SciELO - Scientific Electronic Library Online

 
vol.28 issue3New reliability charge incentives and structure in the Colombian electrical sectorMathematically modelling the power requirement for a vertical shaft mowing machine author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería e Investigación

Print version ISSN 0120-5609

Abstract

FERNANDEZ MORALES, Flavio Humberto; DUARTE, Julio Enrique  and  SAMITIER MARTI, Joseph. Non-uniform electric field-induced yeast cell electrokinetic behavior. Ing. Investig. [online]. 2008, vol.28, n.3, pp.116-121. ISSN 0120-5609.

Common dielectrophoresis (c-DEP, i.e. neutral matter motion induced by non-uniform electric fields) has become a basic phenomenon of biochips intended for medical, biological and chemical assays, especially when they imply bioparticle handling. This paper deals with modelling and experimental verification of a castellated, c-DEP-based, microelectrode array intended to handle biological objects. The proposed microsystem was developed employing platinum electrodes patterned by lift-off, silicon micro-machining and photoresin patterning techniques. Saccharomyces cerevisiae were used as test bioparticles for experimental verification. Yeast cells were repelled toward electrode bays and toward interelectrodic gaps tor frequencies around 20 MHz where there is minimum electric field strength, corresponding to a negative dielectrophoretic phenomenon. Yeast cell agglomerations were observed around electrode edges for frequencies of around 2 MHz where there is maximum electric field strength, thereby verifying the positive dielectrophoretic phenomenon. Bioparticles were separated from the electrode edges when the working frequency was reduced and they were dragged towards the electrode centre, remaining there while the frequency was low enough. Such atypical pattern may be explained due to the occurrence of positive dielectrophoresis overlap with electrohydrodynamic effects (i.e. the viscous drag force acting on the particles was greater than the dielectrophoretic force at frequencies where positive dielectrophoresis should occur). The experiments illustrated microsystem convenience in microhandling biological objects, thereby providing these microarrays’ possible use with other cells. Liquid motion resulting from electrohydrodynamic effects must also be taken into account when designing bioparticle micromanipulators, and could be used as a mechanism for cleaning electrode surfaces.

Keywords : dielectrophoresis; cell handling; biochip.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License