SciELO - Scientific Electronic Library Online

 
 issue46Adhesion characteristics between keratin fibers and unsaturated polyester author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad de Ingeniería Universidad de Antioquia

Print version ISSN 0120-6230On-line version ISSN 2422-2844

Abstract

CORREA, Faber et al. Corrosion resistance improvement of steel AISI 4140 by using a titanium/titanium nitride multilayer coating syste. Rev.fac.ing.univ. Antioquia [online]. 2008, n.46, pp.7-14. ISSN 0120-6230.

Steel 4140 is widely used for fabrication of machines components with hardness between 25 and 35 Rockwell C (HRC). However, life time of this steel is limited by its low wear and corrosion resistance. In order to enhance its corrosion behavior, multilayer of Ti/TiN were deposited onto 4140 steel samples by d.c. reactive magnetron sputtering using a high purity titanium target (99.9) in anAR/N2 atmosphere. With the purpose to study the influence of the layer number on the rate of corrosion of deposited films, multilayer of [Ti /TiN] were growth with 1, 5, 10, 15 and 20 bilayers and a 3 μm constant thickness for all samples. The grown phases and chemical composition were analyzed by x-ray diffraction spectroscopy (XRD), and energy dispersive X-ray spectroscopy (EDX) respectively. Additionally, the uncoated and coated steel samples were characterized using electrochemical impedance spectroscopy (EIS) and Tafel’s polarisation curves. A corrosion rate reduction of approximately 87% was found for the steel sample coated with 20 bilayers of Ti/TiN compared with the uncoated, and of 25% related to the sample coated with 1 bilayer. This evidences the positive effect of the period increase of the multilayered Ti/TiN thin films on their corrosion resistance.

Keywords : multilayer; magnetron sputtering; titanium nitride; corrosion.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License