SciELO - Scientific Electronic Library Online

 
vol.44 número173Fenología reproductiva de tres especies de Pristimantis en un bosque de niebla andinoUso prospectivo de subproductos de frutas en Colombia según su capacidad antioxidante índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

versión impresa ISSN 0370-3908

Resumen

CHALARCA-VELEZ, Julia Rosa  y  GAVIRIA, Duverney. In silico modeling by homology of membrane-bound quinoprotein glucose dehydrogenase in Pseudomonas fluorescens. Rev. acad. colomb. cienc. exact. fis. nat. [online]. 2020, vol.44, n.173, pp.1099-1112.  Epub 06-Jul-2021. ISSN 0370-3908.  https://doi.org/10.18257/raccefyn.1154.

Homology modeling is used for ligand prediction, mutation analysis, and catalytic activities. The use of several templates produces more precise models to better capture the structural variants among all the possible conformations of the proteins in a family. Comparative modeling is a useful strategy when there is no information reported in databases and there is a need for an experimental trial related to the structure and functioning of a protein. In the present study, we analyzed the structure and function of the membrane-bound quinoprotein glucose dehydrogenase (PQQ mGDH) in Pseudomonas fluorescens, known to be a plant-growth-promoting microorganism, one of whose functions is the solubilization of inorganic phosphates catalyzed by the PQQ mGDH, which is the first enzyme that participates in the direct oxidation of glucose by transforming D-glucose to D-gluconate. This process is the beginning of the production of organic acids involved in the solubilization of inorganic phosphates. Despite the large number of studies on this enzyme, none determines the three-dimensional structure of the PQQ-GDH enzyme in P. fluorescens. In our study, we compared the protein sequence with those reported in the databases for other species of Pseudomonas using a three-dimensional model of PQQ mGDH in P fluorescens based on homology modeling to characterize the secondary structure of the protein, the catalytic domain, the binding site for the cofactor pyrroloquinoline quinone (PQQ), as well as the functional domains present in this protein.

Palabras clave : Bioinformatics; Homology modelling; Quinoprotein.

        · resumen en Español     · texto en Español     · Español ( pdf )