SciELO - Scientific Electronic Library Online

 
vol.49 issue2Evaluation of drug advertising in the main television, radio, and written media in Costa RicaTalinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere with oxacillin action author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Ciencias Químico - Farmacéuticas

Print version ISSN 0034-7418On-line version ISSN 1909-6356

Abstract

CERDEIRA, Cláudio Daniel et al. Talinumpaniculatum: a plant with antifungal potential mitigates fluconazole-induced oxidative damage-mediated growth inhibition of Candida albicans. Rev. colomb. cienc. quim. farm. [online]. 2020, vol.49, n.2, pp.401-431.  Epub Nov 23, 2020. ISSN 0034-7418.  https://doi.org/10.15446/rcciquifa.v49n2.89704.

Aims:

This study investigated the bioactivity of the crude leaf extract (CLE) and fractions hexane (HX) and ethyl acetate (EtOAc) from Talinum paniculatum alone and in association with fluconazole (FLC) against reference strain and clinical isolates of FLC-resistant Candida albicans. Furthermore, the antioxidant capability, chemical composition of this plant, and the effect's underlying mechanisms were evaluated.

Methods:

The antifungal activity was evaluated using checkerboard assay to establish the minimum inhibitory (MIC) and minimum microbicidal concen trations (MMC). During FLC and plant products challenges, the reactive oxygen species (ROS) generation (hydroxyl radicals [HO●]) were detected in C. albicans cells using the membrane-permeable fluorescent probes APF and HPF. High-performance liquid chromatography (HPLC) profile, quantitative analysis of antioxidant compounds, and free radical scavenging activity (DPPH assay) tests were performed.

Results:

The CLE and fractions presented outstanding antifungal activity and selectivity against C. albicans cells but had no synergistic effect’s with FLC. The MIC values for CLE and its fractions against C. albicans reference strain were in the order of HX (31.25 µg ml-1) < EtOAc (62.5 μg ml-1) < CLE (500 μg ml-1), and against FLC-resistant C. albicans HX (125 μg ml-1) = EtOAc < CLE (500 μg ml-1). CLE and its fractions had more potent antifungal activities than FLC against the clinical isolates. Moreover, fungicidal effect’s for these plant products were demonstrated against FLC-resistant C. albicans, which further conirmed an antifungal potential. Conversely, during association, plant products were shown to cause an increase in FLC MIC anywhere from 2- to 16-fold. FLC exposure led to an increase in the steady-state levels of ROS (HO●) in C. albicans cells. Next, we found that the increases in FLC MICs were owing to action of antioxidants containing-CLE and its fractions in preventing FLC-induced ROS-mediated growth inhibition of C. albicans.

Conclusion:

T. paniculatum can be a source of bioactive compounds with antifungal potential. However, because of the common use of its edible leaf, caution is advised during therapy with FLC (since it can decrease FLC susceptibility).

Keywords : Antimicrobial resistance; Candida albicans; susceptibility; reactive oxygen species; Talinum paniculatum; fluconazole.

        · abstract in Spanish     · text in English     · English ( pdf )