SciELO - Scientific Electronic Library Online

 
vol.23 issue2Analysis of the Ordovician Carbonate Hydrothermal Process in Tadong Area, Xinjiang, ChinaCrustal Velocity Models Retrieved from Surface Wave Dispersion Data for Gujarat Region, Western Peninsular India author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Earth Sciences Research Journal

Print version ISSN 1794-6190

Abstract

CHEN, Wang et al. Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth Sci. Res. J. [online]. 2019, vol.23, n.2, pp.133-146. ISSN 1794-6190.  https://doi.org/10.15446/esrj.v23n2.66316.

The Wuhaolai mafic complex is located in the north margin of the North China Craton (NCC), Inner Mongolia. To discuss the mineralogical features, magma evolution process, and tectonic setting of the complex, we analyzed the geochemical compositions of clinopyroxene and hornblende using an electron probe. The results revealed that the parental magma of this complex belonged to the intraplate alkaline basalt series. The normal zoning texture and the relation between Mg# and FeO, Al2O3, CaO, Na2O, SiO2 and Cr2O3 suggested that the clinopyroxenes of pyroxenite and gabbro crystallized from the same parental magma. The similar CaO content of clinopyroxenes indicated that the parental magma of the Wuhaolai complex may have suffered crustal contamination. Furthermore, the characteristics of hornblende demonstrated that the magma source was modified by fluids derived from subducted slab. Based on the value of Kdcpx (0.23-0.27), the equilibrium melt with clinopyroxene exhibited a relatively low Mg# (43-53), indicating that the parental magma was derived from the lithospheric mantle and underwent crystal fractionation. The gabbro crystallization temperature and pressure was found to be lower than that of pyroxenite, indicating that gabbro was formed at a lower depth than that of pyroxenite. Combining the tectonic setting discrimination diagram of clinopyroxene with the results of previous studies on the late Paleozoic intrusions near the research area, we proposed that the Wuhaolai complex was formed in an intraplate environment. The magma source was modified by fluids derived from the subducted slab during the subduction of the Paleo-Asian Ocean (PAO). After the PAO closure, the parental magma of the Wuhaolai complex was produced by the partial melting of the enriched lithospheric mantle

Keywords : Wuhaolai mafic complex; genetic mineralogy; magmatic evolution; tectonic significance; margin of the North China Craton.

        · abstract in Spanish     · text in English     · English ( pdf )