SciELO - Scientific Electronic Library Online

 
vol.22 issue1Monitoring program for mammals in a protected area of ColombiaResponse Surface Methodology (RSM) for analysing culture conditions of Acidocella facilis strain USBA-GBX-505 and Partial Purification and Biochemical Characterization of Lipase 505 LIP author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Universitas Scientiarum

Print version ISSN 0122-7483

Abstract

TORAL, Francisco Correa et al. Ex vivo model for studying polymicrobial biofilm formation in root canals. Univ. Sci. [online]. 2017, vol.22, n.1, pp.31-43. ISSN 0122-7483.  https://doi.org/10.11144/javeriana.sc22-1.evmf.

Endodontic disease has mainly a microbial origin. It is caused by biofilms capable of attaching and surviving in the root canal. Therefore, it is important to study the conditions in which those biofilms grow, develop and colonize the root canal system. However, few studies have used natural teeth as models, which would take into account the root canal anatomical complexity and simulate the clinical reality. In this study, we used human premolar root canals to standardize in vitro biofilm optimal formation conditions for microorganisms such as Enterococcus faecalis, Staphylococcus aureus and Candida albicans. 128 lower premolars underwent canal preparation using K-type files, and were treated with 5.25% sodium hypochlorite and EDTA. Samples were inoculated with microorganisms and incubated for 15, 30, 45, and 60 days under anaerobiosis (CO2 atmosphere) and aerobiosis. Microorganism presence was confirmed by Gram staining, cell culture, and electron microscopy. Exopolysaccharide matrix and microorganism aggregation were observed following 15 days of incubation. Bacterial growth towards the apical third of the root canal and biofilm maturation was detected after 30 days. CO2 atmosphere favored microbial growth the most. In vitro biofilm maturation was confirmed after 30 days of incubation under a CO2 atmosphere for both bacteria and yeast.

Keywords : Dental Pulp Diseases; Biofilm; microbial interactions; Enterococcus faecais; Staphylococcus aureus; Candida albicans.

        · abstract in Spanish | Portuguese     · text in English     · English ( pdf )