SciELO - Scientific Electronic Library Online

 
vol.26 issue4Epidemiological characteristics of whooping cough in Paraguay (2005-2019) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Infectio

Print version ISSN 0123-9392

Infect. vol.26 no.4 Bogotá Oct./Dec. 2022  Epub Aug 21, 2022

https://doi.org/10.22354/24223794.1080 

EDITORIAL

Recipe ingredients for re emergent protozoa: climatic change, rain, zoonosis, mountain and food

Ingredientes de una receta para protozoos re-emergentes: cambio climático, lluvias, zoonosis, montaña y alimentos

Jorge E. Gomez-Marm1  2  5 

Yimmi Pinto1  2  3 

Fabiana Lora2  4 

Hugo Mantilla-Meluk6 

1 Grupo de Investigación en Población Infantil (IPI), Hospital Universitario San Juan de Dios, Armenia, Quindío, Colombia

2 Grupo de Estudio en Parasitología Molecular (GEPAMOL), Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Quindío, Colombia

3 https://orcid.org/0000-0002-8842-091X

4 Grupo de Investigación en Ciencias Básicas y Educación, Universidad del Quindío, Armenia, Quindío, Colombia. https://orcid.org/0000-0003-0094-3044 0000-0003-0094-3044

5 Editor en Jefe, Revista Infectio. https://orcid.org/0000-0001-6472-3329

6 Centro de Estudios de Alta Montaña (CEAM), Colombia. Universidad del Quindío. http://orcid.org/0000-0001-8134-3694


Keywords: climatic change; Colombia; protozoa; foodborne diseases

Palabras clave: cambio climático; Colombia, protozoarios; infecciones transmitidas por alimentos

When someone says that global concentrations of carbon dioxide (CO2) have continued to increase in the atmosphere to reach annual averages of 410 parts per million, it does not mean much to most people1. But certainly, the consequences of the changes derived from alterations on the hydro-logical and meteorological cycles have an impact on many living systems, including zoonosis2. Global climate change produces ecological perturbations, which cause phenological shifts, as well as alterations in parasite transmission, with the potential for host switching3-5. The intersection of climate change with transmission dynamics, called ecological fitting, permits emergence of parasites and diseases without evolutionary changes in their capacity for host utilization6-8.

Climate change is causing the resurgence of many parasites. Neglected tropical diseases such as toxocariasis are now increasing the number of children with blindness in urban settings; this situation is intrinsically and surprisingly linked to rain anomalies9,10. Toxocariasis is one of the neglected tropical diseases that should be considered a priority for zoonotic control programs. But it is not the only one; there are other parasitic infections requiring even greater attention, with an integrated and multidisciplinary reflection on the type of measurements that need to be taken. Important human pathogenic parasite protozoa such as Toxoplasma, Cyclospora, Cryptosporidium and Giardia share water and foodborne transmission as major determinants of their prevalence in human populations11-14. Wild, companion animals, and faunal species used for food production are related to the zoonotic transmission of the above-mentioned diseases, making them targets of the One Health approach15-19. In addition, the interplay between agriculture boundary expansion, alterations of natural ecosystems, and the introduction of animal species for food production in these modified environments create conditions for changes in the chain of transmission20,21. Mountains have been identified as essential for food production in many countries22. The complexity of mountain agricultural systems, which usually involve a mixture of vegetables and fruit cultivars, as well as cattle (cows, sheep, pigs) and poultry, make them "perfect" environments for the increase in contact between protozoa and food products22-24. The recipe for the increased transmission of pathogens has as one of its ingredients the raising of precipitation rates, a direct consequence of global warming2,25-28. More rain causes an increase in water runoff from the soil of mountains into the rivers that are the source of drinkable water for towns downstream25,28,29. Chlorine treatment of drinkable water does not eliminate protozoans, acting as the "cherry on top" for re-emergent protozoa infection30,31. These circumstances can easily explain the changing epidemiological situation we are facing in the frequency of these protozoa in humans with health and economic consequences that have not yet been fully evaluated32-34.

As a corollary, it is urgent that academic, health, and environmental authorities, as well as agriculture producers, coordinate actions to control and limit the burden of the diseases caused by the consequences of climate change leading to the reemergence of these human pathogens (Figure). One aspect that needs to be considered as part of this emergent situation is that the mathematical models used to predict the dynamics of infectious disease transmission should incorporate climatic variables as well as the number of abandoned pets that are causing the resurgence of endemic infections that generate critical new human health challenges35,36.

References

1. The Intergovernmental Panel on Climate Change (IPCC). AR6 Climate Change 2021: The Physical Science Basis - IPCC 2022. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed July 15, 2022). [ Links ]

2. El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases. Environ Sci Pollut Res Int 2020;27:22336-52. https://doi.org/10.1007/S11356-020-08896-W. [ Links ]

3. Engelstädter J, Fortuna NZ. The dynamics of preferential host switching: Host phylogeny as a key predictor of parasite distribution*. Evolution (N Y) 2019;73:1330-40. https://doi.org/10.1111/EVO.13716. [ Links ]

4. Foster CSP. Digest: The phylogenetic distance effect: Understanding parasite host switching*. Evolution (N Y) 2019;73:1494-5. https://doi.org/10.1111/evo.13765. [ Links ]

5. Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Frontiers in Cellular and Infection Microbiology 2020;10. https://doi.org/10.3389/FCIMB.2020.587933. [ Links ]

6. Hoberg EP, Brooks DR. Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society B: Biological Sciences 2015;370:1-7. https://doi.org/10.1098/RSTB.2013.0553. [ Links ]

7. Mideo N, Reece SE. Plasticity in parasite phenotypes: Evolutionary and ecological implications for disease. Future Microbiology 2012;7:17-24. https://doi.org/10.2217/FMB.11.134. [ Links ]

8. Bebber DP. Range-Expanding Pests and Pathogens in a Warming World. Annual Review of Phytopathology 2015;53:335-56. https://doi.org/10.1146/ANNUREV-PHYTO-080614-120207. [ Links ]

9. Rostami A, Riahi SM, Holland C v., Taghipour A, Khalili-Fomeshi M, Fakhri Y, et al. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl Trop Dis 2019;13:e0007809. https://doi.org/10.1371/journal.pntd.0007809. [ Links ]

10. Gómez-Marín JE, Londoño ÁL, Cabeza-Acevedo N, Torres E, Navarrete-Moncada L, Bueno O, et al. Ocular Toxocariasis in Parasitology Consultation in Quindío, Colombia: Description of Cases and Contact Studies. Journal of Tropical Pediatrics 2020. https://doi.org/10.1093/tropej/fmaa096. [ Links ]

11. Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology 2019;15:e00049. https://doi.org/10.1016/j.fawpar.2019.e00049. [ Links ]

12. Foodborne Disease Burden Epidemiology Reference Group 2007-2015. WHO estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007-2015 2015. https://www.who.int/publications/i/item/9789241565165 (accessed July 8, 2022). [ Links ]

13. Smith H v., Cacciò SM, Cook N, Nichols RAB, Tait A. Cryptosporidium and Giardia as foodborne zoonoses. Veterinary Parasitology 2007;149:29-40. https://doi.org/10.1016/j.vetpar.2007.07.015. [ Links ]

14. Robertson LJ, van der Giessen JWB, Batz MB, Kojima M, Cahill S. Have foodborne parasites finally become a global concern? Trends in Parasitology 2013;29:101-3. https://doi.org/10.1016/j.pt.2012.12.004. [ Links ]

15. Li J, Ren Y, Chen H, Huang W, Feng X, Hu W. Risk Evaluation of Pathogenic Intestinal Protozoa Infection Among Laboratory Macaques, Animal Facility Workers, and Nearby Villagers From One Health Perspective. Frontiers in Veterinary Science 2021;8. https://doi.org/10.3389/FVETS.2021.696568. [ Links ]

16. Djurkovic-Djakovic O, Dupouy-Camet J, van der Giessen J, Dubey JP. Toxoplasmosis: Overview from a One Health perspective. Food and Waterborne Parasitology 2019;15:e00054. https://doi.org/10.1016/j.fawpar.2019.e00054. [ Links ]

17. inci A, Doganay M, Özdarendeli A, Düzlü Ö, Yildirim A. Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats. Turkiye Parazitolojii Dergisi 2018;42:39-80. https://doi.org/10.5152/TPD.2018.5701. [ Links ]

18. Barnes AN, Davaasuren A, Baasandavga U, Lantos PM, Gonchigoo B, Gray GC. Zoonotic enteric parasites in Mongolian people, animals, and the environment: Using One Health to address shared pathogens. PLoS Negl Trop Dis 2021;15:e0009543. https://doi.org/10.1371/JOURNAL.PNTD.0009543. [ Links ]

19. Pozio E. How globalization and climate change could affect foodborne parasites. Experimental Parasitology 2020;208. https://doi.org/10.10167J.EXPPARA.2019.107807. [ Links ]

20. Lal A, Baker MG, Hales S, French NP. Potential effects of global environmental changes on cryptosporidiosis and giardiasis transmission. Trends Parasitol 2013;29:83-90. https://doi.org/10.1016/J.PT.2012.10.005. [ Links ]

21. Forbes O, Hosking R, Mokany K, Lal A. Bayesian spatio-temporal modelling to assess the role of extreme weather, land use change and socioeconomic trends on cryptosporidiosis in Australia, 2001-2018. Sci Total Environ 2021;791. https://doi.org/10.1016/J.SCITOTENV.2021.148243. [ Links ]

22. Lu X. Mountain surface processes and regulation. Scientific Reports 2021;11. https://doi.org/10.1038/S41598-021-84784-8. [ Links ]

23. Hannah L, Roehrdanz PR, Krishna Bahadur KC, Fraser EDG, Donatti CI, Saenz L, et al. The environmental consequences of climate-driven agricultural frontiers. PLoS ONE 2020;15. https://doi.org/10.1371/JOURNAL.PONE.0228305. [ Links ]

24. Li Y, Li F, Yang F, Xie X, Yin L. Spatiotemporal impacts of climate change on food production: case study of Shaanxi Province, China. EnvironmentalScience and Pollution Research 2020;27:19826-35. https://doi.org/10.1007/S11356-020-08447-3. [ Links ]

25. Swaffer BA, Vial HM, King BJ, Daly R, Frizenschaf J, Monis PT. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment. Water Res 2014;67:310-20. https://doi.org/10.1016/jwatres.2014.08.055. [ Links ]

26. Afonso E, THULLIEZ P, GILOT-FROMONT E. Local meteorological conditions, dynamics of seroconversion to Toxoplasma gondii in cats (Felis catus) and oocyst burden in a rural environment. Epidemiology and Infection 2009;138:1105-13. https://doi.org/10.1017/S0950268809991270. [ Links ]

27. Afonso E, Germain E, Poulle M-LL, Ruette S, Devillard S, Say L, et al. Environmental determinants of spatial and temporal variations in the transmission of Toxoplasma gondii in its definitive hosts. Int J Parasitol Parasites Wildl 2013;2:278-85. https://doi.org/10.1016/j.ijppaw.2013.09.006. [ Links ]

28. Donat MG, Lowry AL, Alexander L v., O'Gorman PA, Maher N. More extreme precipitation in the world's dry and wet regions. Nature Climate Change 2016 6:5 2016;6:508-13. https://doi.org/10.1038/nclimate2941. [ Links ]

29. VanWormer E, Fritz H, Shapiro K, Mazet JAK, Conrad PA. Molecules to modeling: Toxoplasma gondii oocysts at the human-animal-environment interface. Comparative Immunology, Microbiology and Infectious Diseases 2013;36:217-31. https://doi.org/10.1016/j.cimid.2012.10.006. [ Links ]

30. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2004-2010. Water Research 2011;45:6603-14. https://doi.org/10.1016/j.watres.2011.10.013. [ Links ]

31. Ma J-Y, Li M-Y, Qi Z-Z, Fu M, Sun T-F, Elsheikha HM, et al. Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. Science of The Total Environment 2022;806:150562. https://doi.org/10.1016/j.scitotenv.2021.150562. [ Links ]

32. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013;382:209-22. https://doi.org/10.1016/S0140-6736(13)60844-2. [ Links ]

33. Hunter PR. Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology Symposium Supplement 2003;94. https://doi.org/10.1046/J.1365-2672.94.S1.5.X. [ Links ]

34. Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, et al. Climate change impact assessment of food- and waterborne diseases. Critical Reviews in Environmental Science and Technology 2012;42:857-90. https://doi.org/10.1080/10643389.2010.534706. [ Links ]

35. Patz JA, Frumkin H, Holloway T, Vimont DJ, Haines A. Climate change: challenges and opportunities for global health. JAMA 2014;312:1565-80. https://doi.org/10.1001/JAMA.2014.13186. [ Links ]

36. Flockhart DTT, Coe JB. Multistate matrix population model to assess the contributions and impacts on population abundance of domestic cats in urban areas including owned cats, unowned cats, and cats in shelters. PLoS One 2018;13. https://doi.org/10.1371/JOURNAL.PONE.0192139. [ Links ]

Cómo citar este artículo: J.E. Gomez-Marin, et al. Recipe for re emergent protozoa: climatic change, rain, zoonosis, mountain and food. Infectio 2022; 26(4): 381-383

Received: July 18, 2022; Accepted: July 19, 2022

*Autor para correspondencia: Correo electrónico: jegomez@uniquindio.edu.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License