SciELO - Scientific Electronic Library Online

 
vol.75 número154AVANCE EXPERIMENTAL DE LA INGENIERÍA DE POSTCOSECHA DE FRUTAS COLOMBIANAS: RESISTENCIA MECÁNICA PARA FRUTOS DE UCHUVA (Physalis peruviana l)CARACTERIZACIÓN MINERALÓGICA DE LOS PRODUCTOS DE OXIDACIÓN DEL SISTEMA PIRITA-ESFALERITA POR BACTERIAS NATIVAS OXIDANTES DE Fe índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


DYNA

versión impresa ISSN 0012-7353versión On-line ISSN 2346-2183

Resumen

GARCIA, EDUARD ALBERTO; OSORIO, JAIRO ALEXANDER  y  CORTES, MISAEL. MATHEMATICAL MODELING OF TWO-PHASE FLOW: PRESSURE - WAVE VELOCITY EFFECT ON THE MAGNITUDE AND PRESSURES DISTRIBUTION. Dyna rev.fac.nac.minas [online]. 2008, vol.75, n.154, pp.47-58. ISSN 0012-7353.

Quick movements of flow control system devices can produce transient flows where vapor pressure is reached, creating two-phase flows: liquid-vapor. Cavitation can be present in some cases. Under these conditions, the flow is characterized by spatial and temporal changes in the velocity of pressure waves due to an increase in the void fraction. Typically the wave velocity in two-phase flows is determined using an isothermal assumption like Wylie’s equation. In this research the adiabatic assumption was introduced and a new equation was obtained. Experimental set up was built; the results were used to analyze the system response and to study the wave velocity variation along the distributed vaporous cavitation zone and the vapor cavity. The experimental results were compared to numerical simulations assuming adiabatic and isothermal bubble vapor behavior. A good prediction of the maximum pressures magnitude was obtained with both models; however, both models predicted longer time intervals between consecutive pressure pulses compared to the measured data. In general, better predictions were obtained with the adiabatic wave velocity expression. The volume of the vapor cavity obtained by using adiabatic or isothermal behavior was similar; however, both models predicted the creation of additional cavities not detected in the experimental results.

Palabras clave : two-phase flows; vaporous cavitation; pressure wave velocity.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons