		1
	DOI: 10.17533/udea.vitae.v28n2a346228	2
	Natural Products	3
Voltammetric Determination of A	scorbic Acid in Pharmaceutical	4
Formulations Using Modified Iod	ine-Coated Platinum Electrode	5
Determinación voltamétrica del á	rido ascórbico en formulaciones	6
formacioni voitametrica del a	atrada da nlatina madificada	7
	de made	/
recubierto	ae yodo	8
1		9
Mohammad Amayreh ¹		10
Wata Hourani ²		11
Mohammed Khair Hourani ³		12
OPCID: 0000 0002 (784 25(0) Demonstration		13
ORCID: 0000-0002-6784-3569. Departmer	Al Solt Jorden	14
Balqa Applied University, P.O. Box 19117, J^2	Al-Sall, Jordan	15
ORCID: 0000-0002-2809-741A. Faculty of	Pharmacy, Phhadelphia University,	10
Annual, Jordan 3 OPCID: 0000, 0002, 5034, 4057, Department	at of Chamistry, the University of Iordan	10
Amman Jordan	it of Chemistry, the Oniversity of Jordan,	10
Amman, Jordan		20
Corresponding author: mohammad amayreh	@bau edu io	21
	e cume cunje	22
Abstract		23
Background: Despite the high reactivity of t	the platinum electrode, the iodine-coated	24
platinum electrode shows obvious inertness t	oward adsorption and surface processes.	25
For that, iodine-coated platinum electrodes a	ccommodate themselves to interesting	26
voltammetric applications.		27
Objectives: This study reports using the mod	dified iodine-coated polycrystalline	28
platinum electrode as a voltammetric sensor	for ascorbic acid determination in	29
pharmaceutical formulations.		30
Methods: The developed voltammetric meth	nod based on recording cyclic	31
voltammograms of ascorbic acid at iodine-co	bated electrode The optimized	32
experimental parameters for the determination	on of ascorbic acid were using 0.1 M KCl	33
as a supporting electrolyte with a scan rate of	t 50mV/s.	34
Results: The anodic peak related to ascorbic	acid oxidation was centered at nearly	35
0.28 V. An excellent and extended linear dep	endence of the oxidative peak current on	36
The limit of detection (LOD) and limit of au	wed in the range $2.84\times10-3 - 5.08$ mivi.	3/
"In the minit of detection (LOD) and minit of qui	antitation (LOQ) were 1.0 µM and 5.01	38
of potential interference from multivitamin t	ablet ingredients (vitamins B1 B6 B12	35
folic acid citric acid sucrose glucose and z	inc) indicated specific selectivity toward	40
ascorbic acid and the absence of any electroc	themical response toward these	41
components. Recovery results in the range 98	8 93+2 78 - 99 98+5 20 for spiked	43
standard ascorbic acid in pharmaceutical for	mulations further confirmed the potential	44
applicability of the developed method for the	e determination of ascorbic acid in real	45
samples.		46
Conclusions: The developed method was su	ccessfully applied to the analysis of	47
ascorbic acid (vitamin C), and the obtained r	esults were in good agreement with the	48

labeled values; besides, the statistical tests indicated no significant difference at	49
p=0.05 with a 95% confidence level.	50
Keywords: ascorbic acid analysis, pharmaceutical formulation, voltammetric analysis, iodine-coated platinum electrode, modified platinum electrode.	51 52
Resumen	53 54
Antecedentes: A pesar de su alta reactividad el electrodo de platino recubierto de	55
vodo muestra una inercia evidente hacia la adsorción y los procesos superficiales. Por	56
ello, los electrodos de platino recubiertos de vodo se adaptan a interesantes	57
aplicaciones voltamétricas.	58
Objetivos: Este estudio informa sobre el uso del electrodo de platino policristalino	59
recubierto de yodo modificado como sensor voltamétrico para la determinación del	60
ácido ascórbico en formulaciones farmacéuticas.	61
Métodos: El método voltamétrico desarrollado se basa en el registro de	62
voltamperogramas cíclicos del ácido ascórbico en el electrodo recubierto de yodo Los	63
parámetros experimentales optimizados para la determinación del ácido ascórbico	64
fueron utilizando KCl 0,1 M como electrolito de soporte con una velocidad de barrido	65
de 50mV/s.	66
Resultados: El pico anódico relacionado con la oxidación del ácido ascórbico se	67
centro en casi 0,28V. Se observo una excelente y extendida dependencia lineal de la	68
corriente del pico oxidativo con respecto a la concentración de acido ascorbico en el rango 2.84 \times 10.2 5.68 mM. El límito de detección (LOD) y el límito de	69 70
rango 2,84x10-5 - 5,08 mW. El minite de delección (LOD) y el minite de supertificación (LOO) fueron 1.0 μ M y 2.01 μ M respectivemento lo que demuestre la	70
sensibilidad del método. La investigación del efecto de la interferencia notencial de	71
los ingredientes de las tabletas multivitamínicas (vitaminas B1 B6 B12 ácido fólico	72
ácido cítrico, sacarosa, glucosa y zinc) indicó una selectividad específica hacia el	74
ácido ascórbico y la ausencia de cualquier respuesta electroquímica hacia estos	75
componentes. Los resultados de recuperación en el rango de 98.93 ± 2.78 - 99.98 ± 5.20	76
para el ácido ascórbico estándar adicionado en formulaciones farmacéuticas	77
confirmaron además la potencial aplicabilidad del método desarrollado para la	78
determinación del ácido ascórbico en muestras reales.	79
Conclusiones: El método desarrollado se aplicó con éxito al análisis de ácido	80
ascórbico (vitamina C), y los resultados obtenidos coincidieron con los valores	81
etiquetados; además, las pruebas estadísticas no indicaron diferencias significativas a	82
p=0,05 con un nivel de confianza del 95%.	83
Palabras clave: análisis de ácido ascórbico, formulación farmacéutica, análisis	84
voltamétrico, electrodo de platino recubierto de yodo, electrodo de platino	85
modificado.	86
	87
- · · ·	88
Introduction	89
	90
	91
L-ascorbic acid ($C_6H_8O_6$) is the trivial name of Vitamin C, scheme 1, considered one	92
of the essential water-soluble vitamins for human health. It is found in various	93
biological systems and fresh foodstuff (1). The human body required ascorbic acid for normal physiological functions such as the synthesis and metabolism of tyrosine, folic	94 95

normal physiological functions such as the synthesis and metabolism of tyrosine, folic95acid, and tryptophan (2). At the same time, ascorbic acid deficiency is associated with96many diseases such as anemia infections and scurvy (3).97

Scheme 1. The chemical structure of ascorbic acid

98

99 100

136

Additionally, synthetic ascorbic acid is available in several types of supplements such 101 as tablets, capsules, chewable tablets, crystalline powder, effervescent tablets, and 102 liquid forms (4). Several methods have been reported in the literature for the 103 quantitative determination of ascorbic acid in various matrices. These methods 104 include chromatography (5,6), titration (7), spectroscopy (8-12), fluorimetry (13), and 105 flow injection analysis (14). However, some of the reported methods are time-106 consuming, and some are expensive and need skilled personnel. 107 Alternatively, electrochemical methods are considered a promised methods because of 108 the short time response, low cost, sensitivity, and simplicity of instrumentation (15). 109 The modification of electrode surface is a quest to render electrochemical function 110 that is not possible or difficult to achieve by using conventional electrodes. The goals 111 of the improvement process include increasing selectivity, sensitivity, chemical and 112 electrochemical stability, large usable potential window, and improving resistance to 113 fouling (contaminating) (16). 114 Therefore, the avenues have opened toward the modification of solid electrodes (17). 115 For instance, adsorbed iodine on platinum electrode surface enhances voltammetry's 116 reproducibility and simplifies background behavior (18). Also, coating of solid 117 electrodes surface alters the kinetics and mechanisms of reactions run at the electrode 118 surface. Iodine is one of the anions adsorbed to an electrode surface. The 119 chemisorption process is achieved in two ways; from solution or vacuum to form 120 stable chemisorbed monolayers; subsequently, the iodine-coated electrode is rinsed or 121 evacuated (19). The iodine is adsorbed at potential 0.2 V vs. Ag/AgCl or SCE 122 reference electrodes (20), which is the double layer potential. At the surface of the 123 polycrystalline platinum electrode, the reaction of the iodine anions from the solution 124 leads to spontaneous chemisorption of iodide anion to form stable neutral iodine 125 atoms accompanied by an evolution of hydrogen gas. The adsorbed iodine is less 126 reactive toward electrochemical oxidation than the free iodine anion in solution (21) 127 and depends on the electrode potential (22). The chemisorbed iodine could be 128 desorbed from the platinum electrode surface if the potential scanned is lower than -129 0.2 V, reducing of hydrogen ions and hydrogen gas generation (21). Also, the rate of 130 iodine desorption from the electrode surface increases as the potential becomes more 131 negative (22). In the positive direction, the chemisorbed iodine begins to desorb at a 132 potential of 1.0 V (20). Studies have shown that carbon monoxide (CO) completely 133 desorbed iodine from platinum electrode surface at potentials lower than 0.35 V, 134 while at higher potentials, the desorption is incomplete (23). 135

Iodine-coated platinum electrode has been applied for the electrochemical	137
determination of organic and non-organic species in many studies (24-32). Iodine-	138
coated platinum electrode is characterized by the simplicity in preparation,	139
application, and use of environmentally friendly chemical reagents. The simplicity of	140
the method's instrumentation stimulates our interest in this research. This work	141
develops a simple method for ascorbic acid determination in pharmaceutical	142
formulations.	143
	144
	145
Experimental	1/6
Lapermentar	140
	147
	148
Materials and apparatus	149
	150
	151
A potentiostat (PAR Model 362, EG & G) interfaced to a computer via a GPIB	152
interface (IEEE) data acquisition was used. Locally modified Labview® (IEEE)	153
software was used for data acquisition. A one-compartment electrochemical cell with	154
one inlet/outlet for gas purging and blanketing with oxygen-free nitrogen was used.	155
The working electrode was a 0.5 mm polycrystalline platinum wire purchased from	156
Aldrich (99.99% minimum purity certified reagent). The immersed end of the	157
platinum electrode was curved at the end to a U-shape to mark for a constant surface	158
area of the immersed part of the electrode. A silver/silver chloride was used as a	159
quasi-reference electrode (QRE). The auxiliary electrode was a 0.5 mm	160
polycrystalline platinum wire (Aldrich, certified 99.99% minimum purity). All	161
reagents used were analytical grade and used as received from the suppliers without	162
further purification. Sulfuric acid (95-97%) was supplied from Merck, L-ascorbic acid	163
(99%) was purchased from AnalaR, potassium iodide was purchased from Sigma-	164
Aldrich. Ultra-pure water, Millipore-MilliQ system was used for the preparation of	165
all solutions. The N ₂ gas was a five grade, 99.999% minimum purity supplied from	166
the International Jordanian Gases Company (Amman, Jordan).	167
	168
	169
Preparation of iodine-coated platinum electrode	170
	171
	172
The polycrystalline platinum electrode was cleaned with a freshly prepared chromic	173
acid (H ₂ CrO ₄), followed by rinsing with Millipore-Q water and sonicated for 10	174
minutes. After that, the platinum electrode was placed in contact with a supporting	175
electrolyte solution of 0.5 M H ₂ SO ₄ and conditioned between -0.25V and 1.3V until	176
obtaining a reproducible cyclic voltammogram of a polycrystalline platinum	177
electrode, which manifests the cleanliness of the electrode surface and	178
electrochemical cell contents (Fig.1).	179
After cleaning the platinum electrode, the electrode was immersed in a supporting	180
electrolyte containing $0.5 \text{ M H}_2\text{SO}_4 + 0.01 \text{ M KI}$ for five minutes under open-circuit	181
conditions to complete the coating of the platinum electrode surface with iodine. Then	182
the electrode was rinsed with water and $0.5M H_2SO_4$ solution extensively. After the	183
coating step, the electrode was cycled in a supporting electrolyte solution between -	184

0.2V and +0.8V at a scan rate of 50 mV/s (Fig.1). The absence of oxygen and hydrogen adsorption/desorption features provides clear evidence for the complete		
coverage of the platinum electrode surface with a monolayer of iodine.	187 188	
	189	
Sample preparation	190	
	191	
	192	
The pharmaceutical formulation samples were purchased from local Jordanian	193	
pharmacies in the form of tablets and capsules. Three brands of pharmaceutical	194	
preparations were analyzed for their ascorbic acid content. The capsules of each	195	
sample were dissolved in 20 mL of 0.1 M KCl and sonicated for 10 min and left to	196	
equilibrate for 30 min. The solution was transferred to a 100 mL volumetric flask and	197	
filled to the mark with 0.1 M KCl. The solution was diluted to a concentration that	198	
matches the established calibration curve. A tablet of each sample was treated	199	
separately. The tablet of each brand was powdered using porcelain mortar and	200	
dissolved in 100.00 mL of the supporting electrolyte, 0.1 M KCI; the solution of the	201	
prepared samples was sonicated for 5 min and left to equilibrate for 5 min. A 5 mL	202	
and uot of this solution was diluted to 50.00 mL with 0.1 M KCl to match the	203	
diluted solution was placed in the electrochemical cell. The solution was hybrid with	204	
nitrogen gas (5C purity) and kept under a nitrogen gas atmosphere during the	205	
electrochemical experiment. The voltammetric analysis was conducted for ascorbic	200	
acid at the modified iodine-coated electrode within a potential window started at -	207	
0.2V and finished at 0.6V, where the adsorbed iodine is stable	200	
0.2 V and ministed at 0.0 V, where the adsorbed rounie is stable.	205	
	210	
Results and discussions	212	
Results and discussions	212	
	214	
Initially, a reproducible cyclic voltammogram for the polycrystalline platinum	215	
electrode, which indicates the cleanness of the electrochemical system, was obtained	216	
(Fig1-A). The process led to a successful coating process: the cyclic voltammogram	217	
of the iodine-coated platinum electrode between potential limits of -0.2V and 0.6V	218	
was displayed (Fig 1-B), where the adsorbed iodine was stable within this potential	219	
range. The complete absence of H_2 and O_2 oxidation-reduction features was the main	220	
indicator of a successful coated step.	221	

Fig.1.Cyclic voltammogram curves of (A) polycrystalline platinum electrode and224(B) the same electrode after adsorption of iodine from 0.01 M KI in 0.5 M H2SO4225solution

The effect of varying supporting electrolytes on the anodic peak current of ascorbic228acid oxidation was investigated. A $0.5 \text{ M H}_2\text{SO}_4$ (pH=0.3), phosphate buffer of229pH=3.5, and 0.1 M KCl (pH=7) solution were used. As displayed in Figure 2, various230oxidation peak current was obtained for ascorbic acid oxidation with different231supporting electrolyte solutions. The highest oxidation peak current was obtained in2320.5 M KCl (the highest pH value), $45.47\pm0.09 \text{ mV}$. Therefore, 0.1 M KCl solution233was considered a supporting electrolyte in the following study.234

The effect of scan rate on the obtained anodic peak current of ascorbic acid was studied. As presented in Fig.3, there is a linear relationship between the square root of scan rate and oxidation peak current of ascorbic acid over the range of 10-100 mV/s, which suggested a diffusion-controlled irreversible oxidation process of ascorbic acid at the iodine-coated platinum electrode.

Potential/V vs. Ag/AgCl

Fig 3.a) Cyclic voltammograms of iodine-coated platinum electrode in 0.1 M KCl and 50ppm of ascorbic acid recorded at 10, 20, 50, and 100 mv/s. b) The least square line for the ascorbic acid oxidation peak current vs. the square root of scan rate.

The obtained cyclic voltammograms for the iodine-coated platinum electrode in a series of ascorbic acid standard solutions show that the oxidation current increased steadily with ascorbic acid concentration (Fig.4). Three voltammograms were recorded for each standard solution. The anodic peak current was extracted for each cyclic voltammogram.

Potential/V vs. Ag/AgCl

Fig 4. Cyclic voltammograms of iodine-coated platinum electrode in 0.1 M KCl265solution containing 0.28, 0.57, 1.1, and 1.7 mM of ascorbic acid. All the scans266were recorded at a scan rate of 50 mV/s.267

Plotting the anodic peak current variation against ascorbic acid concentration gave a straight and extended dynamic range with concentrations ranging between 2.84 μ M - 270 5.68 mM The calibration curve displayed in Fig 5 shows that all the variability of the 271

response data around its mean; R^2 =0.9969, and the calibration equation is given by 272

273

$$I_{\mu A} = 65.248 C_{Ascorbic acid} + 3.06$$

274 275

Where I represents the anodic peak current which attributed to the ascorbic acid 276 oxidation as it is shown in the following equation: 277 Ascorbic acid \rightarrow dehydro-ascorbic acid $+2H^++2e^-$ 278 The precision, that is, the repeatability of the method, was assessed by extracting the 279 anodic peak current of the recorded cyclic voltammograms for a solution containing 280 0.28 mM ascorbic acid. The achieved coefficient of variation for 10 successive 281 measurements was 1.36%, indicating the high precision of the developed method. 282 The limit of detection based on the formula LOD=3.36/S, and the limit of 283 quantitation based on the formula LOQ=106/S, where 6 represents the blank signal 284 (background current), and S means the sensitivity of the calibration curve was 285 calculated. The estimated limits were 1.0 µM and 3.01 µM, respectively. Thus, 286 acceptable sensitivity of the applied voltammetric method with high precision was 287 obtained. Higher sensitivity can be achieved by applying a more sensitive technique 288 like differential pulse voltammetry (DPV). However, differential pulse voltammetry 289 was not attempted because cyclic voltammetry provides satisfactory sensitivity for 290 ascorbic acid determination in pharmaceutical formulations. 291 292

Fig.5. An extended calibration curve shows the relationship between ascorbic294acid concentration in ppm and the oxidation peak current measured from cyclic295voltammograms for ascorbic acid in 0.1 M KCl at iodine-coated platinum296electrode. Scan rate=50 mv*s⁻¹.297

Potential interference

The influence of vitamins B1, B6, B1, folic acid, citric acid, sucrose, glucose, and zinc were investigated in order to verify the existence of matrix effects of vitamin C capsules and multivitamins tablets on ascorbic acid determination using cyclic voltammetry. The recorded cyclic voltammograms for each of these compounds show

298 299 300

301 302

303

304

305

306

the absence of any electrochemical response of iodine-coated platinum electrodes307toward these compounds. Figure 6 shows the recorded voltammograms for a solution308of Multivitamin sample (control) and after each addition of a known concentration of309the ascorbic acid standard solution. The result proved the absence of any possible310interference with ascorbic acid despite the various components included in the311Multivitamin sample, Vitamin E, B1, B2, B6, Folic acid, Pantothenic acid, Biotin, and312Niacin.313

Potential /V vs. Ag/AgCl

Fig.6. Cyclic voltammograms of iodine-coated platinum electrode in 0.1 M KCl containing Multivitamin tablet solution with addition of 0.1, 0.2, and 0.3 mM of ascorbic acid standard solution. Scan rate=50mV/s.

Recovery

The recovery experiment can be taken as evidence for the absence of interference. The feasibility of the developed voltammetric method for ascorbic acid determination was tested for three pharmaceutical formulation samples. Ascorbic acid standards of known concentration, 50 ppm and 60 ppm, were spiked into samples of tablet solutions in order to evaluate the percentage recovery for each brand of ascorbic acid. As listed in Table 1, the recovery values were found between 98.93±2.78 and 99.98±5.20 for all samples of ascorbic acid brands, showing the appropriateness of the iodine-coated platinum electrode for the quantitative analysis of ascorbic acid in pharmaceutical formulations.

Table 1. Recoveries of ascorbic acid from spiked pharmaceutical formulations
obtained by the developed method

Samples	Content of ascorbic acid (mM)	Spiked ascorbic acid (mM)	Detected ascorbic acid after addition (mM),	% Recovery
Vitamin C plus [®]	0.28	0.227	0.51	99.98±5.20

Multivit+®	0.28	0.227	0.51	98.93±2.78
Vitamin C 1000 [®]	0.568	0.341	0.787	99.80±2.50

Pharmaceutical preparation analysis

The developed voltammetric method was applied to analyze ascorbic acid in three brands of the pharmaceutical formulation, multivitamin tablets, and two brands of vitamin C capsules (Vito⁺ multivitamin, vitamin C plus, and vitamin C 1000). The standard addition method was applied to a diluted sample analysis to avoid the matrix effect. The evaluation of ascorbic acid concentration was found to be more suitable with the aid of a calibration graph. The results for the analysis of these pharmaceutical formulations with the developed voltammetric method are given in Table 2. The obtained results by applying a cyclic voltammetry technique at iodine-coated platinum electrode were compared with the labeled values claimed by manufacturers. The data displayed in table 1 show that all nominal values are within the 95% confidence interval, which indicates the evident absence of errors in the results. The relative errors of the analysis of the three types of pharmaceutical formulations were lower than 5%, which attests to the accuracy of the developed method. The measured coefficient of variation values (0.55-2.19%) was considered obvious evidence of the precision of the developed method. The paired t-test was used to examine the significant difference at 95% confidence level between the labeled values and the obtained results determined by the developed voltammetric method. Comparing the calculated t value (0.0039) with the critical t value (4.30 at p=0.05) (33), it is shown that this result supported the null hypothesis and indicated no significant difference between the values determined by the voltammetric method and the nominal value obtained from manufacturers.

360 361 362

363

364

Table.2 Ascorbic acid (Vitamin C) content in pharmaceutical formulations collected from the Jordanian local pharmacies as determined by cyclic voltammetry at iodine-coated platinum electrode.

Pharmaceutical preparation	Nominal mass(in mg of ascorbic acid/capsule or tablet)	Average of determined mass(in mg) of ascorbic acid/capsule or tablet(n=3)	Standard deviation	95% confidence limits	Relative error	Coefficient of variation
Vitamin C plus®	500	497.42	3.18	497.42± 7.90	0.516	0.64%
Multivitamin+®	60	60.32	1.32	60.31 ± 3.28	0.53	2.19%
Vitamin C1000®	1000	997.53	5.48	997.531± 13.61	0.247	0.55%

366

367

368

A comparison between the developed voltammetric method and some of the common analytical and voltammetric methods for ascorbic acid determination in terms of detection limit and the linear range was displayed in Table 2 3. As shown, the iodine-

336

337 338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

coated platinum electrode exhibited a lower detection limit than that of other	369
voltammetric methods (29-31) (34-36). In contrast, the obtained linear range was	370
convenient and extended compared to other voltammetric methods. Also, the	371
developed method has the advantages of simplicity in sample preparations and	372
analysis, side by side with a short time of analysis and the low price of	373
instrumentations compared with other methods (Table 3).	374
	375

Table. 3 A comparison of analytical performance of developed voltammetric method using iodine-coated platinum electrode with other analytical methods reported in literature

reported in iterature				
Method	Linear range	Detection Limit(ppm)	Reference	
HPLC	56.78 µM-0.57 mM	1.7x10 ⁻⁴ mM	[5]	
Spectrophotometry	Method A:3.69 μM-63.59 μM Method B:2.9 μM- 90.85 μM	Method A=0.85 µM, Method B=1.1 µM	[4]	
Fluorometry	0.7 μM-6.02 μM	0.23 µM	[13]	
Cyclic voltammetry	0.01 mM-0.101 mM	1.76 µM	[34]	
Differential pulse voltammetry	19.0 µM-0.21 mM	19.0 µM	[35]	
Square-wave voltammetry	-	1.87 µM	[36]	
Voltammetry	2.84 µM - 5.68 mM	0.96 µM	This work	

Conclusion

In this work, a successive use of an iodine-coated platinum electrode to determine ascorbic acid was achieved. The developed method excludes any sophisticated procedures. In contrast, it is considered an applicable method for simplicity of analysis procedures. The reported extended dynamic range 2.84×10^{-3} - 5.68 mM of ascorbic acid supports the applicability of the voltammetric method for ascorbic acid analysis in pharmaceutical products. Based on the recovery experiment, the absence of any interference from the other ingredients of pharmaceutical formulations is considered an evident indicator of the selectivity of the developed method. The statistical analysis of the results showed no significant difference between the values obtained from the voltammetric method and the labeled values claimed by the manufacturers.

Aknowledgment

The authors (Mohammad Amayreh & Wafa Hourani) is thankful to Dr.Mohammed Hourani from the Department of Chemistry, The University of Jordan, for his continuous support and encouragement and for providing the electrochemical workstation.

Conflict	of Interest
••••••	

	404
	405
The authors declare that there is no conflict of interest	406
	407
References	408
1. Pisoschi AM, Danet AF, Kalinowski S. Ascorbic acid determination in	409
commercial fruit juice samples by cyclic voltammetry. J Autom Methods Manag	410
Chem. 2008; 2008:1-8 https://doi.org/10.1155/2008/937651	411
2. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in	412
disease prevention and cure: An Overview. Indian Journal of Clinical	413
Biochemistry.2013; 28(4), 314–328.https://doi.org/10.1007/s12291-013-0375-3	414
3. Perry M, Page N, Manthey D, Zavitz J. Scurvy: Dietary Discretion in a	415
developed country. Clinical Practice and Cases in Emergency Medicine. 2018; 2(2):	416
147-150. https://doi.org/10.5811/cpcem.2018.1.36860	417
4. Naidu KA. Vitamin C in human health and disease is still a mystery? An	418
overview. Nutrition Journal. 2003; 2:1-10. https://doi.org/10.1186/1475-2891-2-7.	419
5. Hu L, Li L, Luo Z, Yang J, Liu W. Determination of trace vitamin C by ion-	420
pair HPLC with UV detection in calcium gluconate and vitamin C compound oral	421
solution. Journal of Chromatographic Science.2012; 50(2):102–107.	422
https://doi.org/10.1093/chromsci/bmr035	423
6. Gazdik Z, Zitka O, Petrlova J, Adam V, Zehnalek J, Horna A, Reznicek V,	424
Beklova M, Kizek, R. Determination of vitamin C (Ascorbic Acid) using high	425
performance liquid chromatography coupled with electrochemical detection.	426
Sensors.2008; $8(11)$: $7097 - 7112$. https://doi.org/10.3390/88117097	427
7. Shrestna N, Shrestna S, Bhauarai A. Determination of ascorbic acid in different citrue fruits of Kethmandu Velley, Journal of medical and Dialogical Science	428
Personal 2016: 2(1):0.14	429
Anal PD Shuchi D LIV spectroscopic method for determination of vitamin	450
C(ascorbic acid) content in different fruits in south Guiarat Region International	431
Journal of Environmental Sciences & Natural Resources 2019: 21(2):41-44	432
https://doi.org/10.19080/IIESNR 2019.21.556056	434
9. Mirsad S. Amra S. Spectrophotometric determination of L-ascorbic Acid in	435
pharmaceutical based on its oxidation by potassium peroxymonosulfate and hydrogen	436
Peroxide. Croatica Chemica Acta. 2015: 88:73-79. https://doi.org/10.5562/cca2551.	437
10. Zanini DJ, Silva MH, Aguiar-Oliveira E, Mazalli MR, Kamimura ES,	438
Maldonado RR. Spectrophotometric analysis of vitamin C in different matrices	439
utilizing potassium permanganate. European International Journal of Science and	440
Technology.2018; 7(1):70-84.	441
11. Arya SP, Mahajan M, Jain P. Photometric methods for the determination of	442
vitamin C. Analytical Sciences.1998; 14:889-895.	443
	444
12. Lau O-W, Luk S-F, Wong K-S. Determination of ascorbic acid in	445
pharmaceuticals using direct ultraviolet spectrophotometry. Analyst. 1987; 112:1023-	446
1025.	447
13. Dilgin Y, Nisli G. Fluorimetric determination of ascorbic acid in vitamin C	448
tablets using methylene blue. Chem. Pharm. Bull. 2015; 53:1251-1254.	449
https://doi.org/10.1248/cpb.53.1251.	450

14. Ensafi AA, Rezaei B. Flow injection analysis determination of ascorbic acid	451
with spectrofluorimetric detection. Analytical Letters. 1998; 31:333-342.	452
https://doi.org/10.1080/00032719808002049.	453
15. Gazdik Z, Zitka O, Petrlova J, AdamV, Zehnalek J, Horna A, Reznicek V,	454
Beklova M, kizek R. Determination of vitamin C(ascorbic acid) using high	455
performance liquid chromatography coupled with electrochemical detection.	456
Sensors.2008; 8(11):7097-7112. https://doi.org/ 10.3390/s8117097	457
16. Clucu AA. Chemically modified electrodes in biosensing. J Biosens	458
Bioelectron.2014; 5(3):1-10.https://doi.org/10.4172/2155-6210.1000154	459
17. March G, Nguyen TD, Piro B. Modified electrodes used for electrochemical	460
detection of metal ions in environmental analysis. Biosensor. 2015; 5(2):241-275.	461
https://doi.org/10.3390/bios5020241.	462
18. Cox JA, Kulesza PJ. Oxidation and determination of nitrite at modified	463
electrodes. Journal of Electroanalytical Chemistry and	464
Interfacialelectrochemistry.1984; 175(1-2): 105-118. https://doi.org/10.1016/S0022-	465
0728(84)80349-6	466
19. Felter TE, Hubbard AT. L.E.E.D. and electrochemistry of iodine on Pt (100)	467
and Pt (111) single-crystal surfaces. J. Electroanal. Chem. 1979, 100:473-491.	468
https://doi.org/10.1016/S0022-0728(79)80179-5	469
20. Shu ZX, Bruckenstein S. Iodine Adsorption Studies at Platinum. J.	470
Electroanal. Chem.1991, 317:263-277. https://doi.org/10.1016/0022-0728(91)85019-	471
L	472
21. Mebrahtu T, Rodriguez JF, Bravo BG, Soriaga MP. Hydrogenative/cathodic	473
stripping of iodine chemisorbed on smooth polycrystalline platinum electrode. J.	474
Electroanal. Chem. 1987, 219, 327-333. https://doi.org/10.1016/0022-0728(87)85050-	475
	476
22. Thomas AE, Wieckowski A. Surface diffusion limited desorption of iodine on	477
a platinum electrode?. Journal of Electroanalytical Chemistry. 1995; 399:207-212.	478
https://doi.org/10.1016/0022-0728(95)04226-1	479
23. Podlovchenko BI, Kolyadko EA. Adsorption of carbon monoxide on	480
platinized platinum electrode with preadsorbed iodine and iodide Anions. Russian	481
Journal of Electrochemistry. 2003; 39: 823-827.	482
24. Hourani MK. Determination of silver (1) by cyclic voltammetry at lodine-	483
coated electrodes. Analyst. 1994; 119: 1975-1978.	484
nttps://doi.org/10.1039/AN9941901975	485
25. Lane KF, Hubbard AT, Fukunaga K, Blanchard KJ. Brain catecholamines:	486
detection in vivo by means of differential pulse voltammetry at surface-modified	487
platinum electrodes. Brain Research. 1970; 114(2): $540-552$.	488
nups://doi.org/10.1010/0000-8995(70)90078-8	489
20. Hourani M, Jarar A, Arar S. Atmospheric SO ₂ determination by voltainmetric	490
$\frac{1}{100}$	491
$EI \land N627 > 2 \cap CO(2 P)$	492
27 Hourani Mk Hijaz B. Voltammatric Analysis of Hydroquinona and Catachol	495
at Iodina Coated Polycrystalline Platinum Electrode, Journal of Natural and	494
engineering Science 2014: 8(2): 25-29	495
28 Amayreh M. Hourani MK. Determination of iron in diatary supplements by	490
voltammetric analysis at an iodine-coated polycrystalline platinum electrode. Int I	702 702
Electrochem Sci 2018: 13: 975-983 https://doi.org/10.20964/2018.01.81	490 299
2.0010010111 001 2010, 10. 770 703. https://doi.org/10.20704/2010.01.01	755

29. Amayreh M, Hournai MK. Direct determination of hemoglobin in blood using	500
iodine-coated platinum polycrystalline electrode. Analytical and Bioanalytical	501
Chemistry Research. 2019; 6(1): 59-68.	502
https://doi.org/10.22036/ABCR.2018.125953.1198.	503
30. Hournai MK, Amayreh M, Hourani W. A Voltammetric sensor based on	504
iodine-coated platinum electrode for determination of iron in blood serum.	505
Anal.Bioanal.Electrochem. 2018; 10(12):1620-1628.	506
31. Amayreh M, Hourani M. Determination of Iron in Spinach Using Sweep	507
Voltammetry at Iodine-Coated Platinum rotating Disk Electrode. Journal of AOAC	508
International. 2019; 102(2):666-668. https://doi.org/10.5740/jaoacint.18-0267.	509
32. Amayreh M, Hourani W, Hourani MK. Anodic Stripping Voltammetric	510
Determination of Copper in Multivitamin-Mineral Formulations using Iodine-Coated	511
Platinum Electrode. Methods Objects Chem. Anal.2021,16(1),48-56.	512
https://doi.org/10.17721/moca.2021.48-56.	513
33. Miller JN, Miller JC Statistics and Chemometrics for Analytical Chemistry.6 th	514
ed. Pearson, England;2010.43-45p.	515
34. Bitew Z, Amare M. Electrochemical determination of ascorbic acid in	516
pharmaceutical tablets using carbon paste electrode. Organic & Medicinal Chemistry	517
International Journal. 2019; 8(5):1-9.https://doi.org/10.19080/OMCIJ.2019.08.555749	518
35. Lourenção BC, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O,	519
Simultaneous differential pulse voltammetric determination of ascorbic acid and	520
caffeine in pharmaceutical formulations using a boron-doped diamond electrode.	521
Electroanalysis.2010; 22(15):1717-1723. https://doi.org/10.1002/elan.200900612	522
36. Vedenyapina MD, Kazakova MM, Skundin AM. Voltammetric determination	523
of ascorbic acid in pharmaceutical formulation on a boron doped diamond electrode.	524
Russ. J. Phys. Chem. 2019; 93: 1178-1181.	525
https://doi.org/10.1134/S0036024419060335	526
	527
	528
Authors' Declaration	529
	530
	531
The authors hereby declare that the work presented in this article is original and that	532
they will bear any liability for claims relating to the content of this article.	533

- they will bear any liability for claims relating to the content of this article.