Serviços Personalizados
Journal
Artigo
Indicadores
Citado por SciELO
Acessos
Links relacionados
Citado por Google
Similares em
SciELO
Similares em Google
Compartilhar
Revista Integración
versão impressa ISSN 0120-419Xversão On-line ISSN 2145-8472
Resumo
G. ANAY, José; MAYA, David e OROZCO-ZITL, Fernando. Una caracterización de funciones inducibles entre hiperespacios. Integración - UIS [online]. 2020, vol.38, n.2, pp.109-117. Epub 30-Jun-2020. ISSN 0120-419X. https://doi.org/10.18273/revint.v38n2-2020004.
Dados dos hiperespacios fijos H(X) y H(Y ) de continuos métricos X y Y , respectivamente, una función continua g : H(X) → H(Y ) es inducible si existe una función continua f : X → Y tal que g(A) = {f(a) : a ∈ A}, para cada A ∈ H(X). En este trabajo presentamos una caracterización de funciones inducibles entre hiperespacios, la comparamos con las condiciones necesarias y suficientes bajo las cuales una función continua entre hiperespacios es inducible, dada por J.J. Charatonik y W.J. Charatonik en 1998, y damos ejemplos que muestran la independencia entre las condiciones en ambas caracterizaciones en todos los hiperespacios, algunos de ellos no habían sido considerados en la caracterización ya conocida, haciendo completo el estudio de esta clase de funciones continuas.
Palavras-chave : Continuo; función inducible; función inducida; hiperespacio.












