Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in
SciELO
Similars in Google
Share
Revista Colombiana de Estadística
Print version ISSN 0120-1751
Abstract
MONTERO DIAZ, MINERVA and GUERRA ONES, VALIA. Estimating multilevel models for categorical data via generalized least squares. Rev.Colomb.Estad. [online]. 2005, vol.28, n.1, pp.63-76. ISSN 0120-1751.
Montero et al. (2002) proposed a strategy to formulate multilevel models related to a contingency table sample. This methodology is based on the application of the general linear model to hierarchical categorical data. In this paper we applied the method to a multilevel logistic regression model using simulated data. We find that the estimates of the random parameters are inadmissible in some circumstances; large bias and negative estimates of the variance are expected for unbalanced data sets. In order to correct the estimates we propose to use a numerical technique based on the Truncated Singular Value Decomposition (TSVD) in the solution of the problem of generalized least squares associated to the estimation of the random parameters. Finally a simulation study is presented to shows the effectiveness of this technique for reducing the bias of the estimates.
Keywords : Multilevel models; Generalized least squares; Truncated Singular Value.













