SciELO - Scientific Electronic Library Online

 
vol.27 número3Factores que predisponen la automedicación en estudiantes universitarios, un caso colombiano índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Vitae

versión impresa ISSN 0121-4004

Vitae vol.27 no.3 Medellín sep./dic. 2020  Epub 07-Mar-2022

https://doi.org/10.17533/udea.vitae.v27n3a05 

Natural products

In vitro effectiveness of an aqueous extract of neem (Azadirachta indica A. Juss) leaves on bacteria causing healthcare associated infection in Valledupar

Efectividad in vitro del extracto de hojas de neem (Azadirachta indica A. Juss) sobre bacterias causantes de infecciónes asociadas a la atención en sanitaria en Valledupar

Hedilka Jiménez-Rios1 

Bertilda Pedraza-Claros2 

Aslenis Melo-Rios3  * 

Jeraldin Castrillón-Mejia4 

Ailyn Fuentes-Arias5 

1 Magister en educación. Universidad de Santander. Facultad Ciencias de la Salud, Grupo de Investigación CIENCIAUDES. Valledupar, Colombia. ORCID: https://orcid.org/0000-0002-9843-3829

2 Magister en Ciencia y Tecnología de Alimentos. Universidad de Santander. Facultad Ciencias de la Salud, Grupo de Investigación CIENCIAUDES. Valledupar, Colombia. ORCID: https://orcid.org/0000-0003-2200-7951

3 Magister en gestión y auditorías ambientales. Universidad de Santander. Facultad Ciencias de la Salud, Grupo de Investigación CIENCIAUDES. Valledupar, Colombia. ORCID: https://orcid.org/0000-0002-4340-7594

4 Bacterióloga. Universidad de Santander. Facultad Ciencias de la Salud, Grupo de Investigación CIENCIAUDES. Valledupar, Colombia. ORCID: https://orcid.org/0000-0002-6377-0921

5 Bacterióloga. Universidad de Santander. Facultad Ciencias de la Salud, Grupo de Investigación CIENCIAUDES. Valledupar, Colombia. ORCID: https://orcid.org/0000-0002-5132-2750


Abstract

Background:

Globally, the need to address strategies for preventing infections associated with health care has increased worldwide. In the city of Valledupar, Colombia, reports of bacteria resistant to chemical or enzymatic biocides in hospital environments and surfaces are increasingly frequent, evidencing the importance of conducting studies aimed at identifying alternative active ingredients for disinfectant products.

Objective:

Evaluate the in vitro effectiveness of Neem leaves extract over bacteria strains isolated from different areas and surfaces of a health institution in Valledupar, compared to disinfectants for hospital use, an enzymatic detergent, and a commercial chemical disinfectant.

Methods:

Biocidal activities on bacteria isolated from hospital surfaces, such as Acinetobacter baumanni, Bacillus subtilis, Enterobacter aerogenes, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus sp, and Streptomona malthophila were analyzed. The Neem leaves extract was evaluated at concentrations of 3, 4, and 5 % for each bacterium during 15-minute contact time, incubated at 37 °C for 18 hours. We compared two antimicrobial chemicals, a disinfectant (based on formaldehyde, cetrimide, and glutaraldehyde), and an enzymatic detergent (based on protease, lipase, and amylase).

Results:

The aqueous Neem extract did not show significant differences with the other treatments with 99.48 to 100% inhibition against bacteria of the species Acinetobacter baumanni, Enterobacter aerogenes, Staphylococcus aureus, and Micrococcus sp.; Bacillus subtilis, and Stenotrophomonas maltophilia strains were the most resistant strains inhibited by enzymatic detergent and disinfectant, respectively. None of the products evaluated were effective against all in vitro strains.

Conclusions:

These data show Neem’s bacteriostatic properties, its potential in in-hospital products and the need to combine different active ingredients in a disinfection plan.

Keywords: antimicrobial; Neem Tree; cross infection Acinetobacter baumanni; Staphylococcus epidermidis

Resumen

Antecedentes:

A nivel mundial ha aumentado la necesidad de abordar estrategias para la prevención de infecciones asociadas a la atención de salud. En la ciudad de Valledupar, Colombia, cada vez son más frecuentes los reportes de bacterias resistentes a biocidas químicos o enzimáticos, en ambientes y superficies hospitalarias, lo cual evidencia la importancia de realizar estudios orientados a la identificación de principios activos alternativos para productos desinfectantes.

Objetivo:

Evaluar la efectividad in vitro del extracto de hojas de Neem en cepas de bacterias aisladas en diferentes áreas y superficies de una institución de salud en Valledupar, en comparación con desinfectantes de uso hospitalario, un detergente enzimático y un desinfectante químico comercial.

Métodos:

Se analizó la actividad biocida sobre las bacterias aisladas de superficies hospitalarias Acinetobacter baumanni, Bacillus subtilis, Enterobacter aerogenes, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus sp, y Streptomona malthophila. El extracto de hojas de Neem se evaluó a concentraciones de 3, 4 y 5% para cada bacteria durante un tiempo de contacto de 15 minutos, incubados a 37 ° C durante 18 horas. Se comparó dos productos químicos antimicrobianos, un desinfectante (a base de formaldehído, cetrimide y glutaraldehído), y un detergente enzimático (a base de Proteasa, Lipasa y amilasa).

Resultados:

El extracto acuoso de Neem no presentó diferencias significativas con los demás tratamientos con inhibición del 99,48 al 100%, sobre bacterias de las especies Acinetobacter baumanni, Enterobacter aerogenes, Staphylococcus aureus y Micrococcus sp; las cepas Bacillus subtilis y Stenotrophomonas maltophilia fueron las más resistentes a ser inhibidas por el detergente enzimático y el desinfectante, respectivamente. Ninguno de los productos evaluados fue efectivo contra todas las cepas in vitro.

Conclusiones:

Estos datos evidencian las propiedades bacteriostáticas del Neem, su potencial en productos de uso intrahospitalario y la necesidad de combinar diferentes principios activos en un plan de desinfección.

Palabras claves: Antibacteriano; Infección hospitalaria; Neem; Acinetobacter baumanni; Staphylococcus epidermidis

Introduction

According to the Pan American Health Organization (PAHO) and World Health Organization (WHO), approximately 1.4 million people acquire a Health care Associated Infection (HAIs), affecting 1 of 20 hospitalized patients, affecting about 4.1 million patients, and approximately 37,000 patients die each year (1). Furthermore, the Acinetobacter baumannii complex is the most frequently isolated pathogen with 80% of all clinical isolates and has a potential resistance of 3.1% to carbapenems (2).

These cases have become the most frequent events in health care, affecting several patients annually in many countries of the world, generating an impact on the quality of life of patients. The economic expenses attributable to them estimated for the US a cost of care of 28 and 33 billion dollars a year (3).

In Colombia, the cost of care for HAIs is COP 1,190,879 per person, in antibiotic treatment (41% of the total value) and laboratory analysis (13.5%) (4). Specifically, there are records of the presence in the hospital facilities of bacteria resistant to bactericides in Valledupar. 50% of S. aureus strains showed resistance to methicillin, up to 14% were isolated from the emergency and surgery areas (5).

The reason why the Ministry of Health and Social Protection of Colombia in 2018 created the prevention, surveillance, and control Program of HAIs and antimicrobial resistance, was to provide elements to strengthen the prevention and control of HAIs. Considering among other measures, the appropriate cleaning and disinfection practices, including the disinfectants selection for hospital use (1).

Consequently, using inside the disinfectant’s composition natural ingredients with high biocidal power has been increasingly highlighted. Among those are extracts and essential oils of aromatic plants such as Cymbopogon citratus, Lippia alba (Mill), Eugenia caryophyllata (Thunb), Aloe vera (L.), Azadirachta indica (A. Juss), and others (6,7). The last one is a meliaceous family plant, currently used in the pharmacopeia, cosmetics, and phytosanitary products. This plant has active natural substances in leaves and seeds against multiple pathogens, including bacteria, fungi, and viruses (8). Its extract has been demonstrated to contain relevant properties at the health level (9,10), with antibacterial, anti-inflammatory, antiviral, hypoglycemic, and antiulcer activity, among others (11).

Furthermore, experimental studies indicate that the ethanol extract of leaves has antibacterial activity in vitro against Staphylococcus aureus (12). Specific structural components within the Neem extract, such as deacetylgedunin (DCG), presents a high level of coupling with the PLpro protein of SARS-CoV-2, which allows its inhibition (13).

Balakrishna et al. (7) developed a hand sanitizer gel containing Azadirachta indica, Ocimum sanctum and Citrus limon extracts, with an inhibitory effect on bacteria related to HAIs Escherichia coli and Staphylococcus aureus.

This research raised the evaluation of the bacteriostatic effect of the extract of the leaves and seeds of the Neem tree against microorganisms’ strains isolated from surfaces in procedure rooms, neonatal intermediate care unit, adult intermediate care unit, and surgery of a hospital institution in Valledupar.

Materials and methods

Location

The study was carried out in the laboratory of the University of Santander, in Valledupar, Colombia.

Microorganisms

The bacteria associated with IAAS, Acinetobacter baumanni, Bacillus subtilis, Enterobacter aerogenes, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus sp., and Streptomona malthophila, were isolated by the method of a swab from different surfaces such as the surgical procedure room and the intensive care unit (ICU) (adult and neonates ICUs) from a hospital in Valledupar township. The bacteria grown at 37 ° C amid nutrient agar and Muller Hilton cultures. The strains were identified by the API 20E method for enterobacteria and API 20NE for other gram-negative bacilli. 0.85% saline suspensions were prepared on the Macfarland 0.5 scale to conduct the tests.

Extract from A. indica (Neem)

The aqueous Neem extract was prepared according to the methodology described by Barrabí and Garcia (14), where the plant material was manually collected in sterile plastic bags with airtight closure. Leaves and seeds were obtained from 10-year-old Neem trees located in the Centro Biotecnológico del Caribe (CBC)-SENA in Valledupar, Colombia, (169 MAMSL and an average temperature of 28 °C). The material was washed with distilled water, allowed to dry at 28 °C. Afterward, 5 g was weighed on a precision analytical balance, and 200 ml of distilled water was added in a flask and boiled for 25 minutes. Finally, the mixture was filtered on filter paper in a Büchner funnel, and a final volume of 100 ml of 5% Neem extract was obtained. Three concentrations were prepared from the stock solution: 3, 4, and 5%.

Chemical products

This research evaluated the products frequently used to disinfect environments, instruments, and surfaces from the hospital. The first product corresponds to a pre-disinfectant enzymatic detergent (protease, lipase, and amylase; liquid presentation, pH 8.9) used for instrument cleaning. The second product is a microbial disinfectant based on formaldehyde, cetrimide, and glutaraldehyde (400, 600, and 1000 ppm).

In vitro Effectiveness Comparison

We prepared 9 ml of the enzymatic detergent, the disinfectant, and Neem extract at 3, 4, and 5% concentrations. Afterward, 1 ml of the microorganisms at 0.5 Macfarland scale was added, and let them mix during 15 minutes of contact. Finally, we inoculated the mix in-depth in plates containing 1 ml of the Muller Hinton agar suspension and incubated at 37 ºC. Each strain was assessed in triplicate. By calculating the percentage of dead cells: [1- (Mean CFU irrigant / Mean CFUinitial bacterial number)] × 100%. Where “mean CFU irrigant” refers to the measurement of the colony-forming units resulting from exposure with the antimicrobial or irrigant substances to be evaluated and “Mean CFUinitial bacterial number”, the measurement of the initial bacterial colony-forming units, before being in contact with antimicrobial substances (15). Likewise, the enzymatic detergent and disinfectant were used in concentrations of 3% and 100%, respectively, assuming a high organic matter concentration. The density of application solutions is assumed to be 1.

Statistical analysis

According to Tukey, the median of the results was compared by analysis of variance followed by a 5% post hoc test using the statistical software SPSS version 20.

Results

In this research, when reviewing the results of the different treatments to which all the strains of bacteria evaluated were subjected, it was evidenced: 1) there was significant differences between extract of Neem concentrations and the bacterial strains evaluated 2) the efficiency of the disinfectant and growth inhibition bacterial, except in Bacillus subtilis strains (Table 1).

Table 1 In vitro inhibition of the aqueous extract of Neem leaves in the concentration 3, 4, and 5% 

Treatment A. baumanii B. subtilis E. aerogenes S. aureus S. maltophilia Micrococcus sp S. epidermidis
Neem 3% 99.84±0.04b 0.00±0.00a 99.77±0.07d 99.87±0.05e 0.00±±0.00a 99.86±0.02a 0.00±0.00a
Neem 4% 99.95±0.01d 0.00±0.00a 99.75±0.02d 99.85±0.02d 0.00±0.00a 99.89±0.01ab 0.00±0.00a
Neem 5% 100.00±0.00e 0.00±0.00a 99.85±0.02e 99.96±0.01f 0.00±0.00a 99.97±0.01d 0.00±0.00a
Enzymatic detergent 3% 99.81±0.01a 0.00±0.00a 99.63±0.01a 99.48±0.03a 0.00±0.00a 99.88±0.00a 99.69±0.01b
Disinfectant 100%. 100.00±0.00e 0.00±0.00a 100.00±0.00f 100.00±0.00g 99.91±0.01e 100.00±0.00d 100.00±0.00b

* According to Tukey 0.05, the values in a column followed by the same letter do not differ significantly.

Additionally, it should be noted that the Neem extract was effective in inhibiting the growth of five out of seven bacteria under study, at all concentrations used, being greater in 5 %, at 15 minutes of contact, and without significant differences with the other treatments (P=0.00). In the case of bacteria Acinetobacter baumanii, Enterobacter aerogenes, Staphylococcus aureus, and Micrococcus sp., inhibitions of 99.48% were observed, while in the case of Bacillus subtilis, Stenotrophomonas maltophilia, and Staphylococcus epidermidis, no bactericidal effect was observed by the Neem extract.

The Bacillus subtilis and Stenotrophomonas maltophilia strains were the most resistants; Bacillus subtilis was also not susceptible to the enzymatic detergent nor the disinfectant. Stenotrophomonas maltophilia also presented resistance to enzymatic detergent.

Discussion

This research indicated that using a single type of sanitizing product, applied for 15 minutes, is not efficient enough for reducing all bacteria genus that cause infections associated with health care, which were isolated from hospital’s surfaces in the city of Valledupar. This finding highlights the importance of trials that allow the proper selection and suitable disinfectants use in hospital areas that facilitate the construction of a clear policy to prevent HAIs (16).

Furthermore, regarding the Bacillus subtilis resistance to disinfectants, it is associated with its characteristics as a sporulated microorganism, which forms a barrier that prevents the antimicrobial agents’ entrance since the complex membranes that surround the endospore act as an additional penetration factor (17). Besides, an interference with the culture medium could occur, and in the case of chemical products, a more prolonged action time is recommended.

The 99.96% effectiveness of the natural extract based on Neem leaves in concentrations of 3, 4, and 5% coincides with similar studies on Staphylococcus aureus isolated from cows milk with subclinical mastitis, where Giraldo (18) pointed out an 83% bacteriostatic activity of Neem extracts at a 5% concentration.

Valle (19) stated that the Neem leaf infusion is 100% effective against Oxyuris equi, at 15% concentration when used in oral administration of 60 ml. On the other hand, according to Dublin, Roque, and Estrada (20), several applications of Neem were required to achieve adequate effectiveness as an anthelmintic. Additionally, the treatments must be repeated to achieve cumulative effects, more significant bioactivity of the extract against bacteria Staphylococcus epidermidis and Stenotrophomonas maltophilia. In particular, those last emerging opportunistic pathogens with evidence of intrahospital transmission are resistant to multiple drugs and disinfectants, associated with their high mutagenic capacity (21,22).

Likewise, in the study carried out by Vásquez (23), it was observed that the seed has a 40% bacterial inhibition and the leaves a 70%. Regarding S. epidermidis, it was 60%, and there was no inhibition of S. aureus and E. coli. Unlike the current study, Neem leaf's aqueous extract inhibited S. aureus (99.96%) and did not inhibit S. epidermidis. Variability in fact, according to the part of the plant used, indicatesd the need to standardize the extraction process to regulate the biocidal effect of the oil.

Similarly, López et al. (24) evaluated the microbicidal activity of acetonic, ethanolic and methanolic extracts of Neem seeds, at concentrations of 1, 10, 25 and 50%, against Escherichia coli, Staphylococcus aureus, and the Bacteriophage P22, using two contact times (2.5 and 5 min), reporting that the 10% ethanolic extract of Neem, inhibited the growth of E. coli. In comparison, the methanolic and acetonic extracts did so from the concentration of 25% and 50%, respectively, while the Neem extracts did not achieve a total reduction of S. aureus. This contrasting result may be due to the reduced contact time since the S. aureus inhibition was 15 minutes in the current study.

Conclusions

In this research, it was evidenced that the aqueous Neem extract has biocidal properties against bacteria associated with IAAS, which indicates its potential as an active ingredient of products for hospital use. To improve the Neem extract's effectiveness, a phytochemical study and standardization of contact times for evaluation in a combined way on hospital surfaces are necessary.

Nevertheless, given the non-total effectiveness of any of the evaluated products, the combined use of them in a disinfection plan to control bacteria associated with IAAS is recommended.

Acknowledgments

The authors thank the University of Santander for facilitating the execution of this project.

References

1. Ministerio de salud y protección social. Programa de prevención, vigilancia y control de infecciones asociadas a la atención en salud-IAAS y la resistencia antimicrobiana. [Internet]. Bogotá, Colombia: 2018. [cited 2020 Nov 20]. Available in: Available in: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/PAI/programa-iaas-ram.pdfLinks ]

2. Rodríguez R, Bustillo D, Caicedo D, Cadena D, Castellanos C. Acinetobacter baumannii: patógeno multirresistente emergente. Revista de los estudiantes de medicina de la Universidad Industrial De Santander. 2016; 29(2):113-35. [ Links ]

3. Gómez RA. Brote de infecciones asociadas a la atención de salud. Protocolo de Vigilancia en Salud Pública[Internet]. Instituto Nacional de Salud. 2017. [cited 2020 Nov 20]. Available in: Available in: https://www.ins.gov.co/buscador-eventos/Lineamientos/PRO%20INFECCIONES%20ASOCIADAS%20A%20LA%20ATENCION%20EN%20SALUD_.pdfLinks ]

4. Ortiz J, Pineda I, Dennis R, Porras A. Costos atribuidos a las infecciones asociadas con la atención en salud en un hospital de Colombia, 2011-2015. Biomédica 2019; 39:102-12. DOI: https://doi.org/10.7705/biomedica.v39i1.4061Links ]

5. Morales G. y García A. Fenotipos de resistencia antimicrobiana en cepas de Staphylococcus aureus aislados en un centro hospitalario de la ciudad de Valledupar. Febrero a julio de 2013. Biociencias 2013; 8 (2): 13-23. [ Links ]

6. Thombare M, Udugade B, Hol T, Mulik M, Pawade D. Formulation and evaluation of novel herbal hand sanitizer. Indo American Journal of Pharmaceutical Research 2015; 5 (1): 483-488. [ Links ]

7. Balakrishna S, Ghosh S, Yadav G, Sharma K, Ghosh S, Joshi S. Formulation, Evaluation and Antibacterial Efficiency of water-based herbal Hand Sanitizer Gel [Internet]. Biorxiv. 2018. [cited 2020 Nov 20]. Available in: Available in: https://www.biorxiv.org/content/10.1101/373928v2Links ]

8. Sujarwo W, Keim A, Caneva G, Toniolo C, Nicoletti M. Ethnobotanical uses of Neem (Azadirachta indica A.Juss.; Meliaceae) leaves in Bali (Indonesia) and the Indian subcontinent in relation with historical background and phytochemical propertie. J. Ethnopharmacol 2016 Ago 2; 189: 186-193. DOI: https://doi.org/10.1016/j.jep.2016.05.014Links ]

9. Kumari D, Shenoyb S, Khijmatgara S, Chowdhuryc A, Lynchd E, Chowdhurya Ch. Antibacterial activity of new atraumatic restorative treatment materials incorporated with Azadirachta indica (Neem) against Streptococcus mutans. Journal of Oral Biology and Craniofacial Research 2019; 9: 321-325. DOI: https://10.1016/j.jobcr.2019.06.014Links ]

10. Islas J, Acosta E, Buentello Z, Delgado J, Moreno M, Escalante B, Moreno J. An overview of Neem (Azadirachta indica) and its potential impact on health. Journal of Functional Foods 2020; 74:104171. DOI: https://doi.org/10.1016/j.jff.2020.104171Links ]

11. Kharwar R, Sharma V, Mishra A, Kumar J, Singh1 D, Verma1 S, Gond S, Kumar A, Kaushik N, Revuru B, Kusari S. Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Med 2020; 86: 906-940. DOI: https://doi.org/10.1055/a-1107-9370Links ]

12. Farjana A, Zerin N, Kabir S. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac J Trop Dis 2014; 4(Suppl 2): S920-S923.DOI: https://doi.org/10.1016/S2222-1808(14)60758-1Links ]

13. Baildya N, Khan A, Ghosh N, Dutta T, Chattopadhyay A. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. Journal of Molecular Structure. 1227, 2021, DOI: https://doi.org/10.1016/j.molstruc.2020.129390Links ]

14. Barrabí M. y García J. Actividad antihelmíntica in vitro de extracto acuoso de hojas y semillas de Neem (Azadirachta indica A. Juss). I. Inhibición de la eclosión de huevos y del desarrollo larvario. Rev. Salud Anim 2013 May-Ago; 35(2):103-108. [ Links ]

15. Ortega M, Tofiño A, Mena O, Martínez M, Galvis D, Merini L. Microbial activity of essential oils of Lippia alba and Cymbopogon citratus on Streptococcus mutans and cytotoxicity in cho cells. Vitae 2016; 23 (Supl. 1): 503. DOI: https://doi.org/10.1016/j.jep.2016.10.044Links ]

16. Galván R, Ruiz R, Segura E, Cortés R. Comparative study on the effectiveness of 6% sodium hypochlorite solution vs a bromine-chloro-dimethylhydantoin solution for disinfecting hospital environments. Perinatología y Reproducción Humana. 2016 Oct; 30: 145-50. DOI: https://doi.org/10.1016/j.rprh.2017.06.001Links ]

17. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K. Phosphatidylethanolamine Domains and Localization of Phospholipid Synthases in Bacillus subtilis Membranes. J Bacteriol, 2005 Mar;187 (6): 2163-2174. DOI: https://doi.org/10.1128/jb.187.6.2163-2174.2005 [ Links ]

18. Giraldo S. Efecto inhibitorio de extractos de Neem sobre cepas de Staphylococcus aureus aisladas de leche de vacas con mastitis subclínica. [Trabajo de grado de maestría en Microbiology]. [Maracaibo, Venezuela]: 2010. 106 p. [ Links ]

19. Valle A. Eficacia de la infusión de la hoja de Neem Azadirachta indica administrado por vía oral para el control de Oxyuris equi en caballos. [Trabajo de grado de Med Vet]. [Guatemala]: Universidad De San Carlos De Guatemala: 2011. 38 p. [ Links ]

20. Dublín R, Roque E y Estrada J. Eficacia del extracto de las hojas del Neem Azadirachta indica A. Juss en el control de nematodos gastrointestinales en ovino Pelibuey. Redved 2012 Jul; 13(7):1-16 [ Links ]

21. Gröschel MI, Meehan CJ, Barilar I, Diricks M. The global phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. BioRxiv. 2019 Ago (28); 45 . DOI: https://doi.org/10.1038/s41467-020-15123-0Links ]

22. Charoenlap N, Jiramonai L, Chittrakanwong J. et al. Inactivation of ahpC renders Stenotrophomonas maltophilia resistant to the disinfectant hydrogen peroxide. Antonie van Leeuwenhoek. 2019 Mayo; 112 (5): 809-14. DOI: https://doi.org/10.1007/s10482-018-1203-9Links ]

23. Vásquez A. Utilización del extracto alcohólico de Azadirachta indica A. Juss contra las bacterias de importancia médica Escherichia coli, Staphylococcus aureus y Staphylococcus epidermidis. Minerva Revista en línea CIC-UES 2007; 1:10 [ Links ]

24. López, Y, et al. Efecto antimicrobiano de extracto de Neem (Azadirachta indica A. juss) y nevadillo (Swietenia humilis Zucc) contra E.coli, S. aureus y el bacteriófago P22. Bioquímica 2007 Oct-Dic; 32: 117-35 [ Links ]

Received: February 24, 2020; Accepted: December 08, 2020

*Author to whom correspondence should be directed: asl.melo@mail.udes.edu.co

Conflict of interests

The authors affirm that they have no conflict of interest with the publication of the results.

Contribution of the authors

Hedilka Jiménez participated in the identification of bacteria associated with IAAS, Bertilda Pedraza prepared the neem extract, Jeraldin Castrillon and Aylin performed the sampling and biocidal test, Aslenis Melo performed the analysis of biocidal test data. All authors participated in the writing of the manuscript.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License