SciELO - Scientific Electronic Library Online

 
vol.44 número1Agglutinated foraminiferal assemblages of the San Cayetano Formation (San Jacinto Fold Belt, Northern Colombia)Seismicity and seismotectonics for the Northern sector of the Algeciras Fault System, Eastern Cordillera, Colombia índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Boletín de Geología

versão impressa ISSN 0120-0283versão On-line ISSN 2145-8553

Resumo

MARIN, Roberto J.; MATTOS, Álvaro J.  e  FERNANDEZ-ESCOBAR, Camilo J.. Understanding the sensitivity to the soil properties and rainfall conditions of two physically-based slope stability models. Bol. geol. [online]. 2022, vol.44, n.1, pp.93-109.  Epub 25-Jan-2022. ISSN 0120-0283.  https://doi.org/10.18273/revbol.v44n1-2022004.

Physically-based models have been used to assess landslide susceptibility, hazard, and risk in many regions worldwide. They have also been regarded as valuable tools for landslide prediction and the development or improvement of landslide early warning systems. They are usually validated to demonstrate their predictive capacity, but they are not deeply studied regularly to understand the sensitivity of the input variables and the behavior of the models under many different rainfall scenarios. In this research paper, we studied two distributed physically-based models for shallow landslides: SLIP and Iverson. For this, the first-order second-moment (FOSM) method was used to calculate the contribution of random input variables (soil strength, unit weight, and permeability parameters) to the variance of the factor of safety. Different intensity and duration rainfall events were simulated to assess the response of the models to those rainfall conditions in terms of the factor of safety and failure probability. The results showed that the shear strength (cohesion and friction angle, in order of significance) parameters have the largest contribution to the variance in both models, but they vary depending on geological, geotechnical, and topographic conditions. The Iverson and SLIP models respond in different ways to the variation of rainfall conditions: for shorter durations (e.g. ≤ 8 h), increasing the intensity caused more unstable areas in the SLIP model, while for longer durations the unstable areas were considerably higher for the Iverson model. Understanding those behaviors can be useful for practical and appropriate implementation of the models in landslide assessment projects.

Palavras-chave : Shallow landslide; SLIP; Iverson; Intensity; Duration; FOSM.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )