SciELO - Scientific Electronic Library Online

 
 issue88Model for the prediction of noise from wind turbinesLimonene epoxidation in aqueous phase over Ti/KIT-6 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad de Ingeniería Universidad de Antioquia

Print version ISSN 0120-6230

Abstract

DIAZ-BELLO, Sandra Consuelo; RESTREPO-BAENA, Oscar Jaime  and  FORERO-PINILLA, Álvaro Hernando. Reduction process of low-grade nickel laterite agglomerates using different carbonaceous materials. Rev.fac.ing.univ. Antioquia [online]. 2018, n.88, pp.66-73. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.n88a07.

Lateritic nickel ores need to be reduced to obtain direct reduced iron and nickel alloy. During processing of lateritic nickel ores in rotary kilns, there is a great loss of fines of ores due to degradation during transport into the reactor. These fines contain substantial amounts of nickel and iron, which could be recovered if they are agglomerated and fed back to the process. It is important to note that the processing of minerals with smaller particle sizes yields more efficient reduction processes because there is more surface area for the reducing agent to react with the mineral particles. This work involves the agglomeration of lateritic ore with a nickel content of 1.78%. Briquettes of 10 g were manufactured with the addition of various carbonaceous materials, such as coal, molasses, and coke, with a ratio of carbon/oxygen = 1. These samples were subjected to temperatures of 1100 °C to reduce the iron and nickel oxides present. The reduction percentages were obtained and the products were analyzed by X-ray diffraction (XRD), atomic absorption, thermogravimetry, and scanning electron microscopy to observe the effectiveness of the reducing agent. The highest reduction percentages (95%) were obtained when molasses was used as the reducing agent.

Keywords : Chemical properties; chemical process; nickel minerals; organic compounds; reducing gas.

        · abstract in Spanish     · text in English     · English ( pdf )