SciELO - Scientific Electronic Library Online

 
vol.45 issue1Additive Outliers in Open-Loop Threshold Autoregressive Models: A Simulation StudyCubic Rank Transmuted Lindley Distribution with Applications author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.45 no.1 Bogotá Jan./June 2022  Epub Jan 18, 2023

https://doi.org/10.15446/rce.v45n1.92567 

Artículos originales de investigación

Asymmetric Prior in Wavelet Shrinkage

Priori asimétrico en contracción de ondículas

ALEX RODRIGO DOS SANTOS SOUSA1  a 

1 DEPARTMENT OF STATISTICS, INSTITUTE OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SÃO PAULO, SÃO PAULO, BRAZIL


Abstract

In bayesian wavelet shrinkage, the already proposed priors to wavelet coefficients are assumed to be symmetric around zero. Although this assumption is reasonable in many applications, it is not general. The present paper proposes the use of an asymmetric shrinkage rule based on the discrete mixture of a point mass function at zero and an asymmetric beta distribution as prior to the wavelet coefficients in a non-parametric regression model. Statistical properties such as bias, variance, classical and bayesian risks of the associated asymmetric rule are provided and performances of the proposed rule are obtained in simulation studies involving artificial asymmetric distributed coefficients and the Donoho-Johnstone test functions. Application in a seismic real dataset is also analyzed.

Key words: asymmetric beta distribution; nonparametric regression; wavelet shrinkage

Resumen

En la contracción de las ondículas bayesianas, se supone que los coeficientes a priori ya propuestos de las ondículas son simétricos alrededor de cero. Aunque esta suposición es razonable en muchas aplicaciones, no es general. El presente artículo propone el uso de una regla de contracción asimétrica basada en la mezcla discreta de una función de masa puntual en cero y una distribución beta asimétrica como priori de los coeficientes de ondícula en un modelo de regresión no paramétrico. Se proporcionan propiedades estadísticas tales como sesgo, varianza, riesgos clásicos y bayesianos de la regla asimétrica asociada y se obtienen los rendimientos de la regla propuesta en estudios de simulación que involucran coeficientes distribuidos asimétricos artificiales y las funciones de prueba de Donoho-Johnstone. También se analiza la aplicación en un conjunto de datos sísmicos reales.

Palabras clave: contracción de las ondículas; distribución beta asimétrica; regresión no paramétrico

Full text available only in PDF format

References

Abramovich, F. & Benjamini, Y. (1996), 'Adaptive thresholding of wavelet coefficients', Computational Statistics and Data Analysis 22(4), 351-361. [ Links ]

Abramovich, F., Sapatinas, T. & Silverman, B. (1998), 'Wavelet thresholding via a bayesian approach', Royal Statistical Society pp. 725-749. [ Links ]

Angelini, C. & Vidakovic, B. (2004), 'Gama-minimax wavelet shrinkage: a robust incorporation of information about energy of a signal in denoising applications', Statistica Sinica (14), 103-125. [ Links ]

Antoniadis, A., Bigot, J. & Sapatinas, T. (2001), 'Wavelet estimators in nonparametric regression: a comparative simulation study', Journal of Statistical Software (6), 1-83. [ Links ]

Beenamol, M., Prabavathy, S. & Mohanalin, J. (2012), 'Wavelet based seismic signal de-noising using shannon and tsallis entropy', Computers and Mathematics with Applications (64), 3580-3593. [ Links ]

Bhattacharya, A., Pati, D., Pillai, N. & Dunson, D. (2015), 'Dirichlet-laplace priors for optimal shrinkage', Journal of the American Statistical Association (110), 1479-1490. [ Links ]

Chipman, H., Kolaczyk, E. & McCulloch, R. (1997), 'Adaptive bayesian wavelet shrinkage', Journal of the American Statistical Association (92), 1413-1421. [ Links ]

Cutillo, L., Jung, Y., Ruggeri, F. & Vidakovic, B. (2008), 'Larger posterior mode wavelet thresholding and applications', Journal of Statistical Planning and Inference (138), 3758-3773. [ Links ]

Donoho, D. L. (1995a), 'De-noising by soft-thresholding', IEEE Transactions on Information Theory (41), 613-627. [ Links ]

Donoho, D. L. (1995b), 'Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition', Applied and Computational Harmonic Analysis (2), 10126. [ Links ]

Donoho, D. L. & Johnstone, I. M. (1994a), 'Ideal denoising in an orthonormal basis chosen from a library of bases', Comptes Rendus de l Académie des Sciences (319), 1317-1322. [ Links ]

Donoho, D. L. & Johnstone, I. M. (1994b), 'Ideal spatial adaptation by wavelet shrinkage', Biometrika (81), 425-455. [ Links ]

Donoho, D. L. & Johnstone, I. M. (1995), 'Adapting to unknown smoothness via wavelet shrinkage', Journal of the American Statistical Association (90), 1200-1224. [ Links ]

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. (1995), 'Wavelet shrinkage: Asymptopia? (with discussion)', Royal Statistical Society B (57), 301-369. [ Links ]

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. (1996), 'Density estimation by wavelet thresholding', Annals of Statistics 24, 508-539. [ Links ]

Griffin, J. & Brown, P. (2017), 'Hierarquical shrinkage priors for regression models', Bayesian Analysis 12(1), 135-159. [ Links ]

Jansen, M. (2001), Noise reduction by wavelet thresholding, Springer, New York. [ Links ]

Johnstone, L. & Silverman, B. (2005), 'Empirical bayes selection of wavelet thresholds', The Annals of Statistics 33, 1700-1752. [ Links ]

Karagiannis, G., Konomi, B. & Lin, G. (2015), 'A bayesian mixed shrinkage prior procedure for spatial-stochastic basis selection and evaluation of gpc expansion: applications to elliptic spdes', Journal of Computational Physics 284, 528-546. [ Links ]

Lian, H. (2011), 'On posterior distribution of bayesian wavelet thresholding', Journal of Statistical Planning and Inference 141, 318-324. [ Links ]

Mallat, S. G. (1998), A Wavelet Tour of Signal Processing, Academic Press, San Diego. [ Links ]

Nason, G. P. (1996), 'Wavelet shrinkage using cross-validation', Journal of the Royal Statistical Society B 58, 463-479. [ Links ]

Reményi, N. & Vidakovic, B. (2015), 'Wavelet shrinkage with double weibull prior', Communications in Statistics: Simulation and Computation 44(1), 88-104. [ Links ]

Sousa, A. (2020), 'Bayesian wavelet shrinkage with logistic prior', Communications in Statistics: Simulation and Computation . [ Links ]

Sousa, A., Garcia, N. & Vidakovic, B. (2021), 'Bayesian wavelet shrinkage with beta prior', Computational Statistics 36(2), 1341-1363. [ Links ]

Torkamani, R. & Sadeghzadeh, R. (2017), 'Bayesian compressive sensing using wavelet based markov random fields', Signal Processing: Image Communication 58, 65-72. [ Links ]

Vidakovic, B. (1998), 'Nonlinear wavelet shrinkage with bayes rules and bayes factors', Journal of the American Statistical Association 93, 173-179. [ Links ]

Vidakovic, B. (1999), Statistical Modeling by Wavelets, Wiley, New York. [ Links ]

Vidakovic, B. & Ruggeri, F. (2001), 'Bams method: Theory and simulations', Sankhya: The Indian Journal of Statistics 63, 234-249. [ Links ]

Received: December 2020; Accepted: August 2021

aPh.D. E-mail: alex.sousa89@usp.br

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License