SciELO - Scientific Electronic Library Online

 
vol.21 número51Colombian vegetal fibers as a reinforcement in polymeric matrix compositesE2CAV, Pavement layer thickness estimation system based on image texture operators índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Tecnura

versão impressa ISSN 0123-921X

Resumo

VEGA-POSADA, Carlos Alberto; RAMOS-CANON, Alfonso Mariano  e  GARCIA ARISTIZABAL, Edwin Fabián. Effect of gas on shear wave velocity of sandy soils densified with explosives. Tecnura [online]. 2017, vol.21, n.51, pp.67-80. ISSN 0123-921X.  https://doi.org/10.14483/udistrital.jour.tecnura.2017.1.a05.

Abstract Context: Shear wave velocity tests (Vs) are commonly used to estimate the increase in resistance of explosive densified soils. In some historical cases, Vs tests performed after the soil improvement process do not show a significant increase in soil resistance, even though the soil surface sits more than 0.50 m. It is believed that this response is due to the presence of gas on the soil mass. Method: This paper presents the results of monotonic triaxial tests performed on samples of dense gaseous sandy soils to evaluate the effect of occluded gas on the response to the shear wave velocity in densified sands with explosives. For sand sampling, it was collected from a loose sand deposit located in South Carolina, USA. These samples were densified in-situ with explosives, and consolidated to the in-situ effective stress conditions, which are considered representative in the conditions of effort at the moment of the densification with explosives. Results: Triaxial tests were performed under global non-drained conditions. The results of these tests show that gas causes the shear wave velocity values obtained for the gaseous sands to approximate the shear wave velocity values obtained in the saturated samples tested under drained conditions. In addition, behavior tends to be more pronounced as the soil is denser. Conclusions: These response may offer some insights as to why the shear wave velocity does not increase significantly in densified soils with explosives, even though the density increases considerably.

Palavras-chave : Loose sands; blast densification; liquefaction; soil improvement; shear wave velocity.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons