in 
colon cancer cell line (HT-29).

Synergism in ω-3 PUFAs inhibition and inhibitors of 
COX-2 in cell lines growth.

NO ↑ survival, proliferation and ↓ apoptosis.

NO and COX-2 regulate VEGF-mediated angiogenesis.

DHA ↓ NO production and ↑ the iNOS expression.

DHA overregulates NO and NF-κB in human colon 
cancer cell lines.

EPA ↓ production of MMP-2 and 9 in human endothe-
lial cells.

DHA ↓ the β-catenin in colon cancer cells.

References: (54, 137, 141, 203-214)

DHA supplement prior to tumor injection ↓ formation and 
prevents xenotransplant in neuroblastoma rats.

In animals, DHA supplements at high and low doses.

DHA inhibits BxPC-3 pancreatic cancer cells in nude mice.

↑ DHA in combination with curcumin.

↓ Tumor volume and ↓ VEGF mRNA levels in EPA -supple-
mented fibro-sarcoma Fischer 344 rats.

↓ VEGF, COX-2 and PGE2 expression in nude mice trans-
planted with colorectal carcinoma cells and supplemented 
with ω-3 PUFAs.

↓ Micro-vascularization and VEGF levels in nude mice tu-
mors transplanted with breast carcinoma and fed with high 
levels of EPA and DHA.

↓ PDGF migration of vascular smooth muscle cell by EPA 
and DHA supplement.

↓Tumor growth and micro-vascularization in colon cancer 
cells HT-29 in nude mice.

References: (185, 207, 215-220)

ω-3 PUFAs in 
tumor tissue 
invasion and me-
tastasis

DHA ↓ adhesion and transmigration of monocyte by 
TNF𝛼.

NO ↑tumor growth and angiogenesis.

EPA and DHA ↓ NO production and ↓ tumor migra-
tion.

DHA modulates the cell-cell adhesion via overregula-
tion of Rho GTPase.

↓ Reorganization of cytoskeleton and ↓ICAM-1 and 
VCAM-1 expression.

References: (44, 139-141, 221-224)

Gastric cancer animal models via COX-2 treated with 
ω-3 PUFAs.

↓ Cell-cell and cell-matrix interaction.

↓ COX-2 progression, metastasis and inhibition.

↓Invasiveness in animal xenotransplant.

↓ Tumor growth and invasion.

↓ COX-2 and PGE2 levels.

In xenotransplant in colon cancer model:

↓Tumor that overexpresses COX-2 by ω-3 PUFAs supple-
mentation.

↓ Metastasis in murine colorectal cancer models.

EPA and DHA ↓ lung metastasis and type IV collagenase 
2-kDA activity.

References: (163, 184, 225-228)

↓ and ↑ mean decrease and increase of activity, respectively.

Breast cancer

Despite the increase in survival rate of patients 
with early diagnose and hormonal therapy, in 
United Kingdom, breast cancer (BC) in women has 
high incidence and represents the 31% of all cases 
of cancer, causing around 12,000 deaths/year (229).

A total of 50-70% of invasive tumors are 
originated in breast ducts. Considering specific 
gene expression, these tumors are classified in four 
types: a) Luminal A showed low proliferation and 
low histological grade, representing 50-60% of total 
BC (ER+, HER2-); b) Luminal B representing to 
10-20% of the most aggressive cancers, exhibited 
high histological grade and poor prognostic; c) Triple 
negative tumors (ER; PR; HER-2) and d) HER2+ 
tumors that do not express the estrogenic receptor 

(ER-) nor the progesterone receptors (PR-) (230), 
but include lobular carcinomas and is equivalent to 
10-20% of all BC (231). 

Postmenopausal women suffer the 75% cases 
of all BC, and about 80% of them express the 
estrogenic receptor (ER). The most used therapy 
in BC until some time ago was the antiestrogen 
Tamoxifem (TAM), which produces resistance 
in breast tumor cells in long-term use (232). 
Thus, in the last decades the use of inhibitors 
of the aromatase enzyme (AI), letrozole and 
anastrazol (233, 234) as first line therapies for BC 
has incremented, since they block the estradiol 
production from testosterone and they significantly 
contribute to the survival of patients. Currently, 
there are not known cases of resistance of breast 
tumor cells to the AI therapy.
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Controversy exists on the influence of estrogen 
in breast carcinogenesis of postmenopausal women. 
Registered data in Cochrane Database of Systematic 
Reviews (2012) revealed that the risk of suffering BC 
did not increase in postmenopausal women that had 
used estrogen replacement therapy. Nonetheless, 
patients do show predisposition to develop BC after 
continued estrogen and derivatives of progesterone 
therapy (106). Moreover, in these tumors, cells 
express the ER and exhibit higher histologic grade; 
however, such risk disappears, after two years of 
hormonal replacement therapy (235). 

Therapeutic strategies for breast cancer

Beatson published in 1896 the first evidence 
regarding the association between hormones and 
BC (236). Since then, different targets have been 
used to inhibit estrogen activity or biosynthesis 
and to reduce cell proliferation (237), particularly 
blocking the G1/S transition of cell cycle (238).

Receptors ERα and Erβ expressed in the 
plasmatic membrane of the normal breast 
tissue are binding sites of the drug that reduce 
the transcription of estrogen-regulated genes, 
(128,239,240). Nevertheless, in the tumor tissue, 
estrogens are produced mainly by the sulphatase 
enzyme (STS) pathway. In both normal and tumor 
tissues, the great expression of the ERα-controlled 
STS (241) is associated to poor prognostic of tumors 
(242). Hormonal therapy in BC (ERα+) shows the 
expression of different STS isoforms, estrogen 
signaling inhibition and increased progression of 
the tumor in patients (241). This alternative pathway 
provides a benefic potential on TAM and AIs 
therapies in premenopausal and postmenopausal 
women with BC (ER+).

The estrogen dependent BC has allowed 
developing therapeutic strategies. For instance, 
different inhibitors of its synthesis such as ER 
selective modulators, pure antagonists (243), 
inhibitors of intracellular signaling pathways (235) 
and AIs (244). The ER selective modulator TAM, 
used since 1973 as a hormonal therapy in BC (ER+) 
treatment in postmenopausal women (245-248), 
blocks the union of the estrogen to the ERα and 
inhibits cell proliferation. 

Combination TAM/doxorubicin or taxanes 
(249, 250) achieves the disease-free survival patients 
(251), after 10 years of treatment; nevertheless, it can 
cause adverse effects such as endometrial cancer 
development, thromboembolism risk increase and 

acquired tumor resistance (252, 253). In in vitro 
studies, the fulvestrant, ER selective inhibitor, 
lacking agonist activity in murine models (239, 254, 
255), induces degradation via ubiquitin-proteasome 
of the ER dimers (256).

Most therapies against BC aim to block the 
biosynthesis of estrogen responsible of initiation, 
promotion and progression of the tumor (257) since 
the hydroxyestrogens (258-260) are inductors of the 
ER signaling pathways, the epidermal growth factor 
(EGFR) and the phosphatidylinositol-3-kinase 
(PIK-3) (261-271). Moreover, estrogen pathways are 
considered therapeutic targets of selective inhibition 
(272) via cytochrome P-450 aromatase enzyme 
(125) which is expressed in different issues as the 
ovarian, adipose, muscular, hepatic and mammary 
(273, 274).

Cytochrome P-450 aromatase enzyme catalyzes 
the aromatization of the androgen in the final 
stage of the biosynthesis of estrogen (275-277), 
a key regulator in the hormonal therapy. In 
postmenopausal women, the adrenal glandule 
produces androstenedione (278) main source 
of estrogens (279) and increases the aromatase 
enzyme expression of a malignant tumor to 
synthetize more estrogen (245, 280-282) because 
the polymorphisms of this enzyme affects the 
pathophysiology of the disease (249).

The first generation AIs (aminoglutethimide) 
(283) with low selectivity (284) and adverse 
effects, such as the inhibition of the biosynthesis 
of cortisol, aldosterone and the thyroid hormone 
(285) and the induction of hepatic enzymes (261, 
286). The second generation nonsteroidal AIs 
(fadrozole) improve their effect compared to the 
first-generation AIs (287) but not when compared 
to TAM (288, 289) and the formestane steroidal 
inhibitor. And the third-generation inhibitors 
(letrozole and anastrazol) block the estrogen 
production without affecting the steroidogenic 
pathways (216).

The letrozole (4-[(4-cyanophenyl)-(1,2,4-
triazol-1-yl)methyl]benzonitrile) was modeling 
designed to join the active site of aromatase 
(290,291). In vitro and in vivo tests demonstrated 
that it is 10-30 times stronger and selective than 
anastrazol (292) and other AIs (121, 170, 285, 
293-295). The bioactive potential of letrozole 
was evaluated in aromatase transfected cell lines 
CHO-K1 and MCF-7-Ca, in normal adipose 
human fibroblasts and in human carcinoma cell 
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line JEG-3 (292). Moreover, the design of letrozole 
was based in its action mechanism (296) and its 
similitude with the structure of imidazole, triazole, 
cyanobenzyl and the heme group of the aromatase, 
which partially mimicries the skeleton of the 
androstenedione (290).

The therapeutic concentrations of letrozole in 
patients are achieved at 2-6 weeks of treatment 
without drug accumulation (248), 42 hours of 
midlife after oral administration, rapid absorption 
and 60% albumin-conjugated antineoplastic 
(297). Further, the selectivity of letrozole in BC 
treatment on postmenopausal women completely 
inhibits the peripheral aromatase tissues (287, 
292, 298-300). It does not affect the plasmatic 
levels of 17-OH progesterone, thyroid stimulant, 
luteinizing, follicle-stimulating, androstenedione, 
and urinary excretion hormones (298, 301, 302). In 
early BC patients, clinical benefits of AI treatment 
were demonstrated on extended adjuvant, TAM 
adjuvant (303, 304) or TAM neoadjuvant (305). 
In postmenopausal women, the latter treatment 
also inhibited aromatase, reduced the estrogen 
concentration (285) and significantly decreased the 
sulfate estrone enzyme in invasive cancer patients 
(306).

Antitumor effect of letrozole was also 
demonstrated in several animal models (292, 296, 
307). In adult rats, it completely reduced estrogen 
dependent and induced by 9,10-dymethylbenzo-
α-anthracene breast tumors (303). In MCF-7 
cells of transplanted athymic rats, there was 
higher inhibition of tumor growth dependent of 
the letrozole dose (170, 279, 285, 295) respect to 
anastrazol, and it showed higher effectivity than 
fulvestrant and TAM in the transplanted cells. 
Moreover, TAM was agonist of letrozole in estrogen 
synthesis inhibition (308).

Letrozole/TAM combination was more effective 
as first line treatment in MCF-7-Ca cell line, 
but they did not respond to the second line 
treatment with TAM or fulvestrant (309, 310). 
In contrast, TAM pretreated tumors were more 
sensible to letrozole and it was more effective 
than TAM or exemestane in third line treatments 
(311). In transgenic female rats with aromatase 
overexpression, letrozole decreased pre-neoplastic 
lesions and reduced the incidence of spontaneous 
breast tumors (301, 302).

Combined therapies of omega fatty acids and antineoplastics

The ω-3 FA in enriched diets enhance the effect 
of the treatment with other treatments in tumor 
cells (194). They highlight tumor growth inhibition 
of antineoplastic agents as doxorubicin (195) and 
mitomycin C in animal models (197). Furthermore, 
they also potentiate TAM in xenotransplantation of 
estrogen dependent tumor cells (198).

Combinations of DHA with doxorubicin, 
irinotecan, cisplatin, melphalan and vincristine 
showed synergism in the neuroblastoma cell 
survival (157, 158), and the DHA/epirubicin, 
cyclophosphamide and 5-f luoracil combination 
caused tumor reduction and increased survival of 
BC patients. They showed high incorporation of 
DHA in erythrocyte membranes and high levels 
on serum (199). The rate of DHA consumption 
of patients is reflected in single differences of the 
metabolism, enzymatic activity, normal diet, age 
and sex of individuals (157, 192, 200). 

Furthermore, two years of therapy with ω-3 FA/
celecoxib combination showed synergism with COX 
enzyme inhibitor, avoiding the occurrence of new 
adenomas (312). DHA/sulindac sulfate combination 
reduced the tumor growth through the apoptotic 
receptor (DR5) in the colon xenotransplant (313) 
and DHA/clioquinol treatment showed PPARα 
dependent synergy, diminished the NF-κB and 
survival molecules Bcl-2, Akt and p65 production 
in tumor cells (314) and enhanced the anti-
proliferative effect of curcumin in BC cells (315). 

Moreover, the combination of ω-6 FA or their 
metabolites also increased the efficacy of some 
antineoplastics. For instance, the GLA/paclitaxel 
or docetaxel treatment synergically inhibited cell 
growth in human BC cell lines MDA-MB-231, 
T47D, SK-Br3 and MCF-7 (316) and DGLA/
vincristine combination significantly increased 
death in vincristine resistant cells (KBC-hR-8–5) 
respect to individual treatments (104). DGLA 
derivatives also increased the cytotoxicity of 
5-f luoracil in HCA-7 (colony 29) colon tumor 
line by apoptosis induction via caspase-9 (105) and 
in rats the cisplatin/PE1 treatment enhanced the 
reduction of renal cytotoxicity (128).

Furthermore, 12-Hydroxyeicosatetraenoic 
acid [12(S)-HETE], A A derivative, showed 
pleiotropism in tumor cells as it stimulated the 
angiogenesis, metastasis and the induction of 
platelet aggregation (9, 317-320). 12(S)-HETE 
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is mitogenic of endothelial cells and combined 
with BMD122 inhibited the lipoxygenase (12-
LOX) and initiated cell repair inducible by serum 
(321). Additionally, 12(S)-HETE showed cardio-
protector effect after the opioid non-steroidal anti-
inflammatory treatment (322).

F i n a l l y,  t here  i s  e v idenc e  o f  o t her 
chemotherapies synergism in lipid pathways. 
For instance, in human CCRF-CEM and 
Jurkat acute lymphoblastic resistant to synthetic 
retinoid, N-(4-hydroxyphenyl) retinamide 
(4-HPR, fenretinide) is exhibited a distinctive 
endogenous sphingolipid profile correlated with 
the inhibition of dihydroceramide desaturase. 
In this cellular model, it acquired resistance to 
4-HPR is selective and continues in the absence 
of sphingolipid profile alteration (323). In other 
reports, using several paired wild-type and drug-

resistant (doxorubicin-selected) cancer cell lines, 
including breast, ovary, cervical, and colon, was 
studied the role of the glucosylceramide synthase 
(GCS) gene in doxorubicin resistance. Results 
showed significantly suppressed doxorubicin-
up-regulated GCS expression , which explains 
that ceramide contributes to cellular resistance 
to doxorubicin (324). Additionally, in myeloid 
leukemia human KBM-5 cells, decursin, an analog 
of coumarin, induces apoptosis via regulation of 
COX-2 and survivin. Moreover, decursin can 
activate caspase family members and triggers 
PARP cleavage. Further, decursin in synergy with 
COX-2 inhibitor, celecoxib, can activate apoptosis 
in KBM-5 cells (325).

Evidences in vitro in BC derived cell lines of 
different DHA /antineoplastic agents treatment 
combinations (Table 3).

Table 3. Some in vitro evidences of the effect of DHA in combination with other antineoplastics.

Drug Cell lines Enhancer Activity References

Arsenic trioxide
MDA-MB-468, MCF-7 No

Apoptosis (326)
SK-BR-3 Yes

Doxorubicin (Anthracycline)

MDA-MB-231 Yes Growth (327,328)

MDA-MB-231, MCF-7 resistant doxorubicin Yes Cytotoxicity
(324)

MCF-7 No Cytotoxicity

Paclitaxel (Taxane) MDA-MB-231 Yes Cytotoxicity (329)

Tamoxifen (SERM) MCF-7 Yes Growth (223)

Genistein (Isoflavone) MDA-MB-231, SK-BR-3 Yes COX-2/NF-κB (330)

CONCLUSIONS

Diversity in inhibitor effects of omega fatty 
acids in cancer and in breast cancer particularly, 
may ref lect methodologic differences in the 
realization of studies, and the lack of recognition 
of the importance of these fatty acids, at cell level, 
generates controversy.

Nevertheless, low efficiency of conventional 
neoplastic therapy in the long term and the need 
of new therapeutic alternatives, allow exploring 
other therapeutic designs that include new options 
of combined treatments in which omega fatty acids 
could strengthen drugs in a different way. Despite 
alternative combined treatments could increase the 
toxicity of the normal cell and cause adverse effects 
in patients, ω-3 fatty acids, for their nutraceutical 

characteristics and antitumor potential, are strong 
candidates of the adjuvant therapy in diverse 
neoplasias.

Breast cancer requires alternatives of therapies 
with multiple treatment targets as the high 
proportion between the disease and its estrogen 
dependence in most cases generates difficulties in 
breast cancer treatment, mainly in triple negative 
cancer, (it does not express the receptors estrogenic, 
progesterone or Her-2). 

In this sense was designed letrozole, aromatase 
inhibitor, to block the estrogen production, for 
which this drug also causes secondary effects in the 
treated patient. Considering that omega fatty acids 
are known nutraceutical and their use is desirable 
in combination with other conventional drugs 
as alternative therapies, there is consensus over 
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the utility of anticancer treatments in the cellular 
response through different signaling pathways 
related to the cell cycle regulation and differential 
death inductor pathways of the tumor cell, such as 
apoptosis and necrosis, among others. 

Moreover, given the controversy between 
epidemiologic studies and in vivo tests in animal 
and human models, and that there is discrepancy 
in the evaluation criteria, such as the fatty acids 
supplementation levels, supplementation duration, 
ethnic origin, migrations, etc., it is required an 
agreement in medical and scientific fields that 
formulates excluding or including parameters of 
the individuals to suppress the confusing factors 
and allows to collect reproducible data with solid 
grounds for the design of new alternative therapies 
for cancer.
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