SciELO - Scientific Electronic Library Online

 
vol.27 issue3Reduction of power line interference in electrocardiographic signals by dual Kalman filteringA numerical water-hammer model using Scilab author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería e Investigación

Print version ISSN 0120-5609

Abstract

TARIFA, Enrique Eduardo et al. Gas transport network analysis. Ing. Investig. [online]. 2007, vol.27, n.3, pp.89-97. ISSN 0120-5609.

Growing demand for natural gas necessarily leads to demands for increased transport network capacity. This can be done by increasing the capacity of already installed gas pipelines and optimising operating conditions. Greater knowledge (know-how) regarding the process is thus needed and may be applied by following the procedure outlined in this work. The proposed method concerns studying a gas network by using simulation tools; it has been used for studying a transport network in Argentina. The proposed method has the following stages: 1) system analysis (identifying parameters, disturbances, manipulated variables, state variables and output variables), 2) stationary simulation, 3) dynamic simulation and 4) case studies (analysing sensitivity, stability and controllability). Once a system’s critical variables have been identified then stationary simulation allows the amount of gas and its pressure to be determined for each sink, in several scenarios. These results can be used for designing suitable operational procedure for such cases. Dynamic simulation describes a system’s stationary state and how the state of the process evolves. Such additional information allows refining previously-designed procedures and also makes dynamic simulation an excellent tool for operator training. Two alternatives were analysed for stationary simulation: an HYSYS simulator and traditional Excel spreadsheet calculations. Predicted stationary states were similar by both methods. The sensitivity of the most relevant system variables was then studied; the HYSYS simulator was used for dynamic simulation in all cases. System sensitivity and dynamics were determined, such information being required for making improvements to network installations and operational procedures and thereby proving the procedure’s worth.

Keywords : stationary simulation; dynamic simulation; sensitivity analysis; system analysis.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License