Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in
SciELO
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Abstract
SUAREZ, HÉCTOR; LEZAMA, OSWALDO and REYES, ARMANDO. Calabi-Yau property for graded skew PBW extensions. Rev.colomb.mat. [online]. 2017, vol.51, n.2, pp.221-239. ISSN 0034-7426.
Graded skew PBW extensions were defined by the first author as a generalization of graded iterated Ore extensions [36]. The purpose of this paper is to study the Artin-Schelter regularity and the (skew) Calabi-Yau condition for this kind of extensions. We prove that every graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra is also an Artin-Schelter regular algebra and, as a consequence, every graded quasi-commutative skew PBW extension of a connected skew Calabi-Yau algebra is skew Calabi-Yau. Finally, we prove that graded skew PBW extensions of a finitely presented connected Auslander-regular algebra are skew Calabi-Yau.
Keywords : Graded skew PBW extensions; AS-regular algebras; skew Calabi-Yau algebras.












